Properties

Label 459.2.y.a.62.10
Level $459$
Weight $2$
Character 459.62
Analytic conductor $3.665$
Analytic rank $0$
Dimension $256$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [459,2,Mod(44,459)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(459, base_ring=CyclotomicField(48)) chi = DirichletCharacter(H, H._module([40, 9])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("459.44"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 459 = 3^{3} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 459.y (of order \(48\), degree \(16\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.66513345278\)
Analytic rank: \(0\)
Dimension: \(256\)
Relative dimension: \(16\) over \(\Q(\zeta_{48})\)
Twist minimal: no (minimal twist has level 153)
Sato-Tate group: $\mathrm{SU}(2)[C_{48}]$

Embedding invariants

Embedding label 62.10
Character \(\chi\) \(=\) 459.62
Dual form 459.2.y.a.422.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.613881 + 0.800025i) q^{2} +(0.254448 - 0.949612i) q^{4} +(-3.54737 - 0.232507i) q^{5} +(0.00291938 + 0.0445412i) q^{7} +(2.77921 - 1.15119i) q^{8} +(-1.99165 - 2.98072i) q^{10} +(-4.54544 - 3.98625i) q^{11} +(-3.51137 - 0.940868i) q^{13} +(-0.0338419 + 0.0296785i) q^{14} +(0.924284 + 0.533636i) q^{16} +(3.77050 + 1.66834i) q^{17} +(-2.46918 - 1.02277i) q^{19} +(-1.12341 + 3.30947i) q^{20} +(0.398737 - 6.08355i) q^{22} +(-2.31805 - 6.82875i) q^{23} +(7.57258 + 0.996950i) q^{25} +(-1.40284 - 3.38676i) q^{26} +(0.0430397 + 0.00856112i) q^{28} +(-0.0353157 + 0.0174158i) q^{29} +(2.74702 + 3.13237i) q^{31} +(-0.644819 - 4.89788i) q^{32} +(0.979919 + 4.04065i) q^{34} -0.158683i q^{35} +(-1.01343 - 5.09486i) q^{37} +(-0.697541 - 2.60326i) q^{38} +(-10.1266 + 3.43751i) q^{40} +(-2.12104 + 4.30104i) q^{41} +(-0.107266 + 0.814765i) q^{43} +(-4.94197 + 3.30212i) q^{44} +(4.04017 - 6.04654i) q^{46} +(1.62385 - 0.435110i) q^{47} +(6.93814 - 0.913423i) q^{49} +(3.85108 + 6.67026i) q^{50} +(-1.78692 + 3.09503i) q^{52} +(-1.17550 + 2.83792i) q^{53} +(15.1976 + 15.1976i) q^{55} +(0.0593888 + 0.120429i) q^{56} +(-0.0356127 - 0.0175622i) q^{58} +(7.99901 + 6.13786i) q^{59} +(-0.0920527 + 0.00603345i) q^{61} +(-0.819636 + 4.12059i) q^{62} +(5.03194 - 5.03194i) q^{64} +(12.2374 + 4.15403i) q^{65} +(-5.04699 + 2.91388i) q^{67} +(2.54367 - 3.15600i) q^{68} +(0.126950 - 0.0974124i) q^{70} +(-5.65982 + 1.12581i) q^{71} +(-6.75916 - 4.51633i) q^{73} +(3.45389 - 3.93840i) q^{74} +(-1.59951 + 2.08452i) q^{76} +(0.164282 - 0.214097i) q^{77} +(3.54731 - 4.04493i) q^{79} +(-3.15471 - 2.10791i) q^{80} +(-4.74300 + 0.943442i) q^{82} +(-4.62326 + 3.54755i) q^{83} +(-12.9875 - 6.79490i) q^{85} +(-0.717681 + 0.414353i) q^{86} +(-17.2217 - 5.84597i) q^{88} +(12.7569 - 12.7569i) q^{89} +(0.0316563 - 0.159147i) q^{91} +(-7.07449 + 0.463687i) q^{92} +(1.34495 + 1.03202i) q^{94} +(8.52129 + 4.20223i) q^{95} +(1.60641 + 3.25748i) q^{97} +(4.98995 + 4.98995i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 256 q + 24 q^{2} - 8 q^{4} + 24 q^{5} - 8 q^{7} - 32 q^{10} + 24 q^{11} - 8 q^{13} + 24 q^{14} - 32 q^{19} + 24 q^{20} - 8 q^{22} + 24 q^{23} - 8 q^{25} - 32 q^{28} + 24 q^{29} - 8 q^{31} + 24 q^{32} - 56 q^{34}+ \cdots - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/459\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(190\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{7}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.613881 + 0.800025i 0.434079 + 0.565703i 0.958258 0.285905i \(-0.0922943\pi\)
−0.524179 + 0.851608i \(0.675628\pi\)
\(3\) 0 0
\(4\) 0.254448 0.949612i 0.127224 0.474806i
\(5\) −3.54737 0.232507i −1.58643 0.103980i −0.753536 0.657407i \(-0.771653\pi\)
−0.832898 + 0.553426i \(0.813320\pi\)
\(6\) 0 0
\(7\) 0.00291938 + 0.0445412i 0.00110342 + 0.0168350i 0.998375 0.0569833i \(-0.0181482\pi\)
−0.997272 + 0.0738183i \(0.976482\pi\)
\(8\) 2.77921 1.15119i 0.982600 0.407006i
\(9\) 0 0
\(10\) −1.99165 2.98072i −0.629816 0.942586i
\(11\) −4.54544 3.98625i −1.37050 1.20190i −0.956539 0.291606i \(-0.905811\pi\)
−0.413964 0.910293i \(-0.635856\pi\)
\(12\) 0 0
\(13\) −3.51137 0.940868i −0.973878 0.260950i −0.263414 0.964683i \(-0.584848\pi\)
−0.710464 + 0.703733i \(0.751515\pi\)
\(14\) −0.0338419 + 0.0296785i −0.00904462 + 0.00793192i
\(15\) 0 0
\(16\) 0.924284 + 0.533636i 0.231071 + 0.133409i
\(17\) 3.77050 + 1.66834i 0.914479 + 0.404632i
\(18\) 0 0
\(19\) −2.46918 1.02277i −0.566468 0.234639i 0.0810227 0.996712i \(-0.474181\pi\)
−0.647490 + 0.762074i \(0.724181\pi\)
\(20\) −1.12341 + 3.30947i −0.251203 + 0.740020i
\(21\) 0 0
\(22\) 0.398737 6.08355i 0.0850110 1.29702i
\(23\) −2.31805 6.82875i −0.483347 1.42389i −0.866020 0.500010i \(-0.833330\pi\)
0.382673 0.923884i \(-0.375004\pi\)
\(24\) 0 0
\(25\) 7.57258 + 0.996950i 1.51452 + 0.199390i
\(26\) −1.40284 3.38676i −0.275120 0.664198i
\(27\) 0 0
\(28\) 0.0430397 + 0.00856112i 0.00813373 + 0.00161790i
\(29\) −0.0353157 + 0.0174158i −0.00655796 + 0.00323403i −0.445565 0.895250i \(-0.646997\pi\)
0.439007 + 0.898484i \(0.355330\pi\)
\(30\) 0 0
\(31\) 2.74702 + 3.13237i 0.493379 + 0.562591i 0.943924 0.330163i \(-0.107104\pi\)
−0.450545 + 0.892754i \(0.648770\pi\)
\(32\) −0.644819 4.89788i −0.113989 0.865832i
\(33\) 0 0
\(34\) 0.979919 + 4.04065i 0.168055 + 0.692966i
\(35\) 0.158683i 0.0268223i
\(36\) 0 0
\(37\) −1.01343 5.09486i −0.166607 0.837589i −0.970180 0.242384i \(-0.922071\pi\)
0.803574 0.595205i \(-0.202929\pi\)
\(38\) −0.697541 2.60326i −0.113156 0.422304i
\(39\) 0 0
\(40\) −10.1266 + 3.43751i −1.60115 + 0.543517i
\(41\) −2.12104 + 4.30104i −0.331250 + 0.671709i −0.997240 0.0742521i \(-0.976343\pi\)
0.665989 + 0.745962i \(0.268010\pi\)
\(42\) 0 0
\(43\) −0.107266 + 0.814765i −0.0163579 + 0.124251i −0.997675 0.0681444i \(-0.978292\pi\)
0.981318 + 0.192395i \(0.0616255\pi\)
\(44\) −4.94197 + 3.30212i −0.745030 + 0.497813i
\(45\) 0 0
\(46\) 4.04017 6.04654i 0.595690 0.891513i
\(47\) 1.62385 0.435110i 0.236863 0.0634673i −0.138435 0.990372i \(-0.544207\pi\)
0.375298 + 0.926904i \(0.377540\pi\)
\(48\) 0 0
\(49\) 6.93814 0.913423i 0.991163 0.130489i
\(50\) 3.85108 + 6.67026i 0.544625 + 0.943318i
\(51\) 0 0
\(52\) −1.78692 + 3.09503i −0.247801 + 0.429204i
\(53\) −1.17550 + 2.83792i −0.161468 + 0.389818i −0.983820 0.179161i \(-0.942662\pi\)
0.822352 + 0.568979i \(0.192662\pi\)
\(54\) 0 0
\(55\) 15.1976 + 15.1976i 2.04924 + 2.04924i
\(56\) 0.0593888 + 0.120429i 0.00793616 + 0.0160929i
\(57\) 0 0
\(58\) −0.0356127 0.0175622i −0.00467617 0.00230603i
\(59\) 7.99901 + 6.13786i 1.04138 + 0.799081i 0.979993 0.199033i \(-0.0637801\pi\)
0.0613898 + 0.998114i \(0.480447\pi\)
\(60\) 0 0
\(61\) −0.0920527 + 0.00603345i −0.0117861 + 0.000772504i −0.0712951 0.997455i \(-0.522713\pi\)
0.0595089 + 0.998228i \(0.481047\pi\)
\(62\) −0.819636 + 4.12059i −0.104094 + 0.523315i
\(63\) 0 0
\(64\) 5.03194 5.03194i 0.628992 0.628992i
\(65\) 12.2374 + 4.15403i 1.51786 + 0.515244i
\(66\) 0 0
\(67\) −5.04699 + 2.91388i −0.616588 + 0.355987i −0.775539 0.631299i \(-0.782522\pi\)
0.158951 + 0.987286i \(0.449189\pi\)
\(68\) 2.54367 3.15600i 0.308466 0.382721i
\(69\) 0 0
\(70\) 0.126950 0.0974124i 0.0151735 0.0116430i
\(71\) −5.65982 + 1.12581i −0.671697 + 0.133609i −0.519144 0.854687i \(-0.673749\pi\)
−0.152552 + 0.988295i \(0.548749\pi\)
\(72\) 0 0
\(73\) −6.75916 4.51633i −0.791100 0.528596i 0.0931267 0.995654i \(-0.470314\pi\)
−0.884227 + 0.467058i \(0.845314\pi\)
\(74\) 3.45389 3.93840i 0.401506 0.457830i
\(75\) 0 0
\(76\) −1.59951 + 2.08452i −0.183476 + 0.239111i
\(77\) 0.164282 0.214097i 0.0187217 0.0243986i
\(78\) 0 0
\(79\) 3.54731 4.04493i 0.399104 0.455091i −0.517028 0.855969i \(-0.672962\pi\)
0.916131 + 0.400878i \(0.131295\pi\)
\(80\) −3.15471 2.10791i −0.352707 0.235671i
\(81\) 0 0
\(82\) −4.74300 + 0.943442i −0.523777 + 0.104186i
\(83\) −4.62326 + 3.54755i −0.507468 + 0.389394i −0.830521 0.556987i \(-0.811957\pi\)
0.323053 + 0.946381i \(0.395291\pi\)
\(84\) 0 0
\(85\) −12.9875 6.79490i −1.40869 0.737011i
\(86\) −0.717681 + 0.414353i −0.0773895 + 0.0446809i
\(87\) 0 0
\(88\) −17.2217 5.84597i −1.83584 0.623182i
\(89\) 12.7569 12.7569i 1.35223 1.35223i 0.469070 0.883161i \(-0.344589\pi\)
0.883161 0.469070i \(-0.155411\pi\)
\(90\) 0 0
\(91\) 0.0316563 0.159147i 0.00331848 0.0166832i
\(92\) −7.07449 + 0.463687i −0.737566 + 0.0483427i
\(93\) 0 0
\(94\) 1.34495 + 1.03202i 0.138721 + 0.106444i
\(95\) 8.52129 + 4.20223i 0.874266 + 0.431140i
\(96\) 0 0
\(97\) 1.60641 + 3.25748i 0.163106 + 0.330746i 0.963047 0.269332i \(-0.0868028\pi\)
−0.799941 + 0.600078i \(0.795136\pi\)
\(98\) 4.98995 + 4.98995i 0.504061 + 0.504061i
\(99\) 0 0
\(100\) 2.87354 6.93735i 0.287354 0.693735i
\(101\) 2.53423 4.38941i 0.252165 0.436763i −0.711956 0.702224i \(-0.752191\pi\)
0.964122 + 0.265461i \(0.0855240\pi\)
\(102\) 0 0
\(103\) −0.363059 0.628837i −0.0357733 0.0619611i 0.847584 0.530661i \(-0.178056\pi\)
−0.883358 + 0.468699i \(0.844723\pi\)
\(104\) −10.8419 + 1.42737i −1.06314 + 0.139965i
\(105\) 0 0
\(106\) −2.99202 + 0.801710i −0.290611 + 0.0778690i
\(107\) 1.35228 2.02383i 0.130730 0.195651i −0.760330 0.649537i \(-0.774963\pi\)
0.891060 + 0.453886i \(0.149963\pi\)
\(108\) 0 0
\(109\) −7.52425 + 5.02754i −0.720692 + 0.481551i −0.861031 0.508552i \(-0.830181\pi\)
0.140339 + 0.990104i \(0.455181\pi\)
\(110\) −2.82894 + 21.4879i −0.269729 + 2.04879i
\(111\) 0 0
\(112\) −0.0210704 + 0.0427266i −0.00199097 + 0.00403728i
\(113\) 0.159798 0.0542442i 0.0150326 0.00510287i −0.313913 0.949452i \(-0.601640\pi\)
0.328946 + 0.944349i \(0.393307\pi\)
\(114\) 0 0
\(115\) 6.63526 + 24.7631i 0.618741 + 2.30917i
\(116\) 0.00755223 + 0.0379676i 0.000701207 + 0.00352520i
\(117\) 0 0
\(118\) 10.1673i 0.935978i
\(119\) −0.0633024 + 0.172813i −0.00580292 + 0.0158417i
\(120\) 0 0
\(121\) 3.33510 + 25.3326i 0.303191 + 2.30297i
\(122\) −0.0613363 0.0699406i −0.00555312 0.00633213i
\(123\) 0 0
\(124\) 3.67351 1.81158i 0.329891 0.162684i
\(125\) −9.19761 1.82952i −0.822659 0.163637i
\(126\) 0 0
\(127\) −5.60153 13.5233i −0.497055 1.20000i −0.951062 0.309000i \(-0.900006\pi\)
0.454007 0.890998i \(-0.349994\pi\)
\(128\) −2.68108 0.352971i −0.236977 0.0311986i
\(129\) 0 0
\(130\) 4.18896 + 12.3403i 0.367396 + 1.08231i
\(131\) 1.09065 16.6401i 0.0952905 1.45385i −0.635949 0.771731i \(-0.719391\pi\)
0.731239 0.682121i \(-0.238942\pi\)
\(132\) 0 0
\(133\) 0.0383467 0.112966i 0.00332508 0.00979538i
\(134\) −5.42943 2.24894i −0.469031 0.194279i
\(135\) 0 0
\(136\) 12.3996 + 0.296129i 1.06325 + 0.0253929i
\(137\) 7.73940 + 4.46834i 0.661221 + 0.381756i 0.792742 0.609557i \(-0.208653\pi\)
−0.131521 + 0.991313i \(0.541986\pi\)
\(138\) 0 0
\(139\) 8.24871 7.23393i 0.699647 0.613574i −0.233802 0.972284i \(-0.575117\pi\)
0.933449 + 0.358710i \(0.116783\pi\)
\(140\) −0.150687 0.0403765i −0.0127354 0.00341244i
\(141\) 0 0
\(142\) −4.37513 3.83688i −0.367152 0.321984i
\(143\) 12.2102 + 18.2738i 1.02107 + 1.52813i
\(144\) 0 0
\(145\) 0.129327 0.0535691i 0.0107400 0.00444867i
\(146\) −0.536144 8.17998i −0.0443716 0.676980i
\(147\) 0 0
\(148\) −5.09600 0.334010i −0.418889 0.0274554i
\(149\) −2.41458 + 9.01133i −0.197810 + 0.738237i 0.793712 + 0.608294i \(0.208146\pi\)
−0.991522 + 0.129942i \(0.958521\pi\)
\(150\) 0 0
\(151\) −5.43656 7.08506i −0.442421 0.576574i 0.517911 0.855435i \(-0.326710\pi\)
−0.960332 + 0.278860i \(0.910043\pi\)
\(152\) −8.03975 −0.652110
\(153\) 0 0
\(154\) 0.272132 0.0219291
\(155\) −9.01640 11.7504i −0.724215 0.943815i
\(156\) 0 0
\(157\) 2.65070 9.89256i 0.211549 0.789512i −0.775804 0.630974i \(-0.782655\pi\)
0.987353 0.158538i \(-0.0506780\pi\)
\(158\) 5.41367 + 0.354831i 0.430689 + 0.0282288i
\(159\) 0 0
\(160\) 1.14862 + 17.5246i 0.0908064 + 1.38544i
\(161\) 0.297393 0.123184i 0.0234379 0.00970829i
\(162\) 0 0
\(163\) 1.34058 + 2.00633i 0.105003 + 0.157148i 0.880250 0.474510i \(-0.157375\pi\)
−0.775247 + 0.631658i \(0.782375\pi\)
\(164\) 3.54463 + 3.10855i 0.276789 + 0.242737i
\(165\) 0 0
\(166\) −5.67626 1.52095i −0.440563 0.118048i
\(167\) 8.20662 7.19701i 0.635047 0.556921i −0.280136 0.959960i \(-0.590379\pi\)
0.915183 + 0.403039i \(0.132046\pi\)
\(168\) 0 0
\(169\) 0.186131 + 0.107463i 0.0143178 + 0.00826638i
\(170\) −2.53666 14.5615i −0.194553 1.11682i
\(171\) 0 0
\(172\) 0.746417 + 0.309176i 0.0569138 + 0.0235745i
\(173\) 0.337612 0.994572i 0.0256681 0.0756159i −0.933341 0.358991i \(-0.883121\pi\)
0.959009 + 0.283375i \(0.0914542\pi\)
\(174\) 0 0
\(175\) −0.0222980 + 0.340202i −0.00168557 + 0.0257169i
\(176\) −2.07408 6.11004i −0.156340 0.460561i
\(177\) 0 0
\(178\) 18.0371 + 2.37463i 1.35194 + 0.177986i
\(179\) −3.32973 8.03868i −0.248876 0.600839i 0.749233 0.662306i \(-0.230422\pi\)
−0.998109 + 0.0614667i \(0.980422\pi\)
\(180\) 0 0
\(181\) −11.3744 2.26251i −0.845453 0.168171i −0.246687 0.969095i \(-0.579342\pi\)
−0.598766 + 0.800924i \(0.704342\pi\)
\(182\) 0.146755 0.0723715i 0.0108782 0.00536453i
\(183\) 0 0
\(184\) −14.3035 16.3100i −1.05447 1.20239i
\(185\) 2.41042 + 18.3090i 0.177218 + 1.34610i
\(186\) 0 0
\(187\) −10.4882 22.6135i −0.766970 1.65366i
\(188\) 1.65274i 0.120539i
\(189\) 0 0
\(190\) 1.86916 + 9.39691i 0.135603 + 0.681724i
\(191\) −5.55024 20.7138i −0.401602 1.49880i −0.810238 0.586100i \(-0.800662\pi\)
0.408637 0.912697i \(-0.366004\pi\)
\(192\) 0 0
\(193\) 0.503524 0.170923i 0.0362444 0.0123033i −0.303258 0.952908i \(-0.598075\pi\)
0.339503 + 0.940605i \(0.389741\pi\)
\(194\) −1.61992 + 3.28487i −0.116303 + 0.235840i
\(195\) 0 0
\(196\) 0.897996 6.82096i 0.0641426 0.487211i
\(197\) −6.66381 + 4.45262i −0.474777 + 0.317236i −0.769834 0.638244i \(-0.779661\pi\)
0.295057 + 0.955480i \(0.404661\pi\)
\(198\) 0 0
\(199\) 1.66134 2.48637i 0.117769 0.176254i −0.767902 0.640568i \(-0.778699\pi\)
0.885671 + 0.464314i \(0.153699\pi\)
\(200\) 22.1935 5.94673i 1.56932 0.420497i
\(201\) 0 0
\(202\) 5.06735 0.667130i 0.356538 0.0469391i
\(203\) −0.000878819 0.00152216i −6.16810e−5 0.000106835i
\(204\) 0 0
\(205\) 8.52414 14.7642i 0.595352 1.03118i
\(206\) 0.280210 0.676487i 0.0195232 0.0471331i
\(207\) 0 0
\(208\) −2.74342 2.74342i −0.190222 0.190222i
\(209\) 7.14650 + 14.4917i 0.494334 + 1.00241i
\(210\) 0 0
\(211\) 10.8516 + 5.35143i 0.747056 + 0.368407i 0.775633 0.631184i \(-0.217431\pi\)
−0.0285766 + 0.999592i \(0.509097\pi\)
\(212\) 2.39582 + 1.83837i 0.164545 + 0.126260i
\(213\) 0 0
\(214\) 2.44926 0.160533i 0.167428 0.0109738i
\(215\) 0.569951 2.86534i 0.0388703 0.195414i
\(216\) 0 0
\(217\) −0.131500 + 0.131500i −0.00892680 + 0.00892680i
\(218\) −8.64115 2.93327i −0.585252 0.198666i
\(219\) 0 0
\(220\) 18.2988 10.5648i 1.23370 0.712279i
\(221\) −11.6699 9.40570i −0.785003 0.632696i
\(222\) 0 0
\(223\) 6.20019 4.75757i 0.415195 0.318590i −0.379953 0.925006i \(-0.624060\pi\)
0.795148 + 0.606415i \(0.207393\pi\)
\(224\) 0.216275 0.0430198i 0.0144505 0.00287438i
\(225\) 0 0
\(226\) 0.141494 + 0.0945431i 0.00941203 + 0.00628892i
\(227\) −3.90357 + 4.45117i −0.259089 + 0.295435i −0.866730 0.498777i \(-0.833783\pi\)
0.607641 + 0.794212i \(0.292116\pi\)
\(228\) 0 0
\(229\) 8.45010 11.0124i 0.558398 0.727719i −0.425795 0.904820i \(-0.640005\pi\)
0.984193 + 0.177101i \(0.0566720\pi\)
\(230\) −15.7378 + 20.5100i −1.03772 + 1.35239i
\(231\) 0 0
\(232\) −0.0781010 + 0.0890571i −0.00512758 + 0.00584688i
\(233\) 12.5770 + 8.40367i 0.823946 + 0.550543i 0.894553 0.446961i \(-0.147494\pi\)
−0.0706075 + 0.997504i \(0.522494\pi\)
\(234\) 0 0
\(235\) −5.86158 + 1.16594i −0.382367 + 0.0760576i
\(236\) 7.86391 6.03419i 0.511897 0.392793i
\(237\) 0 0
\(238\) −0.177115 + 0.0554430i −0.0114806 + 0.00359383i
\(239\) 4.27091 2.46581i 0.276262 0.159500i −0.355468 0.934689i \(-0.615678\pi\)
0.631730 + 0.775188i \(0.282345\pi\)
\(240\) 0 0
\(241\) −14.1988 4.81984i −0.914624 0.310473i −0.175843 0.984418i \(-0.556265\pi\)
−0.738781 + 0.673945i \(0.764598\pi\)
\(242\) −18.2194 + 18.2194i −1.17119 + 1.17119i
\(243\) 0 0
\(244\) −0.0176932 + 0.0889495i −0.00113269 + 0.00569441i
\(245\) −24.8246 + 1.62709i −1.58598 + 0.103951i
\(246\) 0 0
\(247\) 7.70789 + 5.91447i 0.490441 + 0.376329i
\(248\) 11.2405 + 5.54320i 0.713772 + 0.351993i
\(249\) 0 0
\(250\) −4.18257 8.48142i −0.264529 0.536412i
\(251\) 2.57518 + 2.57518i 0.162544 + 0.162544i 0.783693 0.621149i \(-0.213334\pi\)
−0.621149 + 0.783693i \(0.713334\pi\)
\(252\) 0 0
\(253\) −16.6845 + 40.2800i −1.04895 + 2.53238i
\(254\) 7.38030 12.7830i 0.463081 0.802080i
\(255\) 0 0
\(256\) −8.47971 14.6873i −0.529982 0.917956i
\(257\) −18.8702 + 2.48431i −1.17709 + 0.154967i −0.693586 0.720374i \(-0.743970\pi\)
−0.483506 + 0.875341i \(0.660637\pi\)
\(258\) 0 0
\(259\) 0.223972 0.0600132i 0.0139170 0.00372904i
\(260\) 7.05849 10.5638i 0.437749 0.655138i
\(261\) 0 0
\(262\) 13.9820 9.34249i 0.863812 0.577181i
\(263\) 1.63423 12.4132i 0.100771 0.765434i −0.864213 0.503126i \(-0.832183\pi\)
0.964984 0.262308i \(-0.0844835\pi\)
\(264\) 0 0
\(265\) 4.82979 9.79384i 0.296691 0.601631i
\(266\) 0.113916 0.0386692i 0.00698462 0.00237096i
\(267\) 0 0
\(268\) 1.48286 + 5.53412i 0.0905802 + 0.338050i
\(269\) 3.23153 + 16.2460i 0.197030 + 0.990536i 0.945066 + 0.326879i \(0.105997\pi\)
−0.748036 + 0.663658i \(0.769003\pi\)
\(270\) 0 0
\(271\) 21.3512i 1.29699i −0.761218 0.648496i \(-0.775398\pi\)
0.761218 0.648496i \(-0.224602\pi\)
\(272\) 2.59472 + 3.55409i 0.157328 + 0.215499i
\(273\) 0 0
\(274\) 1.17628 + 8.93474i 0.0710617 + 0.539767i
\(275\) −30.4467 34.7178i −1.83600 2.09356i
\(276\) 0 0
\(277\) 28.3672 13.9891i 1.70442 0.840526i 0.714376 0.699762i \(-0.246711\pi\)
0.990043 0.140764i \(-0.0449559\pi\)
\(278\) 10.8510 + 2.15841i 0.650803 + 0.129453i
\(279\) 0 0
\(280\) −0.182674 0.441014i −0.0109168 0.0263556i
\(281\) −2.66328 0.350628i −0.158878 0.0209167i 0.0506674 0.998716i \(-0.483865\pi\)
−0.209546 + 0.977799i \(0.567198\pi\)
\(282\) 0 0
\(283\) 1.15252 + 3.39522i 0.0685102 + 0.201825i 0.975793 0.218697i \(-0.0701805\pi\)
−0.907283 + 0.420521i \(0.861847\pi\)
\(284\) −0.371047 + 5.66109i −0.0220176 + 0.335924i
\(285\) 0 0
\(286\) −7.12392 + 20.9864i −0.421247 + 1.24095i
\(287\) −0.197765 0.0819171i −0.0116737 0.00483541i
\(288\) 0 0
\(289\) 11.4333 + 12.5810i 0.672545 + 0.740056i
\(290\) 0.122248 + 0.0705800i 0.00717866 + 0.00414460i
\(291\) 0 0
\(292\) −6.00861 + 5.26941i −0.351627 + 0.308369i
\(293\) 10.4050 + 2.78802i 0.607868 + 0.162878i 0.549607 0.835423i \(-0.314778\pi\)
0.0582617 + 0.998301i \(0.481444\pi\)
\(294\) 0 0
\(295\) −26.9484 23.6331i −1.56900 1.37597i
\(296\) −8.68167 12.9930i −0.504612 0.755205i
\(297\) 0 0
\(298\) −8.69155 + 3.60016i −0.503488 + 0.208551i
\(299\) 1.71457 + 26.1592i 0.0991559 + 1.51283i
\(300\) 0 0
\(301\) −0.0366037 0.00239914i −0.00210980 0.000138284i
\(302\) 2.33083 8.69877i 0.134124 0.500558i
\(303\) 0 0
\(304\) −1.73644 2.26297i −0.0995914 0.129790i
\(305\) 0.327948 0.0187783
\(306\) 0 0
\(307\) 1.09298 0.0623795 0.0311897 0.999513i \(-0.490070\pi\)
0.0311897 + 0.999513i \(0.490070\pi\)
\(308\) −0.161508 0.210481i −0.00920275 0.0119933i
\(309\) 0 0
\(310\) 3.86562 14.4267i 0.219552 0.819381i
\(311\) 33.0715 + 2.16762i 1.87531 + 0.122915i 0.960030 0.279897i \(-0.0903003\pi\)
0.915283 + 0.402811i \(0.131967\pi\)
\(312\) 0 0
\(313\) 0.269319 + 4.10902i 0.0152228 + 0.232255i 0.998690 + 0.0511690i \(0.0162947\pi\)
−0.983467 + 0.181086i \(0.942039\pi\)
\(314\) 9.54151 3.95222i 0.538459 0.223037i
\(315\) 0 0
\(316\) −2.93851 4.39779i −0.165304 0.247395i
\(317\) −15.5326 13.6217i −0.872395 0.765070i 0.100835 0.994903i \(-0.467849\pi\)
−0.973230 + 0.229833i \(0.926182\pi\)
\(318\) 0 0
\(319\) 0.229949 + 0.0616147i 0.0128747 + 0.00344976i
\(320\) −19.0201 + 16.6802i −1.06326 + 0.932452i
\(321\) 0 0
\(322\) 0.281115 + 0.162302i 0.0156659 + 0.00904471i
\(323\) −7.60369 7.97576i −0.423081 0.443783i
\(324\) 0 0
\(325\) −25.6521 10.6255i −1.42292 0.589394i
\(326\) −0.782152 + 2.30415i −0.0433194 + 0.127615i
\(327\) 0 0
\(328\) −0.943512 + 14.3952i −0.0520967 + 0.794842i
\(329\) 0.0241210 + 0.0710580i 0.00132983 + 0.00391756i
\(330\) 0 0
\(331\) 14.3095 + 1.88388i 0.786522 + 0.103548i 0.513080 0.858341i \(-0.328504\pi\)
0.273442 + 0.961888i \(0.411838\pi\)
\(332\) 2.19242 + 5.29297i 0.120325 + 0.290489i
\(333\) 0 0
\(334\) 10.7957 + 2.14739i 0.590713 + 0.117500i
\(335\) 18.5811 9.16317i 1.01519 0.500637i
\(336\) 0 0
\(337\) 17.9342 + 20.4500i 0.976939 + 1.11399i 0.993467 + 0.114122i \(0.0364054\pi\)
−0.0165281 + 0.999863i \(0.505261\pi\)
\(338\) 0.0282894 + 0.214879i 0.00153874 + 0.0116879i
\(339\) 0 0
\(340\) −9.75715 + 10.6041i −0.529156 + 0.575088i
\(341\) 25.1883i 1.36402i
\(342\) 0 0
\(343\) 0.121897 + 0.612820i 0.00658184 + 0.0330891i
\(344\) 0.639833 + 2.38789i 0.0344975 + 0.128746i
\(345\) 0 0
\(346\) 1.00294 0.340451i 0.0539181 0.0183027i
\(347\) 14.3684 29.1361i 0.771334 1.56411i −0.0533894 0.998574i \(-0.517002\pi\)
0.824723 0.565537i \(-0.191331\pi\)
\(348\) 0 0
\(349\) −3.60538 + 27.3856i −0.192992 + 1.46592i 0.571137 + 0.820855i \(0.306502\pi\)
−0.764129 + 0.645064i \(0.776831\pi\)
\(350\) −0.285859 + 0.191005i −0.0152798 + 0.0102096i
\(351\) 0 0
\(352\) −16.5932 + 24.8335i −0.884420 + 1.32363i
\(353\) −25.5043 + 6.83386i −1.35746 + 0.363729i −0.862882 0.505406i \(-0.831343\pi\)
−0.494575 + 0.869135i \(0.664676\pi\)
\(354\) 0 0
\(355\) 20.3392 2.67771i 1.07950 0.142118i
\(356\) −8.86816 15.3601i −0.470011 0.814084i
\(357\) 0 0
\(358\) 4.38709 7.59866i 0.231865 0.401602i
\(359\) 3.39378 8.19330i 0.179117 0.432426i −0.808665 0.588269i \(-0.799810\pi\)
0.987782 + 0.155843i \(0.0498095\pi\)
\(360\) 0 0
\(361\) −8.38425 8.38425i −0.441276 0.441276i
\(362\) −5.17246 10.4887i −0.271859 0.551275i
\(363\) 0 0
\(364\) −0.143073 0.0705559i −0.00749907 0.00369813i
\(365\) 22.9272 + 17.5927i 1.20006 + 0.920842i
\(366\) 0 0
\(367\) −37.0294 + 2.42703i −1.93292 + 0.126690i −0.982737 0.185008i \(-0.940769\pi\)
−0.950181 + 0.311698i \(0.899102\pi\)
\(368\) 1.50153 7.54870i 0.0782727 0.393503i
\(369\) 0 0
\(370\) −13.1679 + 13.1679i −0.684568 + 0.684568i
\(371\) −0.129836 0.0440733i −0.00674074 0.00228817i
\(372\) 0 0
\(373\) −12.4589 + 7.19313i −0.645096 + 0.372446i −0.786575 0.617495i \(-0.788148\pi\)
0.141479 + 0.989941i \(0.454814\pi\)
\(374\) 11.6529 22.2728i 0.602556 1.15170i
\(375\) 0 0
\(376\) 4.01214 3.07862i 0.206910 0.158768i
\(377\) 0.140392 0.0279258i 0.00723057 0.00143825i
\(378\) 0 0
\(379\) 13.9109 + 9.29500i 0.714557 + 0.477452i 0.858944 0.512069i \(-0.171121\pi\)
−0.144387 + 0.989521i \(0.546121\pi\)
\(380\) 6.15872 7.02267i 0.315936 0.360255i
\(381\) 0 0
\(382\) 13.1644 17.1561i 0.673547 0.877784i
\(383\) −22.2673 + 29.0193i −1.13780 + 1.48282i −0.286547 + 0.958066i \(0.592508\pi\)
−0.851257 + 0.524749i \(0.824159\pi\)
\(384\) 0 0
\(385\) −0.632550 + 0.721285i −0.0322377 + 0.0367601i
\(386\) 0.445846 + 0.297905i 0.0226930 + 0.0151630i
\(387\) 0 0
\(388\) 3.50209 0.696608i 0.177791 0.0353649i
\(389\) −14.0093 + 10.7497i −0.710300 + 0.545033i −0.899508 0.436904i \(-0.856075\pi\)
0.189207 + 0.981937i \(0.439408\pi\)
\(390\) 0 0
\(391\) 2.65250 29.6151i 0.134143 1.49770i
\(392\) 18.2310 10.5257i 0.920806 0.531628i
\(393\) 0 0
\(394\) −7.65299 2.59784i −0.385552 0.130877i
\(395\) −13.5241 + 13.5241i −0.680472 + 0.680472i
\(396\) 0 0
\(397\) −3.93979 + 19.8067i −0.197732 + 0.994068i 0.746650 + 0.665217i \(0.231661\pi\)
−0.944382 + 0.328850i \(0.893339\pi\)
\(398\) 3.00902 0.197222i 0.150829 0.00988584i
\(399\) 0 0
\(400\) 6.46721 + 4.96247i 0.323361 + 0.248123i
\(401\) −12.5872 6.20733i −0.628576 0.309979i 0.0999553 0.994992i \(-0.468130\pi\)
−0.728531 + 0.685013i \(0.759797\pi\)
\(402\) 0 0
\(403\) −6.69864 13.5835i −0.333683 0.676642i
\(404\) −3.52341 3.52341i −0.175296 0.175296i
\(405\) 0 0
\(406\) 0.000678275 0.00163750i 3.36622e−5 8.12678e-5i
\(407\) −15.7029 + 27.1982i −0.778362 + 1.34816i
\(408\) 0 0
\(409\) 2.43755 + 4.22196i 0.120529 + 0.208762i 0.919976 0.391974i \(-0.128208\pi\)
−0.799447 + 0.600736i \(0.794874\pi\)
\(410\) 17.0446 2.24396i 0.841771 0.110821i
\(411\) 0 0
\(412\) −0.689531 + 0.184759i −0.0339707 + 0.00910243i
\(413\) −0.250035 + 0.374204i −0.0123034 + 0.0184134i
\(414\) 0 0
\(415\) 17.2253 11.5096i 0.845555 0.564982i
\(416\) −2.34407 + 17.8050i −0.114927 + 0.872960i
\(417\) 0 0
\(418\) −7.20660 + 14.6135i −0.352486 + 0.714771i
\(419\) −25.2196 + 8.56091i −1.23206 + 0.418228i −0.860150 0.510041i \(-0.829630\pi\)
−0.371909 + 0.928269i \(0.621297\pi\)
\(420\) 0 0
\(421\) −8.60215 32.1037i −0.419243 1.56464i −0.776182 0.630509i \(-0.782846\pi\)
0.356939 0.934128i \(-0.383820\pi\)
\(422\) 2.38033 + 11.9667i 0.115872 + 0.582530i
\(423\) 0 0
\(424\) 9.24039i 0.448753i
\(425\) 26.8891 + 16.3927i 1.30432 + 0.795161i
\(426\) 0 0
\(427\) −0.000537474 0.00408252i −2.60102e−5 0.000197567i
\(428\) −1.57777 1.79910i −0.0762645 0.0869630i
\(429\) 0 0
\(430\) 2.64222 1.30300i 0.127419 0.0628363i
\(431\) −19.7216 3.92286i −0.949955 0.188958i −0.304291 0.952579i \(-0.598419\pi\)
−0.645664 + 0.763622i \(0.723419\pi\)
\(432\) 0 0
\(433\) 1.73656 + 4.19243i 0.0834538 + 0.201475i 0.960098 0.279664i \(-0.0902231\pi\)
−0.876644 + 0.481139i \(0.840223\pi\)
\(434\) −0.185929 0.0244780i −0.00892486 0.00117498i
\(435\) 0 0
\(436\) 2.85969 + 8.42436i 0.136954 + 0.403454i
\(437\) −1.26055 + 19.2322i −0.0603001 + 0.920001i
\(438\) 0 0
\(439\) 0.571654 1.68404i 0.0272836 0.0803748i −0.932435 0.361337i \(-0.882320\pi\)
0.959719 + 0.280962i \(0.0906536\pi\)
\(440\) 59.7325 + 24.7420i 2.84763 + 1.17953i
\(441\) 0 0
\(442\) 0.360864 15.1102i 0.0171646 0.718718i
\(443\) 26.7176 + 15.4254i 1.26939 + 0.732883i 0.974873 0.222763i \(-0.0715077\pi\)
0.294518 + 0.955646i \(0.404841\pi\)
\(444\) 0 0
\(445\) −48.2197 + 42.2875i −2.28583 + 2.00462i
\(446\) 7.61235 + 2.03972i 0.360455 + 0.0965837i
\(447\) 0 0
\(448\) 0.238818 + 0.209438i 0.0112831 + 0.00989502i
\(449\) 19.7458 + 29.5517i 0.931861 + 1.39463i 0.918804 + 0.394714i \(0.129156\pi\)
0.0130574 + 0.999915i \(0.495844\pi\)
\(450\) 0 0
\(451\) 26.7861 11.0952i 1.26131 0.522450i
\(452\) −0.0108506 0.165549i −0.000510371 0.00778676i
\(453\) 0 0
\(454\) −5.95737 0.390467i −0.279593 0.0183255i
\(455\) −0.149300 + 0.557194i −0.00699928 + 0.0261217i
\(456\) 0 0
\(457\) 3.70468 + 4.82804i 0.173298 + 0.225846i 0.871925 0.489640i \(-0.162872\pi\)
−0.698627 + 0.715486i \(0.746205\pi\)
\(458\) 13.9975 0.654061
\(459\) 0 0
\(460\) 25.2037 1.17513
\(461\) 23.4323 + 30.5376i 1.09135 + 1.42228i 0.897374 + 0.441270i \(0.145472\pi\)
0.193976 + 0.981006i \(0.437861\pi\)
\(462\) 0 0
\(463\) −5.04899 + 18.8431i −0.234646 + 0.875712i 0.743662 + 0.668556i \(0.233087\pi\)
−0.978308 + 0.207156i \(0.933579\pi\)
\(464\) −0.0419354 0.00274859i −0.00194680 0.000127600i
\(465\) 0 0
\(466\) 0.997621 + 15.2208i 0.0462139 + 0.705088i
\(467\) 1.38122 0.572119i 0.0639152 0.0264745i −0.350497 0.936564i \(-0.613987\pi\)
0.414412 + 0.910089i \(0.363987\pi\)
\(468\) 0 0
\(469\) −0.144522 0.216292i −0.00667340 0.00998744i
\(470\) −4.53109 3.97366i −0.209004 0.183291i
\(471\) 0 0
\(472\) 29.2968 + 7.85004i 1.34849 + 0.361328i
\(473\) 3.73543 3.27588i 0.171755 0.150625i
\(474\) 0 0
\(475\) −17.6784 10.2066i −0.811140 0.468312i
\(476\) 0.147998 + 0.104085i 0.00678348 + 0.00477071i
\(477\) 0 0
\(478\) 4.59454 + 1.90312i 0.210149 + 0.0870467i
\(479\) 0.891901 2.62746i 0.0407520 0.120052i −0.924650 0.380819i \(-0.875642\pi\)
0.965402 + 0.260767i \(0.0839755\pi\)
\(480\) 0 0
\(481\) −1.23506 + 18.8434i −0.0563140 + 0.859185i
\(482\) −4.86037 14.3182i −0.221384 0.652175i
\(483\) 0 0
\(484\) 24.9048 + 3.27878i 1.13204 + 0.149035i
\(485\) −4.94115 11.9290i −0.224366 0.541667i
\(486\) 0 0
\(487\) −20.5857 4.09475i −0.932828 0.185551i −0.294795 0.955560i \(-0.595252\pi\)
−0.638033 + 0.770009i \(0.720252\pi\)
\(488\) −0.248888 + 0.122738i −0.0112666 + 0.00555609i
\(489\) 0 0
\(490\) −16.5410 18.8614i −0.747247 0.852072i
\(491\) −3.11766 23.6810i −0.140698 1.06871i −0.905471 0.424408i \(-0.860482\pi\)
0.764773 0.644300i \(-0.222851\pi\)
\(492\) 0 0
\(493\) −0.162213 + 0.00674744i −0.00730571 + 0.000303890i
\(494\) 9.79728i 0.440801i
\(495\) 0 0
\(496\) 0.867479 + 4.36111i 0.0389509 + 0.195820i
\(497\) −0.0666679 0.248808i −0.00299047 0.0111606i
\(498\) 0 0
\(499\) 2.07387 0.703983i 0.0928390 0.0315146i −0.274633 0.961549i \(-0.588557\pi\)
0.367473 + 0.930034i \(0.380223\pi\)
\(500\) −4.07764 + 8.26864i −0.182358 + 0.369785i
\(501\) 0 0
\(502\) −0.479354 + 3.64106i −0.0213946 + 0.162508i
\(503\) −13.6455 + 9.11766i −0.608425 + 0.406536i −0.821262 0.570551i \(-0.806730\pi\)
0.212837 + 0.977088i \(0.431730\pi\)
\(504\) 0 0
\(505\) −10.0104 + 14.9817i −0.445458 + 0.666675i
\(506\) −42.4673 + 11.3791i −1.88790 + 0.505862i
\(507\) 0 0
\(508\) −14.2672 + 1.87831i −0.633004 + 0.0833365i
\(509\) 2.71304 + 4.69913i 0.120254 + 0.208285i 0.919868 0.392229i \(-0.128296\pi\)
−0.799614 + 0.600514i \(0.794963\pi\)
\(510\) 0 0
\(511\) 0.181430 0.314246i 0.00802598 0.0139014i
\(512\) 4.47495 10.8035i 0.197767 0.477451i
\(513\) 0 0
\(514\) −13.5716 13.5716i −0.598616 0.598616i
\(515\) 1.14170 + 2.31513i 0.0503092 + 0.102017i
\(516\) 0 0
\(517\) −9.11559 4.49531i −0.400903 0.197703i
\(518\) 0.185504 + 0.142342i 0.00815059 + 0.00625417i
\(519\) 0 0
\(520\) 38.7923 2.54258i 1.70116 0.111500i
\(521\) −5.58058 + 28.0555i −0.244490 + 1.22913i 0.642116 + 0.766607i \(0.278057\pi\)
−0.886606 + 0.462525i \(0.846943\pi\)
\(522\) 0 0
\(523\) 6.31889 6.31889i 0.276306 0.276306i −0.555326 0.831632i \(-0.687407\pi\)
0.831632 + 0.555326i \(0.187407\pi\)
\(524\) −15.5241 5.26973i −0.678175 0.230209i
\(525\) 0 0
\(526\) 10.9341 6.31282i 0.476751 0.275252i
\(527\) 5.13175 + 16.3936i 0.223542 + 0.714115i
\(528\) 0 0
\(529\) −23.0114 + 17.6573i −1.00050 + 0.767707i
\(530\) 10.8002 2.14830i 0.469132 0.0933161i
\(531\) 0 0
\(532\) −0.0975164 0.0651584i −0.00422787 0.00282498i
\(533\) 11.4944 13.1069i 0.497880 0.567723i
\(534\) 0 0
\(535\) −5.26761 + 6.86488i −0.227739 + 0.296795i
\(536\) −10.6722 + 13.9083i −0.460970 + 0.600748i
\(537\) 0 0
\(538\) −11.0134 + 12.5584i −0.474823 + 0.541432i
\(539\) −35.1780 23.5052i −1.51523 1.01244i
\(540\) 0 0
\(541\) 24.1708 4.80786i 1.03918 0.206706i 0.354127 0.935197i \(-0.384778\pi\)
0.685055 + 0.728491i \(0.259778\pi\)
\(542\) 17.0815 13.1071i 0.733712 0.562997i
\(543\) 0 0
\(544\) 5.74006 19.5432i 0.246103 0.837909i
\(545\) 27.8603 16.0851i 1.19340 0.689011i
\(546\) 0 0
\(547\) 38.8821 + 13.1987i 1.66248 + 0.564335i 0.985202 0.171396i \(-0.0548277\pi\)
0.677274 + 0.735731i \(0.263161\pi\)
\(548\) 6.21246 6.21246i 0.265383 0.265383i
\(549\) 0 0
\(550\) 9.08446 45.6707i 0.387363 1.94740i
\(551\) 0.105013 0.00688291i 0.00447370 0.000293222i
\(552\) 0 0
\(553\) 0.190522 + 0.146193i 0.00810182 + 0.00621674i
\(554\) 28.6057 + 14.1068i 1.21534 + 0.599340i
\(555\) 0 0
\(556\) −4.77056 9.67374i −0.202317 0.410258i
\(557\) −4.89600 4.89600i −0.207450 0.207450i 0.595733 0.803183i \(-0.296862\pi\)
−0.803183 + 0.595733i \(0.796862\pi\)
\(558\) 0 0
\(559\) 1.14324 2.76002i 0.0483537 0.116736i
\(560\) 0.0846789 0.146668i 0.00357834 0.00619786i
\(561\) 0 0
\(562\) −1.35443 2.34594i −0.0571331 0.0989574i
\(563\) −26.2295 + 3.45318i −1.10544 + 0.145534i −0.661081 0.750314i \(-0.729902\pi\)
−0.444360 + 0.895848i \(0.646569\pi\)
\(564\) 0 0
\(565\) −0.579477 + 0.155270i −0.0243788 + 0.00653227i
\(566\) −2.00875 + 3.00630i −0.0844339 + 0.126364i
\(567\) 0 0
\(568\) −14.4338 + 9.64436i −0.605629 + 0.404668i
\(569\) 1.38486 10.5191i 0.0580565 0.440983i −0.937588 0.347749i \(-0.886946\pi\)
0.995644 0.0932340i \(-0.0297205\pi\)
\(570\) 0 0
\(571\) 13.8278 28.0400i 0.578676 1.17344i −0.388999 0.921238i \(-0.627179\pi\)
0.967675 0.252201i \(-0.0811544\pi\)
\(572\) 20.4599 6.94520i 0.855472 0.290394i
\(573\) 0 0
\(574\) −0.0558686 0.208505i −0.00233191 0.00870281i
\(575\) −10.7457 54.0223i −0.448127 2.25289i
\(576\) 0 0
\(577\) 2.52465i 0.105103i 0.998618 + 0.0525513i \(0.0167353\pi\)
−0.998618 + 0.0525513i \(0.983265\pi\)
\(578\) −3.04641 + 16.8701i −0.126714 + 0.701704i
\(579\) 0 0
\(580\) −0.0179628 0.136441i −0.000745866 0.00566542i
\(581\) −0.171509 0.195569i −0.00711540 0.00811355i
\(582\) 0 0
\(583\) 16.6558 8.21374i 0.689814 0.340178i
\(584\) −23.9843 4.77077i −0.992476 0.197416i
\(585\) 0 0
\(586\) 4.15696 + 10.0358i 0.171723 + 0.414575i
\(587\) 22.0477 + 2.90263i 0.910004 + 0.119804i 0.570971 0.820970i \(-0.306567\pi\)
0.339033 + 0.940775i \(0.389900\pi\)
\(588\) 0 0
\(589\) −3.57918 10.5439i −0.147478 0.434455i
\(590\) 2.36398 36.0673i 0.0973233 1.48487i
\(591\) 0 0
\(592\) 1.78210 5.24990i 0.0732439 0.215769i
\(593\) −33.8563 14.0237i −1.39031 0.575885i −0.443092 0.896476i \(-0.646119\pi\)
−0.947218 + 0.320591i \(0.896119\pi\)
\(594\) 0 0
\(595\) 0.264737 0.598314i 0.0108532 0.0245285i
\(596\) 7.94288 + 4.58582i 0.325353 + 0.187843i
\(597\) 0 0
\(598\) −19.8755 + 17.4303i −0.812769 + 0.712780i
\(599\) 17.4913 + 4.68679i 0.714677 + 0.191497i 0.597795 0.801649i \(-0.296044\pi\)
0.116882 + 0.993146i \(0.462710\pi\)
\(600\) 0 0
\(601\) 18.6627 + 16.3667i 0.761267 + 0.667613i 0.949237 0.314562i \(-0.101857\pi\)
−0.187970 + 0.982175i \(0.560191\pi\)
\(602\) −0.0205510 0.0307567i −0.000837595 0.00125355i
\(603\) 0 0
\(604\) −8.11138 + 3.35985i −0.330048 + 0.136710i
\(605\) −5.94084 90.6398i −0.241530 3.68503i
\(606\) 0 0
\(607\) −23.4864 1.53938i −0.953283 0.0624815i −0.419182 0.907902i \(-0.637683\pi\)
−0.534101 + 0.845421i \(0.679350\pi\)
\(608\) −3.41722 + 12.7532i −0.138586 + 0.517212i
\(609\) 0 0
\(610\) 0.201321 + 0.262367i 0.00815125 + 0.0106229i
\(611\) −6.11132 −0.247238
\(612\) 0 0
\(613\) −17.8940 −0.722732 −0.361366 0.932424i \(-0.617689\pi\)
−0.361366 + 0.932424i \(0.617689\pi\)
\(614\) 0.670957 + 0.874408i 0.0270776 + 0.0352882i
\(615\) 0 0
\(616\) 0.210110 0.784140i 0.00846556 0.0315939i
\(617\) −28.8136 1.88854i −1.15999 0.0760299i −0.526776 0.850004i \(-0.676599\pi\)
−0.633217 + 0.773974i \(0.718266\pi\)
\(618\) 0 0
\(619\) 1.16740 + 17.8110i 0.0469217 + 0.715887i 0.954911 + 0.296893i \(0.0959504\pi\)
−0.907989 + 0.418994i \(0.862383\pi\)
\(620\) −13.4525 + 5.57222i −0.540267 + 0.223786i
\(621\) 0 0
\(622\) 18.5678 + 27.7887i 0.744501 + 1.11422i
\(623\) 0.605451 + 0.530966i 0.0242569 + 0.0212727i
\(624\) 0 0
\(625\) −4.68638 1.25571i −0.187455 0.0502284i
\(626\) −3.12199 + 2.73791i −0.124780 + 0.109429i
\(627\) 0 0
\(628\) −8.71963 5.03428i −0.347951 0.200890i
\(629\) 4.67883 20.9009i 0.186557 0.833373i
\(630\) 0 0
\(631\) −25.8159 10.6933i −1.02772 0.425694i −0.195829 0.980638i \(-0.562740\pi\)
−0.831888 + 0.554944i \(0.812740\pi\)
\(632\) 5.20225 15.3253i 0.206934 0.609609i
\(633\) 0 0
\(634\) 1.36255 20.7885i 0.0541138 0.825617i
\(635\) 16.7265 + 49.2746i 0.663770 + 1.95540i
\(636\) 0 0
\(637\) −25.2218 3.32051i −0.999322 0.131563i
\(638\) 0.0918680 + 0.221789i 0.00363709 + 0.00878071i
\(639\) 0 0
\(640\) 9.42874 + 1.87549i 0.372704 + 0.0741354i
\(641\) 37.7631 18.6227i 1.49155 0.735553i 0.500095 0.865971i \(-0.333299\pi\)
0.991459 + 0.130418i \(0.0416319\pi\)
\(642\) 0 0
\(643\) 15.2754 + 17.4183i 0.602403 + 0.686909i 0.970008 0.243073i \(-0.0781555\pi\)
−0.367605 + 0.929982i \(0.619822\pi\)
\(644\) −0.0413063 0.313752i −0.00162770 0.0123636i
\(645\) 0 0
\(646\) 1.71305 10.9793i 0.0673990 0.431975i
\(647\) 19.0689i 0.749678i 0.927090 + 0.374839i \(0.122302\pi\)
−0.927090 + 0.374839i \(0.877698\pi\)
\(648\) 0 0
\(649\) −11.8920 59.7853i −0.466803 2.34678i
\(650\) −7.24671 27.0451i −0.284239 1.06080i
\(651\) 0 0
\(652\) 2.24634 0.762530i 0.0879735 0.0298630i
\(653\) −13.7091 + 27.7993i −0.536479 + 1.08787i 0.444862 + 0.895599i \(0.353253\pi\)
−0.981341 + 0.192273i \(0.938414\pi\)
\(654\) 0 0
\(655\) −7.73789 + 58.7751i −0.302344 + 2.29653i
\(656\) −4.25563 + 2.84352i −0.166154 + 0.111021i
\(657\) 0 0
\(658\) −0.0420408 + 0.0629185i −0.00163892 + 0.00245282i
\(659\) 20.1217 5.39159i 0.783829 0.210026i 0.155357 0.987858i \(-0.450347\pi\)
0.628472 + 0.777832i \(0.283681\pi\)
\(660\) 0 0
\(661\) 18.4937 2.43474i 0.719321 0.0947004i 0.238026 0.971259i \(-0.423500\pi\)
0.481295 + 0.876558i \(0.340166\pi\)
\(662\) 7.27718 + 12.6045i 0.282836 + 0.489886i
\(663\) 0 0
\(664\) −8.76512 + 15.1816i −0.340152 + 0.589161i
\(665\) −0.162296 + 0.391816i −0.00629355 + 0.0151940i
\(666\) 0 0
\(667\) 0.200792 + 0.200792i 0.00777468 + 0.00777468i
\(668\) −4.74621 9.62437i −0.183637 0.372378i
\(669\) 0 0
\(670\) 18.7373 + 9.24022i 0.723886 + 0.356981i
\(671\) 0.442471 + 0.339520i 0.0170814 + 0.0131070i
\(672\) 0 0
\(673\) 33.6834 2.20773i 1.29840 0.0851017i 0.599531 0.800351i \(-0.295354\pi\)
0.698869 + 0.715250i \(0.253687\pi\)
\(674\) −5.35108 + 26.9017i −0.206116 + 1.03621i
\(675\) 0 0
\(676\) 0.149409 0.149409i 0.00574649 0.00574649i
\(677\) −42.1399 14.3046i −1.61957 0.549769i −0.643164 0.765729i \(-0.722379\pi\)
−0.976402 + 0.215960i \(0.930712\pi\)
\(678\) 0 0
\(679\) −0.140402 + 0.0810611i −0.00538813 + 0.00311084i
\(680\) −43.9171 3.93347i −1.68414 0.150842i
\(681\) 0 0
\(682\) 20.1513 15.4626i 0.771632 0.592094i
\(683\) 30.5882 6.08436i 1.17042 0.232812i 0.428655 0.903468i \(-0.358987\pi\)
0.741768 + 0.670656i \(0.233987\pi\)
\(684\) 0 0
\(685\) −26.4156 17.6504i −1.00929 0.674385i
\(686\) −0.415440 + 0.473719i −0.0158616 + 0.0180867i
\(687\) 0 0
\(688\) −0.533932 + 0.695834i −0.0203560 + 0.0265284i
\(689\) 6.79773 8.85897i 0.258973 0.337500i
\(690\) 0 0
\(691\) −1.10645 + 1.26166i −0.0420912 + 0.0479958i −0.772502 0.635012i \(-0.780995\pi\)
0.730411 + 0.683008i \(0.239329\pi\)
\(692\) −0.858553 0.573667i −0.0326373 0.0218075i
\(693\) 0 0
\(694\) 32.1301 6.39107i 1.21964 0.242602i
\(695\) −30.9432 + 23.7436i −1.17374 + 0.900645i
\(696\) 0 0
\(697\) −15.1730 + 12.6784i −0.574717 + 0.480230i
\(698\) −24.1224 + 13.9271i −0.913048 + 0.527149i
\(699\) 0 0
\(700\) 0.317386 + 0.107738i 0.0119961 + 0.00407212i
\(701\) −31.7515 + 31.7515i −1.19924 + 1.19924i −0.224844 + 0.974395i \(0.572187\pi\)
−0.974395 + 0.224844i \(0.927813\pi\)
\(702\) 0 0
\(703\) −2.70851 + 13.6166i −0.102153 + 0.513560i
\(704\) −42.9309 + 2.81384i −1.61802 + 0.106051i
\(705\) 0 0
\(706\) −21.1238 16.2089i −0.795007 0.610030i
\(707\) 0.202908 + 0.100063i 0.00763114 + 0.00376326i
\(708\) 0 0
\(709\) −13.2765 26.9220i −0.498608 1.01108i −0.990122 0.140207i \(-0.955223\pi\)
0.491515 0.870869i \(-0.336443\pi\)
\(710\) 14.6281 + 14.6281i 0.548983 + 0.548983i
\(711\) 0 0
\(712\) 20.7686 50.1398i 0.778335 1.87907i
\(713\) 15.0225 26.0197i 0.562596 0.974445i
\(714\) 0 0
\(715\) −39.0653 67.6631i −1.46096 2.53046i
\(716\) −8.48087 + 1.11653i −0.316945 + 0.0417266i
\(717\) 0 0
\(718\) 8.63821 2.31460i 0.322375 0.0863802i
\(719\) −8.11589 + 12.1463i −0.302672 + 0.452980i −0.951363 0.308071i \(-0.900316\pi\)
0.648692 + 0.761051i \(0.275316\pi\)
\(720\) 0 0
\(721\) 0.0269492 0.0180069i 0.00100364 0.000670612i
\(722\) 1.56068 11.8545i 0.0580825 0.441180i
\(723\) 0 0
\(724\) −5.04270 + 10.2256i −0.187410 + 0.380031i
\(725\) −0.284794 + 0.0966744i −0.0105770 + 0.00359040i
\(726\) 0 0
\(727\) 3.03341 + 11.3208i 0.112503 + 0.419867i 0.999088 0.0426988i \(-0.0135956\pi\)
−0.886585 + 0.462566i \(0.846929\pi\)
\(728\) −0.0952285 0.478746i −0.00352940 0.0177435i
\(729\) 0 0
\(730\) 29.1421i 1.07860i
\(731\) −1.76375 + 2.89311i −0.0652347 + 0.107006i
\(732\) 0 0
\(733\) −3.54452 26.9233i −0.130920 0.994435i −0.923212 0.384292i \(-0.874446\pi\)
0.792292 0.610142i \(-0.208888\pi\)
\(734\) −24.6733 28.1345i −0.910708 1.03846i
\(735\) 0 0
\(736\) −31.9517 + 15.7568i −1.17776 + 0.580805i
\(737\) 34.5563 + 6.87367i 1.27290 + 0.253195i
\(738\) 0 0
\(739\) 15.1973 + 36.6896i 0.559044 + 1.34965i 0.910524 + 0.413455i \(0.135678\pi\)
−0.351481 + 0.936195i \(0.614322\pi\)
\(740\) 17.9998 + 2.36971i 0.661685 + 0.0871124i
\(741\) 0 0
\(742\) −0.0444440 0.130928i −0.00163159 0.00480651i
\(743\) 0.545324 8.32003i 0.0200060 0.305232i −0.976116 0.217250i \(-0.930291\pi\)
0.996122 0.0879825i \(-0.0280420\pi\)
\(744\) 0 0
\(745\) 10.6606 31.4051i 0.390575 1.15060i
\(746\) −13.4029 5.55168i −0.490717 0.203262i
\(747\) 0 0
\(748\) −24.1427 + 4.20573i −0.882745 + 0.153777i
\(749\) 0.0940918 + 0.0543239i 0.00343804 + 0.00198495i
\(750\) 0 0
\(751\) 20.5314 18.0056i 0.749203 0.657034i −0.197075 0.980389i \(-0.563144\pi\)
0.946278 + 0.323355i \(0.104811\pi\)
\(752\) 1.73309 + 0.464380i 0.0631993 + 0.0169342i
\(753\) 0 0
\(754\) 0.108525 + 0.0951742i 0.00395226 + 0.00346604i
\(755\) 17.6382 + 26.3974i 0.641920 + 0.960700i
\(756\) 0 0
\(757\) 19.8952 8.24087i 0.723104 0.299520i 0.00938948 0.999956i \(-0.497011\pi\)
0.713715 + 0.700436i \(0.247011\pi\)
\(758\) 1.10343 + 16.8351i 0.0400785 + 0.611479i
\(759\) 0 0
\(760\) 28.5200 + 1.86930i 1.03453 + 0.0678067i
\(761\) 3.50934 13.0970i 0.127213 0.474767i −0.872695 0.488265i \(-0.837630\pi\)
0.999909 + 0.0134978i \(0.00429662\pi\)
\(762\) 0 0
\(763\) −0.245899 0.320461i −0.00890213 0.0116015i
\(764\) −21.0823 −0.762731
\(765\) 0 0
\(766\) −36.8856 −1.33273
\(767\) −22.3125 29.0783i −0.805659 1.04996i
\(768\) 0 0
\(769\) −6.16375 + 23.0034i −0.222271 + 0.829525i 0.761209 + 0.648507i \(0.224606\pi\)
−0.983480 + 0.181019i \(0.942061\pi\)
\(770\) −0.965356 0.0632727i −0.0347890 0.00228019i
\(771\) 0 0
\(772\) −0.0341903 0.521643i −0.00123054 0.0187743i
\(773\) 34.8872 14.4507i 1.25480 0.519757i 0.346493 0.938053i \(-0.387372\pi\)
0.908311 + 0.418296i \(0.137372\pi\)
\(774\) 0 0
\(775\) 17.6792 + 26.4588i 0.635056 + 0.950428i
\(776\) 8.21451 + 7.20393i 0.294884 + 0.258606i
\(777\) 0 0
\(778\) −17.2001 4.60875i −0.616653 0.165232i
\(779\) 9.63617 8.45069i 0.345252 0.302778i
\(780\) 0 0
\(781\) 30.2141 + 17.4441i 1.08115 + 0.624200i
\(782\) 25.3211 16.0581i 0.905481 0.574235i
\(783\) 0 0
\(784\) 6.90025 + 2.85818i 0.246437 + 0.102078i
\(785\) −11.7031 + 34.4763i −0.417703 + 1.23051i
\(786\) 0 0
\(787\) 2.24777 34.2943i 0.0801243 1.22246i −0.748684 0.662927i \(-0.769314\pi\)
0.828808 0.559533i \(-0.189019\pi\)
\(788\) 2.53267 + 7.46100i 0.0902225 + 0.265787i
\(789\) 0 0
\(790\) −19.1218 2.51744i −0.680324 0.0895664i
\(791\) 0.00288261 + 0.00695924i 0.000102494 + 0.000247442i
\(792\) 0 0
\(793\) 0.328907 + 0.0654237i 0.0116798 + 0.00232327i
\(794\) −18.2644 + 9.00700i −0.648179 + 0.319646i
\(795\) 0 0
\(796\) −1.93836 2.21028i −0.0687035 0.0783413i
\(797\) −2.34507 17.8125i −0.0830665 0.630952i −0.981447 0.191734i \(-0.938589\pi\)
0.898380 0.439218i \(-0.144744\pi\)
\(798\) 0 0
\(799\) 6.84864 + 1.06856i 0.242287 + 0.0378030i
\(800\) 37.7325i 1.33404i
\(801\) 0 0
\(802\) −2.76103 13.8807i −0.0974955 0.490143i
\(803\) 12.7202 + 47.4724i 0.448886 + 1.67526i
\(804\) 0 0
\(805\) −1.08361 + 0.367835i −0.0381921 + 0.0129645i
\(806\) 6.75497 13.6977i 0.237934 0.482482i
\(807\) 0 0
\(808\) 1.99012 15.1165i 0.0700123 0.531796i
\(809\) 33.5595 22.4237i 1.17989 0.788377i 0.198443 0.980112i \(-0.436412\pi\)
0.981447 + 0.191735i \(0.0614116\pi\)
\(810\) 0 0
\(811\) 27.5220 41.1896i 0.966429 1.44636i 0.0729089 0.997339i \(-0.476772\pi\)
0.893520 0.449024i \(-0.148228\pi\)
\(812\) −0.00166907 0.000447227i −5.85730e−5 1.56946e-5i
\(813\) 0 0
\(814\) −31.3989 + 4.13374i −1.10053 + 0.144888i
\(815\) −4.28907 7.42889i −0.150240 0.260223i
\(816\) 0 0
\(817\) 1.09817 1.90209i 0.0384202 0.0665457i
\(818\) −1.88131 + 4.54188i −0.0657784 + 0.158803i
\(819\) 0 0
\(820\) −11.8514 11.8514i −0.413867 0.413867i
\(821\) 9.05339 + 18.3585i 0.315966 + 0.640715i 0.995689 0.0927536i \(-0.0295669\pi\)
−0.679724 + 0.733468i \(0.737900\pi\)
\(822\) 0 0
\(823\) 3.87792 + 1.91238i 0.135176 + 0.0666613i 0.508619 0.860992i \(-0.330156\pi\)
−0.373443 + 0.927653i \(0.621823\pi\)
\(824\) −1.73293 1.32972i −0.0603693 0.0463230i
\(825\) 0 0
\(826\) −0.452864 + 0.0296823i −0.0157572 + 0.00103278i
\(827\) 10.3076 51.8200i 0.358432 1.80196i −0.208308 0.978063i \(-0.566796\pi\)
0.566740 0.823896i \(-0.308204\pi\)
\(828\) 0 0
\(829\) 28.8577 28.8577i 1.00227 1.00227i 0.00227095 0.999997i \(-0.499277\pi\)
0.999997 0.00227095i \(-0.000722865\pi\)
\(830\) 19.7822 + 6.71515i 0.686649 + 0.233086i
\(831\) 0 0
\(832\) −22.4034 + 12.9346i −0.776697 + 0.448426i
\(833\) 27.6841 + 8.13113i 0.959198 + 0.281727i
\(834\) 0 0
\(835\) −30.7853 + 23.6224i −1.06537 + 0.817487i
\(836\) 15.5799 3.09903i 0.538841 0.107182i
\(837\) 0 0
\(838\) −22.3308 14.9210i −0.771404 0.515436i
\(839\) 21.4617 24.4724i 0.740941 0.844881i −0.251468 0.967866i \(-0.580913\pi\)
0.992409 + 0.122985i \(0.0392466\pi\)
\(840\) 0 0
\(841\) −17.6531 + 23.0060i −0.608729 + 0.793311i
\(842\) 20.4030 26.5898i 0.703135 0.916343i
\(843\) 0 0
\(844\) 7.84295 8.94317i 0.269966 0.307837i
\(845\) −0.635291 0.424488i −0.0218547 0.0146028i
\(846\) 0 0
\(847\) −1.11861 + 0.222505i −0.0384358 + 0.00764536i
\(848\) −2.60091 + 1.99575i −0.0893157 + 0.0685344i
\(849\) 0 0
\(850\) 3.39219 + 31.5751i 0.116351 + 1.08302i
\(851\) −32.4423 + 18.7306i −1.11211 + 0.642076i
\(852\) 0 0
\(853\) 41.5544 + 14.1058i 1.42280 + 0.482974i 0.923547 0.383485i \(-0.125276\pi\)
0.499248 + 0.866459i \(0.333609\pi\)
\(854\) 0.00293617 0.00293617i 0.000100474 0.000100474i
\(855\) 0 0
\(856\) 1.42847 7.18139i 0.0488240 0.245455i
\(857\) −22.0443 + 1.44486i −0.753020 + 0.0493555i −0.437079 0.899423i \(-0.643987\pi\)
−0.315941 + 0.948779i \(0.602320\pi\)
\(858\) 0 0
\(859\) −6.16767 4.73262i −0.210438 0.161475i 0.498165 0.867083i \(-0.334008\pi\)
−0.708603 + 0.705607i \(0.750674\pi\)
\(860\) −2.57594 1.27031i −0.0878387 0.0433173i
\(861\) 0 0
\(862\) −8.96830 18.1859i −0.305462 0.619415i
\(863\) −0.406686 0.406686i −0.0138437 0.0138437i 0.700151 0.713995i \(-0.253116\pi\)
−0.713995 + 0.700151i \(0.753116\pi\)
\(864\) 0 0
\(865\) −1.42888 + 3.44962i −0.0485834 + 0.117291i
\(866\) −2.28801 + 3.96294i −0.0777496 + 0.134666i
\(867\) 0 0
\(868\) 0.0914141 + 0.158334i 0.00310280 + 0.00537420i
\(869\) −32.2482 + 4.24556i −1.09395 + 0.144021i
\(870\) 0 0
\(871\) 20.4634 5.48316i 0.693376 0.185790i
\(872\) −15.1238 + 22.6344i −0.512158 + 0.766498i
\(873\) 0 0
\(874\) −16.1601 + 10.7978i −0.546622 + 0.365241i
\(875\) 0.0546375 0.415013i 0.00184709 0.0140300i
\(876\) 0 0
\(877\) 14.7602 29.9306i 0.498415 1.01069i −0.491744 0.870740i \(-0.663640\pi\)
0.990159 0.139946i \(-0.0446929\pi\)
\(878\) 1.69820 0.576461i 0.0573115 0.0194546i
\(879\) 0 0
\(880\) 5.93690 + 22.1568i 0.200133 + 0.746907i
\(881\) 4.35402 + 21.8892i 0.146691 + 0.737465i 0.982178 + 0.187954i \(0.0601857\pi\)
−0.835487 + 0.549510i \(0.814814\pi\)
\(882\) 0 0
\(883\) 11.7962i 0.396975i 0.980103 + 0.198487i \(0.0636029\pi\)
−0.980103 + 0.198487i \(0.936397\pi\)
\(884\) −11.9011 + 8.68862i −0.400279 + 0.292230i
\(885\) 0 0
\(886\) 4.06070 + 30.8441i 0.136422 + 1.03623i
\(887\) −14.5275 16.5655i −0.487787 0.556215i 0.454619 0.890686i \(-0.349776\pi\)
−0.942406 + 0.334472i \(0.891442\pi\)
\(888\) 0 0
\(889\) 0.585990 0.288978i 0.0196535 0.00969202i
\(890\) −63.4322 12.6174i −2.12625 0.422938i
\(891\) 0 0
\(892\) −2.94022 7.09832i −0.0984459 0.237669i
\(893\) −4.45459 0.586458i −0.149067 0.0196251i
\(894\) 0 0
\(895\) 9.94276 + 29.2904i 0.332350 + 0.979071i
\(896\) 0.00789465 0.120449i 0.000263742 0.00402392i
\(897\) 0 0
\(898\) −11.5205 + 33.9383i −0.384444 + 1.13254i
\(899\) −0.151566 0.0627805i −0.00505499 0.00209385i
\(900\) 0 0
\(901\) −9.16684 + 8.73921i −0.305392 + 0.291145i
\(902\) 25.3198 + 14.6184i 0.843058 + 0.486740i
\(903\) 0 0
\(904\) 0.381668 0.334714i 0.0126941 0.0111324i
\(905\) 39.8232 + 10.6706i 1.32377 + 0.354703i
\(906\) 0 0
\(907\) 31.3287 + 27.4745i 1.04025 + 0.912276i 0.996230 0.0867547i \(-0.0276496\pi\)
0.0440216 + 0.999031i \(0.485983\pi\)
\(908\) 3.23363 + 4.83947i 0.107312 + 0.160603i
\(909\) 0 0
\(910\) −0.537421 + 0.222607i −0.0178153 + 0.00737936i
\(911\) 0.276446 + 4.21774i 0.00915905 + 0.139740i 0.999989 + 0.00462745i \(0.00147297\pi\)
−0.990830 + 0.135113i \(0.956860\pi\)
\(912\) 0 0
\(913\) 35.1562 + 2.30426i 1.16350 + 0.0762598i
\(914\) −1.58832 + 5.92768i −0.0525368 + 0.196070i
\(915\) 0 0
\(916\) −8.30738 10.8264i −0.274484 0.357714i
\(917\) 0.744354 0.0245807
\(918\) 0 0
\(919\) 46.8684 1.54604 0.773022 0.634379i \(-0.218744\pi\)
0.773022 + 0.634379i \(0.218744\pi\)
\(920\) 46.9477 + 61.1835i 1.54782 + 2.01716i
\(921\) 0 0
\(922\) −10.0462 + 37.4928i −0.330853 + 1.23476i
\(923\) 20.9329 + 1.37202i 0.689016 + 0.0451605i
\(924\) 0 0
\(925\) −2.59497 39.5916i −0.0853220 1.30176i
\(926\) −18.1744 + 7.52808i −0.597248 + 0.247388i
\(927\) 0 0
\(928\) 0.108073 + 0.161742i 0.00354766 + 0.00530944i
\(929\) 11.7482 + 10.3029i 0.385446 + 0.338027i 0.830039 0.557706i \(-0.188318\pi\)
−0.444593 + 0.895733i \(0.646652\pi\)
\(930\) 0 0
\(931\) −18.0657 4.84069i −0.592079 0.158647i
\(932\) 11.1804 9.80496i 0.366227 0.321172i
\(933\) 0 0
\(934\) 1.30561 + 0.753796i 0.0427210 + 0.0246650i
\(935\) 31.9476 + 82.6571i 1.04480 + 2.70317i
\(936\) 0 0
\(937\) 39.6097 + 16.4069i 1.29399 + 0.535989i 0.920173 0.391512i \(-0.128048\pi\)
0.373819 + 0.927502i \(0.378048\pi\)
\(938\) 0.0843200 0.248399i 0.00275314 0.00811050i
\(939\) 0 0
\(940\) −0.384275 + 5.86290i −0.0125337 + 0.191227i
\(941\) −8.02307 23.6352i −0.261545 0.770486i −0.995795 0.0916071i \(-0.970800\pi\)
0.734251 0.678878i \(-0.237534\pi\)
\(942\) 0 0
\(943\) 34.2874 + 4.51402i 1.11655 + 0.146997i
\(944\) 4.11798 + 9.94168i 0.134029 + 0.323574i
\(945\) 0 0
\(946\) 4.91389 + 0.977434i 0.159764 + 0.0317791i
\(947\) −41.3935 + 20.4130i −1.34511 + 0.663334i −0.965157 0.261672i \(-0.915726\pi\)
−0.379952 + 0.925006i \(0.624059\pi\)
\(948\) 0 0
\(949\) 19.4846 + 22.2180i 0.632498 + 0.721225i
\(950\) −2.68687 20.4088i −0.0871736 0.662149i
\(951\) 0 0
\(952\) 0.0230092 + 0.553156i 0.000745732 + 0.0179279i
\(953\) 27.3799i 0.886922i −0.896294 0.443461i \(-0.853751\pi\)
0.896294 0.443461i \(-0.146249\pi\)
\(954\) 0 0
\(955\) 14.8727 + 74.7701i 0.481269 + 2.41950i
\(956\) −1.25484 4.68313i −0.0405844 0.151463i
\(957\) 0 0
\(958\) 2.64955 0.899401i 0.0856031 0.0290583i
\(959\) −0.176431 + 0.357767i −0.00569725 + 0.0115529i
\(960\) 0 0
\(961\) 1.78066 13.5254i 0.0574405 0.436304i
\(962\) −15.8334 + 10.5795i −0.510489 + 0.341098i
\(963\) 0 0
\(964\) −8.18982 + 12.2569i −0.263776 + 0.394769i
\(965\) −1.82593 + 0.489256i −0.0587787 + 0.0157497i
\(966\) 0 0
\(967\) −46.4408 + 6.11404i −1.49343 + 0.196614i −0.832582 0.553902i \(-0.813138\pi\)
−0.660852 + 0.750516i \(0.729805\pi\)
\(968\) 38.4316 + 66.5654i 1.23524 + 2.13949i
\(969\) 0 0
\(970\) 6.51021 11.2760i 0.209030 0.362051i
\(971\) 12.9063 31.1585i 0.414183 0.999925i −0.569820 0.821770i \(-0.692987\pi\)
0.984002 0.178156i \(-0.0570131\pi\)
\(972\) 0 0
\(973\) 0.346289 + 0.346289i 0.0111015 + 0.0111015i
\(974\) −9.36127 18.9828i −0.299954 0.608247i
\(975\) 0 0
\(976\) −0.0883025 0.0435460i −0.00282649 0.00139387i
\(977\) 1.91476 + 1.46925i 0.0612585 + 0.0470053i 0.638937 0.769259i \(-0.279375\pi\)
−0.577678 + 0.816265i \(0.696041\pi\)
\(978\) 0 0
\(979\) −108.838 + 7.13363i −3.47848 + 0.227992i
\(980\) −4.77145 + 23.9877i −0.152418 + 0.766259i
\(981\) 0 0
\(982\) 17.0315 17.0315i 0.543497 0.543497i
\(983\) 33.6141 + 11.4104i 1.07212 + 0.363937i 0.801035 0.598618i \(-0.204283\pi\)
0.271088 + 0.962555i \(0.412617\pi\)
\(984\) 0 0
\(985\) 24.6743 14.2457i 0.786189 0.453906i
\(986\) −0.104978 0.125632i −0.00334317 0.00400095i
\(987\) 0 0
\(988\) 7.57771 5.81458i 0.241079 0.184987i
\(989\) 5.81248 1.15617i 0.184826 0.0367642i
\(990\) 0 0
\(991\) −6.75372 4.51269i −0.214539 0.143350i 0.443658 0.896196i \(-0.353681\pi\)
−0.658197 + 0.752846i \(0.728681\pi\)
\(992\) 13.5707 15.4744i 0.430869 0.491312i
\(993\) 0 0
\(994\) 0.158127 0.206075i 0.00501547 0.00653629i
\(995\) −6.47150 + 8.43382i −0.205160 + 0.267370i
\(996\) 0 0
\(997\) −34.7445 + 39.6185i −1.10037 + 1.25473i −0.135845 + 0.990730i \(0.543375\pi\)
−0.964523 + 0.263999i \(0.914958\pi\)
\(998\) 1.83631 + 1.22698i 0.0581274 + 0.0388395i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 459.2.y.a.62.10 256
3.2 odd 2 153.2.s.a.11.7 256
9.4 even 3 153.2.s.a.113.7 yes 256
9.5 odd 6 inner 459.2.y.a.368.10 256
17.14 odd 16 inner 459.2.y.a.116.10 256
51.14 even 16 153.2.s.a.65.7 yes 256
153.14 even 48 inner 459.2.y.a.422.10 256
153.31 odd 48 153.2.s.a.14.7 yes 256
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
153.2.s.a.11.7 256 3.2 odd 2
153.2.s.a.14.7 yes 256 153.31 odd 48
153.2.s.a.65.7 yes 256 51.14 even 16
153.2.s.a.113.7 yes 256 9.4 even 3
459.2.y.a.62.10 256 1.1 even 1 trivial
459.2.y.a.116.10 256 17.14 odd 16 inner
459.2.y.a.368.10 256 9.5 odd 6 inner
459.2.y.a.422.10 256 153.14 even 48 inner