Properties

Label 4563.2.a.v
Level $4563$
Weight $2$
Character orbit 4563.a
Self dual yes
Analytic conductor $36.436$
Analytic rank $1$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4563,2,Mod(1,4563)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4563, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4563.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 4563 = 3^{3} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4563.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,0,8,0,0,0,0,0,-16,0,0,0,0,0,-8,0,0,-12,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,-16,0,0,-20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(43)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(36.4357384423\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{24})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 4x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 351)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{2} q^{2} - \beta_{2} q^{5} + \beta_1 q^{7} + 2 \beta_{2} q^{8} + 2 q^{10} + \beta_{2} q^{11} - \beta_{3} q^{14} - 4 q^{16} + 2 \beta_{3} q^{17} - \beta_1 q^{19} - 2 q^{22} + \beta_{3} q^{23}+ \cdots + 4 \beta_{2} q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 8 q^{10} - 16 q^{16} - 8 q^{22} - 12 q^{25} - 16 q^{40} - 20 q^{43} - 16 q^{49} - 8 q^{55} - 16 q^{61} + 32 q^{64} - 40 q^{79} - 40 q^{82} + 16 q^{88} + 16 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of \(\nu = \zeta_{24} + \zeta_{24}^{-1}\):

\(\beta_{1}\)\(=\) \( \nu^{2} - 2 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{3} - 3\nu \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( -\nu^{3} + 5\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + \beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta _1 + 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 3\beta_{3} + 5\beta_{2} ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.517638
1.93185
0.517638
−1.93185
−1.41421 0 0 −1.41421 0 −1.73205 2.82843 0 2.00000
1.2 −1.41421 0 0 −1.41421 0 1.73205 2.82843 0 2.00000
1.3 1.41421 0 0 1.41421 0 −1.73205 −2.82843 0 2.00000
1.4 1.41421 0 0 1.41421 0 1.73205 −2.82843 0 2.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(13\) \( -1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
13.b even 2 1 inner
39.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4563.2.a.v 4
3.b odd 2 1 inner 4563.2.a.v 4
13.b even 2 1 inner 4563.2.a.v 4
13.f odd 12 2 351.2.q.f 4
39.d odd 2 1 inner 4563.2.a.v 4
39.k even 12 2 351.2.q.f 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
351.2.q.f 4 13.f odd 12 2
351.2.q.f 4 39.k even 12 2
4563.2.a.v 4 1.a even 1 1 trivial
4563.2.a.v 4 3.b odd 2 1 inner
4563.2.a.v 4 13.b even 2 1 inner
4563.2.a.v 4 39.d odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4563))\):

\( T_{2}^{2} - 2 \) Copy content Toggle raw display
\( T_{5}^{2} - 2 \) Copy content Toggle raw display
\( T_{7}^{2} - 3 \) Copy content Toggle raw display
\( T_{17}^{2} - 24 \) Copy content Toggle raw display
\( T_{19}^{2} - 3 \) Copy content Toggle raw display
\( T_{23}^{2} - 6 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} - 2)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( (T^{2} - 2)^{2} \) Copy content Toggle raw display
$7$ \( (T^{2} - 3)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} - 2)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( (T^{2} - 24)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} - 3)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} - 6)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} - 96)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} - 27)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} - 3)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} - 50)^{2} \) Copy content Toggle raw display
$43$ \( (T + 5)^{4} \) Copy content Toggle raw display
$47$ \( (T^{2} - 8)^{2} \) Copy content Toggle raw display
$53$ \( T^{4} \) Copy content Toggle raw display
$59$ \( (T^{2} - 32)^{2} \) Copy content Toggle raw display
$61$ \( (T + 4)^{4} \) Copy content Toggle raw display
$67$ \( (T^{2} - 48)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} - 242)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} \) Copy content Toggle raw display
$79$ \( (T + 10)^{4} \) Copy content Toggle raw display
$83$ \( (T^{2} - 98)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} - 98)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} - 192)^{2} \) Copy content Toggle raw display
show more
show less