Properties

Label 4563.2.a.s
Level $4563$
Weight $2$
Character orbit 4563.a
Self dual yes
Analytic conductor $36.436$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4563,2,Mod(1,4563)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4563, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4563.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 4563 = 3^{3} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4563.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-2,0,0,-1,0,6,-3,0,-4,4,0,0,-4,0,2,-4,0,-2,0,0,9,-1,0,4,0, 0,7,16,0,-7,7,0,5,-16,0,0,-15,0,15,-1,0,-11] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(43)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(36.4357384423\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{14})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{2} - 1) q^{2} + (\beta_{2} + \beta_1) q^{4} + (2 \beta_{2} - 2 \beta_1 + 1) q^{5} + ( - \beta_{2} + 2 \beta_1 + 1) q^{7} + (\beta_{2} - 2 \beta_1) q^{8} + (\beta_{2} - 1) q^{10} + ( - 2 \beta_{2} - \beta_1 + 1) q^{11}+ \cdots + ( - 4 \beta_{2} - 2 \beta_1 - 1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 2 q^{2} - q^{5} + 6 q^{7} - 3 q^{8} - 4 q^{10} + 4 q^{11} - 4 q^{14} + 2 q^{16} - 4 q^{17} - 2 q^{19} + 9 q^{22} - q^{23} + 4 q^{25} + 7 q^{28} + 16 q^{29} - 7 q^{31} + 7 q^{32} + 5 q^{34} - 16 q^{35}+ \cdots - q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of \(\nu = \zeta_{14} + \zeta_{14}^{-1}\):

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.80194
−1.24698
0.445042
−2.24698 0 3.04892 −0.109916 0 3.35690 −2.35690 0 0.246980
1.2 −0.554958 0 −1.69202 2.60388 0 −1.04892 2.04892 0 −1.44504
1.3 0.801938 0 −1.35690 −3.49396 0 3.69202 −2.69202 0 −2.80194
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4563.2.a.s yes 3
3.b odd 2 1 4563.2.a.u yes 3
13.b even 2 1 4563.2.a.t yes 3
39.d odd 2 1 4563.2.a.r 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4563.2.a.r 3 39.d odd 2 1
4563.2.a.s yes 3 1.a even 1 1 trivial
4563.2.a.t yes 3 13.b even 2 1
4563.2.a.u yes 3 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4563))\):

\( T_{2}^{3} + 2T_{2}^{2} - T_{2} - 1 \) Copy content Toggle raw display
\( T_{5}^{3} + T_{5}^{2} - 9T_{5} - 1 \) Copy content Toggle raw display
\( T_{7}^{3} - 6T_{7}^{2} + 5T_{7} + 13 \) Copy content Toggle raw display
\( T_{17}^{3} + 4T_{17}^{2} - 39T_{17} - 169 \) Copy content Toggle raw display
\( T_{19}^{3} + 2T_{19}^{2} - 29T_{19} + 13 \) Copy content Toggle raw display
\( T_{23}^{3} + T_{23}^{2} - 16T_{23} + 13 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} + 2T^{2} - T - 1 \) Copy content Toggle raw display
$3$ \( T^{3} \) Copy content Toggle raw display
$5$ \( T^{3} + T^{2} - 9T - 1 \) Copy content Toggle raw display
$7$ \( T^{3} - 6 T^{2} + \cdots + 13 \) Copy content Toggle raw display
$11$ \( T^{3} - 4 T^{2} + \cdots + 43 \) Copy content Toggle raw display
$13$ \( T^{3} \) Copy content Toggle raw display
$17$ \( T^{3} + 4 T^{2} + \cdots - 169 \) Copy content Toggle raw display
$19$ \( T^{3} + 2 T^{2} + \cdots + 13 \) Copy content Toggle raw display
$23$ \( T^{3} + T^{2} + \cdots + 13 \) Copy content Toggle raw display
$29$ \( T^{3} - 16 T^{2} + \cdots - 104 \) Copy content Toggle raw display
$31$ \( T^{3} + 7 T^{2} + \cdots - 91 \) Copy content Toggle raw display
$37$ \( T^{3} - 49T - 91 \) Copy content Toggle raw display
$41$ \( T^{3} + T^{2} + \cdots - 29 \) Copy content Toggle raw display
$43$ \( T^{3} + 11 T^{2} + \cdots - 29 \) Copy content Toggle raw display
$47$ \( T^{3} - 3 T^{2} + \cdots - 169 \) Copy content Toggle raw display
$53$ \( T^{3} + 7 T^{2} + \cdots - 637 \) Copy content Toggle raw display
$59$ \( T^{3} + 19 T^{2} + \cdots - 923 \) Copy content Toggle raw display
$61$ \( T^{3} + 2 T^{2} + \cdots + 104 \) Copy content Toggle raw display
$67$ \( T^{3} - 31 T^{2} + \cdots - 533 \) Copy content Toggle raw display
$71$ \( T^{3} - 18 T^{2} + \cdots - 83 \) Copy content Toggle raw display
$73$ \( T^{3} - 3 T^{2} + \cdots + 13 \) Copy content Toggle raw display
$79$ \( T^{3} - 37 T^{2} + \cdots - 1469 \) Copy content Toggle raw display
$83$ \( T^{3} + 4 T^{2} + \cdots - 1051 \) Copy content Toggle raw display
$89$ \( T^{3} - 28 T^{2} + \cdots - 791 \) Copy content Toggle raw display
$97$ \( T^{3} - 32 T^{2} + \cdots - 13 \) Copy content Toggle raw display
show more
show less