Properties

Label 4563.2.a.h
Level $4563$
Weight $2$
Character orbit 4563.a
Self dual yes
Analytic conductor $36.436$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4563,2,Mod(1,4563)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4563, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4563.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 4563 = 3^{3} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4563.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-1,0,-1,-3,0,0,0,0,4,-5,0,0,5,0,-3,7,0,-3,-1,0,-5,7,0,-3,0, 0,-5,4,0,8,9,0,-6,5,0,-8,-11,0,-5,-4,0,-7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(43)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(36.4357384423\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{5}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 351)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{5})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta q^{2} + (\beta - 1) q^{4} + ( - \beta - 1) q^{5} + ( - 2 \beta + 1) q^{7} + (2 \beta - 1) q^{8} + (2 \beta + 1) q^{10} + (3 \beta - 4) q^{11} + (\beta + 2) q^{14} - 3 \beta q^{16} + (\beta + 3) q^{17} + \cdots + 2 \beta q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} - q^{4} - 3 q^{5} + 4 q^{10} - 5 q^{11} + 5 q^{14} - 3 q^{16} + 7 q^{17} - 3 q^{19} - q^{20} - 5 q^{22} + 7 q^{23} - 3 q^{25} - 5 q^{28} + 4 q^{29} + 8 q^{31} + 9 q^{32} - 6 q^{34} + 5 q^{35}+ \cdots + 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.61803
−0.618034
−1.61803 0 0.618034 −2.61803 0 −2.23607 2.23607 0 4.23607
1.2 0.618034 0 −1.61803 −0.381966 0 2.23607 −2.23607 0 −0.236068
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4563.2.a.h 2
3.b odd 2 1 4563.2.a.p 2
13.b even 2 1 351.2.a.c yes 2
39.d odd 2 1 351.2.a.a 2
52.b odd 2 1 5616.2.a.bx 2
65.d even 2 1 8775.2.a.u 2
117.n odd 6 2 1053.2.e.l 4
117.t even 6 2 1053.2.e.g 4
156.h even 2 1 5616.2.a.bl 2
195.e odd 2 1 8775.2.a.bb 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
351.2.a.a 2 39.d odd 2 1
351.2.a.c yes 2 13.b even 2 1
1053.2.e.g 4 117.t even 6 2
1053.2.e.l 4 117.n odd 6 2
4563.2.a.h 2 1.a even 1 1 trivial
4563.2.a.p 2 3.b odd 2 1
5616.2.a.bl 2 156.h even 2 1
5616.2.a.bx 2 52.b odd 2 1
8775.2.a.u 2 65.d even 2 1
8775.2.a.bb 2 195.e odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4563))\):

\( T_{2}^{2} + T_{2} - 1 \) Copy content Toggle raw display
\( T_{5}^{2} + 3T_{5} + 1 \) Copy content Toggle raw display
\( T_{7}^{2} - 5 \) Copy content Toggle raw display
\( T_{17}^{2} - 7T_{17} + 11 \) Copy content Toggle raw display
\( T_{19}^{2} + 3T_{19} - 29 \) Copy content Toggle raw display
\( T_{23}^{2} - 7T_{23} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + T - 1 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 3T + 1 \) Copy content Toggle raw display
$7$ \( T^{2} - 5 \) Copy content Toggle raw display
$11$ \( T^{2} + 5T - 5 \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 7T + 11 \) Copy content Toggle raw display
$19$ \( T^{2} + 3T - 29 \) Copy content Toggle raw display
$23$ \( T^{2} - 7T + 1 \) Copy content Toggle raw display
$29$ \( T^{2} - 4T - 41 \) Copy content Toggle raw display
$31$ \( T^{2} - 8T - 4 \) Copy content Toggle raw display
$37$ \( T^{2} + 8T + 11 \) Copy content Toggle raw display
$41$ \( T^{2} + 4T - 1 \) Copy content Toggle raw display
$43$ \( T^{2} + 7T - 49 \) Copy content Toggle raw display
$47$ \( T^{2} - 9T - 11 \) Copy content Toggle raw display
$53$ \( T^{2} - 11T + 19 \) Copy content Toggle raw display
$59$ \( T^{2} - 8T + 11 \) Copy content Toggle raw display
$61$ \( T^{2} + 8T - 109 \) Copy content Toggle raw display
$67$ \( T^{2} - T - 31 \) Copy content Toggle raw display
$71$ \( T^{2} - 14T + 4 \) Copy content Toggle raw display
$73$ \( T^{2} + 9T + 19 \) Copy content Toggle raw display
$79$ \( T^{2} + 9T - 41 \) Copy content Toggle raw display
$83$ \( T^{2} - 10T - 55 \) Copy content Toggle raw display
$89$ \( T^{2} + 30T + 220 \) Copy content Toggle raw display
$97$ \( T^{2} - 4T - 16 \) Copy content Toggle raw display
show more
show less