Properties

Label 456.2.bm.a.41.9
Level $456$
Weight $2$
Character 456.41
Analytic conductor $3.641$
Analytic rank $0$
Dimension $60$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [456,2,Mod(41,456)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(456, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 0, 9, 13])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("456.41"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 456 = 2^{3} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 456.bm (of order \(18\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [60,0,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.64117833217\)
Analytic rank: \(0\)
Dimension: \(60\)
Relative dimension: \(10\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 41.9
Character \(\chi\) \(=\) 456.41
Dual form 456.2.bm.a.89.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.68394 - 0.405410i) q^{3} +(3.00241 + 0.529406i) q^{5} +(-0.251171 - 0.435040i) q^{7} +(2.67129 - 1.36537i) q^{9} +(-2.58513 - 1.49253i) q^{11} +(0.364767 - 1.00219i) q^{13} +(5.27050 - 0.325721i) q^{15} +(-0.866390 + 1.03252i) q^{17} +(1.71910 + 4.00558i) q^{19} +(-0.599325 - 0.630754i) q^{21} +(-8.83018 + 1.55700i) q^{23} +(4.03575 + 1.46889i) q^{25} +(3.94474 - 3.38216i) q^{27} +(-3.43732 + 2.88425i) q^{29} +(3.58316 - 2.06874i) q^{31} +(-4.95829 - 1.46528i) q^{33} +(-0.523805 - 1.43914i) q^{35} -1.40145i q^{37} +(0.207947 - 1.83550i) q^{39} +(4.19152 - 1.52559i) q^{41} +(-0.539473 + 3.05951i) q^{43} +(8.74314 - 2.68521i) q^{45} +(-1.56889 - 1.86974i) q^{47} +(3.37383 - 5.84364i) q^{49} +(-1.04035 + 2.08995i) q^{51} +(1.97942 + 11.2258i) q^{53} +(-6.97149 - 5.84977i) q^{55} +(4.51876 + 6.04821i) q^{57} +(-8.56486 - 7.18677i) q^{59} +(1.52156 + 8.62918i) q^{61} +(-1.26494 - 0.819177i) q^{63} +(1.62575 - 2.81587i) q^{65} +(-6.94344 - 8.27486i) q^{67} +(-14.2382 + 6.20173i) q^{69} +(-2.02777 + 11.5000i) q^{71} +(9.45460 - 3.44119i) q^{73} +(7.39144 + 0.837389i) q^{75} +1.49952i q^{77} +(0.310339 + 0.852649i) q^{79} +(5.27153 - 7.29458i) q^{81} +(6.19637 - 3.57748i) q^{83} +(-3.14788 + 2.64139i) q^{85} +(-4.61892 + 6.25042i) q^{87} +(-13.7483 - 5.00398i) q^{89} +(-0.527611 + 0.0930321i) q^{91} +(5.19513 - 4.93627i) q^{93} +(3.04087 + 12.9365i) q^{95} +(-9.45707 + 11.2705i) q^{97} +(-8.94348 - 0.457306i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 60 q - 3 q^{3} - 3 q^{9} + 3 q^{13} - 9 q^{15} + 6 q^{17} + 3 q^{19} + 6 q^{25} + 6 q^{27} - 6 q^{29} + 45 q^{33} - 24 q^{35} + 18 q^{39} - 3 q^{41} - 21 q^{43} - 45 q^{45} + 18 q^{47} - 30 q^{49} - 6 q^{51}+ \cdots - 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/456\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(229\) \(305\) \(343\)
\(\chi(n)\) \(e\left(\frac{13}{18}\right)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.68394 0.405410i 0.972221 0.234064i
\(4\) 0 0
\(5\) 3.00241 + 0.529406i 1.34272 + 0.236758i 0.798404 0.602123i \(-0.205678\pi\)
0.544316 + 0.838880i \(0.316789\pi\)
\(6\) 0 0
\(7\) −0.251171 0.435040i −0.0949336 0.164430i 0.814647 0.579957i \(-0.196931\pi\)
−0.909581 + 0.415527i \(0.863597\pi\)
\(8\) 0 0
\(9\) 2.67129 1.36537i 0.890429 0.455123i
\(10\) 0 0
\(11\) −2.58513 1.49253i −0.779447 0.450014i 0.0567871 0.998386i \(-0.481914\pi\)
−0.836234 + 0.548372i \(0.815248\pi\)
\(12\) 0 0
\(13\) 0.364767 1.00219i 0.101168 0.277957i −0.878774 0.477237i \(-0.841638\pi\)
0.979943 + 0.199280i \(0.0638604\pi\)
\(14\) 0 0
\(15\) 5.27050 0.325721i 1.36084 0.0841008i
\(16\) 0 0
\(17\) −0.866390 + 1.03252i −0.210130 + 0.250424i −0.860807 0.508931i \(-0.830041\pi\)
0.650677 + 0.759355i \(0.274485\pi\)
\(18\) 0 0
\(19\) 1.71910 + 4.00558i 0.394389 + 0.918944i
\(20\) 0 0
\(21\) −0.599325 0.630754i −0.130784 0.137642i
\(22\) 0 0
\(23\) −8.83018 + 1.55700i −1.84122 + 0.324657i −0.982280 0.187419i \(-0.939988\pi\)
−0.858940 + 0.512076i \(0.828877\pi\)
\(24\) 0 0
\(25\) 4.03575 + 1.46889i 0.807149 + 0.293778i
\(26\) 0 0
\(27\) 3.94474 3.38216i 0.759166 0.650897i
\(28\) 0 0
\(29\) −3.43732 + 2.88425i −0.638294 + 0.535592i −0.903494 0.428601i \(-0.859007\pi\)
0.265200 + 0.964193i \(0.414562\pi\)
\(30\) 0 0
\(31\) 3.58316 2.06874i 0.643555 0.371556i −0.142428 0.989805i \(-0.545491\pi\)
0.785983 + 0.618249i \(0.212158\pi\)
\(32\) 0 0
\(33\) −4.95829 1.46528i −0.863127 0.255073i
\(34\) 0 0
\(35\) −0.523805 1.43914i −0.0885392 0.243259i
\(36\) 0 0
\(37\) 1.40145i 0.230397i −0.993342 0.115199i \(-0.963250\pi\)
0.993342 0.115199i \(-0.0367504\pi\)
\(38\) 0 0
\(39\) 0.207947 1.83550i 0.0332982 0.293916i
\(40\) 0 0
\(41\) 4.19152 1.52559i 0.654605 0.238257i 0.00669960 0.999978i \(-0.497867\pi\)
0.647905 + 0.761721i \(0.275645\pi\)
\(42\) 0 0
\(43\) −0.539473 + 3.05951i −0.0822689 + 0.466570i 0.915644 + 0.401991i \(0.131682\pi\)
−0.997913 + 0.0645793i \(0.979429\pi\)
\(44\) 0 0
\(45\) 8.74314 2.68521i 1.30335 0.400287i
\(46\) 0 0
\(47\) −1.56889 1.86974i −0.228847 0.272729i 0.639386 0.768886i \(-0.279189\pi\)
−0.868233 + 0.496157i \(0.834744\pi\)
\(48\) 0 0
\(49\) 3.37383 5.84364i 0.481975 0.834806i
\(50\) 0 0
\(51\) −1.04035 + 2.08995i −0.145678 + 0.292651i
\(52\) 0 0
\(53\) 1.97942 + 11.2258i 0.271894 + 1.54199i 0.748659 + 0.662956i \(0.230698\pi\)
−0.476765 + 0.879031i \(0.658191\pi\)
\(54\) 0 0
\(55\) −6.97149 5.84977i −0.940035 0.788783i
\(56\) 0 0
\(57\) 4.51876 + 6.04821i 0.598524 + 0.801105i
\(58\) 0 0
\(59\) −8.56486 7.18677i −1.11505 0.935638i −0.116706 0.993166i \(-0.537234\pi\)
−0.998344 + 0.0575285i \(0.981678\pi\)
\(60\) 0 0
\(61\) 1.52156 + 8.62918i 0.194816 + 1.10485i 0.912681 + 0.408672i \(0.134008\pi\)
−0.717866 + 0.696182i \(0.754881\pi\)
\(62\) 0 0
\(63\) −1.26494 0.819177i −0.159367 0.103207i
\(64\) 0 0
\(65\) 1.62575 2.81587i 0.201649 0.349266i
\(66\) 0 0
\(67\) −6.94344 8.27486i −0.848276 1.01094i −0.999747 0.0224739i \(-0.992846\pi\)
0.151472 0.988462i \(-0.451599\pi\)
\(68\) 0 0
\(69\) −14.2382 + 6.20173i −1.71408 + 0.746601i
\(70\) 0 0
\(71\) −2.02777 + 11.5000i −0.240652 + 1.36480i 0.589726 + 0.807604i \(0.299236\pi\)
−0.830378 + 0.557201i \(0.811875\pi\)
\(72\) 0 0
\(73\) 9.45460 3.44119i 1.10658 0.402761i 0.276841 0.960916i \(-0.410713\pi\)
0.829737 + 0.558155i \(0.188490\pi\)
\(74\) 0 0
\(75\) 7.39144 + 0.837389i 0.853490 + 0.0966933i
\(76\) 0 0
\(77\) 1.49952i 0.170886i
\(78\) 0 0
\(79\) 0.310339 + 0.852649i 0.0349159 + 0.0959306i 0.955926 0.293609i \(-0.0948564\pi\)
−0.921010 + 0.389540i \(0.872634\pi\)
\(80\) 0 0
\(81\) 5.27153 7.29458i 0.585726 0.810509i
\(82\) 0 0
\(83\) 6.19637 3.57748i 0.680140 0.392679i −0.119768 0.992802i \(-0.538215\pi\)
0.799908 + 0.600123i \(0.204882\pi\)
\(84\) 0 0
\(85\) −3.14788 + 2.64139i −0.341436 + 0.286499i
\(86\) 0 0
\(87\) −4.61892 + 6.25042i −0.495200 + 0.670116i
\(88\) 0 0
\(89\) −13.7483 5.00398i −1.45732 0.530421i −0.512695 0.858571i \(-0.671353\pi\)
−0.944626 + 0.328150i \(0.893575\pi\)
\(90\) 0 0
\(91\) −0.527611 + 0.0930321i −0.0553087 + 0.00975242i
\(92\) 0 0
\(93\) 5.19513 4.93627i 0.538710 0.511868i
\(94\) 0 0
\(95\) 3.04087 + 12.9365i 0.311986 + 1.32726i
\(96\) 0 0
\(97\) −9.45707 + 11.2705i −0.960220 + 1.14435i 0.0292448 + 0.999572i \(0.490690\pi\)
−0.989465 + 0.144773i \(0.953755\pi\)
\(98\) 0 0
\(99\) −8.94348 0.457306i −0.898854 0.0459610i
\(100\) 0 0
\(101\) −1.48369 + 4.07641i −0.147633 + 0.405618i −0.991362 0.131151i \(-0.958133\pi\)
0.843730 + 0.536768i \(0.180355\pi\)
\(102\) 0 0
\(103\) −9.42665 5.44248i −0.928836 0.536263i −0.0423924 0.999101i \(-0.513498\pi\)
−0.886443 + 0.462838i \(0.846831\pi\)
\(104\) 0 0
\(105\) −1.46550 2.21107i −0.143018 0.215778i
\(106\) 0 0
\(107\) −0.00726143 0.0125772i −0.000701989 0.00121588i 0.865674 0.500608i \(-0.166890\pi\)
−0.866376 + 0.499392i \(0.833557\pi\)
\(108\) 0 0
\(109\) 2.18035 + 0.384455i 0.208840 + 0.0368241i 0.277089 0.960844i \(-0.410630\pi\)
−0.0682494 + 0.997668i \(0.521741\pi\)
\(110\) 0 0
\(111\) −0.568162 2.35995i −0.0539276 0.223997i
\(112\) 0 0
\(113\) 2.29809 0.216186 0.108093 0.994141i \(-0.465526\pi\)
0.108093 + 0.994141i \(0.465526\pi\)
\(114\) 0 0
\(115\) −27.3361 −2.54911
\(116\) 0 0
\(117\) −0.393961 3.17517i −0.0364217 0.293545i
\(118\) 0 0
\(119\) 0.666801 + 0.117575i 0.0611256 + 0.0107781i
\(120\) 0 0
\(121\) −1.04472 1.80951i −0.0949746 0.164501i
\(122\) 0 0
\(123\) 6.43976 4.26828i 0.580654 0.384857i
\(124\) 0 0
\(125\) −1.86205 1.07506i −0.166547 0.0961561i
\(126\) 0 0
\(127\) −4.01211 + 11.0232i −0.356018 + 0.978150i 0.624380 + 0.781121i \(0.285352\pi\)
−0.980398 + 0.197029i \(0.936871\pi\)
\(128\) 0 0
\(129\) 0.331915 + 5.37072i 0.0292235 + 0.472866i
\(130\) 0 0
\(131\) 6.67229 7.95173i 0.582961 0.694745i −0.391276 0.920273i \(-0.627966\pi\)
0.974237 + 0.225528i \(0.0724107\pi\)
\(132\) 0 0
\(133\) 1.31080 1.75396i 0.113661 0.152088i
\(134\) 0 0
\(135\) 13.6343 8.06627i 1.17345 0.694234i
\(136\) 0 0
\(137\) −12.8792 + 2.27095i −1.10034 + 0.194020i −0.694195 0.719787i \(-0.744240\pi\)
−0.406148 + 0.913807i \(0.633128\pi\)
\(138\) 0 0
\(139\) 12.6952 + 4.62068i 1.07679 + 0.391921i 0.818714 0.574202i \(-0.194688\pi\)
0.258081 + 0.966123i \(0.416910\pi\)
\(140\) 0 0
\(141\) −3.39993 2.51247i −0.286326 0.211588i
\(142\) 0 0
\(143\) −2.43877 + 2.04637i −0.203940 + 0.171126i
\(144\) 0 0
\(145\) −11.8472 + 6.83998i −0.983855 + 0.568029i
\(146\) 0 0
\(147\) 3.31224 11.2081i 0.273189 0.924429i
\(148\) 0 0
\(149\) −6.94182 19.0725i −0.568696 1.56248i −0.806542 0.591176i \(-0.798664\pi\)
0.237846 0.971303i \(-0.423559\pi\)
\(150\) 0 0
\(151\) 23.4871i 1.91135i 0.294424 + 0.955675i \(0.404872\pi\)
−0.294424 + 0.955675i \(0.595128\pi\)
\(152\) 0 0
\(153\) −0.904600 + 3.94111i −0.0731325 + 0.318620i
\(154\) 0 0
\(155\) 11.8533 4.31426i 0.952082 0.346530i
\(156\) 0 0
\(157\) 3.34127 18.9493i 0.266662 1.51232i −0.497597 0.867409i \(-0.665784\pi\)
0.764259 0.644909i \(-0.223105\pi\)
\(158\) 0 0
\(159\) 7.88428 + 18.1011i 0.625264 + 1.43551i
\(160\) 0 0
\(161\) 2.89524 + 3.45041i 0.228177 + 0.271931i
\(162\) 0 0
\(163\) 9.17668 15.8945i 0.718773 1.24495i −0.242714 0.970098i \(-0.578038\pi\)
0.961486 0.274853i \(-0.0886292\pi\)
\(164\) 0 0
\(165\) −14.1111 7.02433i −1.09855 0.546844i
\(166\) 0 0
\(167\) 1.00462 + 5.69749i 0.0777399 + 0.440885i 0.998688 + 0.0512005i \(0.0163047\pi\)
−0.920949 + 0.389684i \(0.872584\pi\)
\(168\) 0 0
\(169\) 9.08725 + 7.62511i 0.699019 + 0.586547i
\(170\) 0 0
\(171\) 10.0613 + 8.35285i 0.769407 + 0.638758i
\(172\) 0 0
\(173\) 6.03354 + 5.06274i 0.458722 + 0.384913i 0.842660 0.538445i \(-0.180988\pi\)
−0.383939 + 0.923359i \(0.625433\pi\)
\(174\) 0 0
\(175\) −0.374634 2.12465i −0.0283197 0.160609i
\(176\) 0 0
\(177\) −17.3363 8.62979i −1.30307 0.648655i
\(178\) 0 0
\(179\) −1.55348 + 2.69071i −0.116113 + 0.201113i −0.918224 0.396062i \(-0.870377\pi\)
0.802111 + 0.597174i \(0.203710\pi\)
\(180\) 0 0
\(181\) −13.0813 15.5897i −0.972329 1.15878i −0.987297 0.158888i \(-0.949209\pi\)
0.0149680 0.999888i \(-0.495235\pi\)
\(182\) 0 0
\(183\) 6.06056 + 13.9141i 0.448010 + 1.02856i
\(184\) 0 0
\(185\) 0.741937 4.20773i 0.0545483 0.309359i
\(186\) 0 0
\(187\) 3.78080 1.37610i 0.276480 0.100630i
\(188\) 0 0
\(189\) −2.46218 0.866622i −0.179097 0.0630375i
\(190\) 0 0
\(191\) 4.25429i 0.307829i −0.988084 0.153915i \(-0.950812\pi\)
0.988084 0.153915i \(-0.0491881\pi\)
\(192\) 0 0
\(193\) 6.73569 + 18.5062i 0.484846 + 1.33210i 0.905294 + 0.424786i \(0.139651\pi\)
−0.420448 + 0.907317i \(0.638127\pi\)
\(194\) 0 0
\(195\) 1.59607 5.40085i 0.114297 0.386763i
\(196\) 0 0
\(197\) −16.3958 + 9.46613i −1.16815 + 0.674434i −0.953245 0.302200i \(-0.902279\pi\)
−0.214910 + 0.976634i \(0.568946\pi\)
\(198\) 0 0
\(199\) 7.54426 6.33039i 0.534798 0.448749i −0.334956 0.942234i \(-0.608722\pi\)
0.869755 + 0.493485i \(0.164277\pi\)
\(200\) 0 0
\(201\) −15.0470 11.1194i −1.06133 0.784303i
\(202\) 0 0
\(203\) 2.11812 + 0.770933i 0.148663 + 0.0541089i
\(204\) 0 0
\(205\) 13.3923 2.36143i 0.935360 0.164929i
\(206\) 0 0
\(207\) −21.4621 + 16.2156i −1.49172 + 1.12707i
\(208\) 0 0
\(209\) 1.53434 12.9208i 0.106133 0.893749i
\(210\) 0 0
\(211\) 4.12402 4.91482i 0.283909 0.338350i −0.605176 0.796092i \(-0.706897\pi\)
0.889085 + 0.457742i \(0.151342\pi\)
\(212\) 0 0
\(213\) 1.24760 + 20.1874i 0.0854841 + 1.38322i
\(214\) 0 0
\(215\) −3.23944 + 8.90030i −0.220928 + 0.606995i
\(216\) 0 0
\(217\) −1.79997 1.03921i −0.122190 0.0705464i
\(218\) 0 0
\(219\) 14.5259 9.62774i 0.981567 0.650583i
\(220\) 0 0
\(221\) 0.718753 + 1.24492i 0.0483486 + 0.0837421i
\(222\) 0 0
\(223\) 12.6942 + 2.23832i 0.850064 + 0.149889i 0.581675 0.813421i \(-0.302398\pi\)
0.268389 + 0.963311i \(0.413509\pi\)
\(224\) 0 0
\(225\) 12.7862 1.58645i 0.852414 0.105764i
\(226\) 0 0
\(227\) 21.6249 1.43529 0.717646 0.696408i \(-0.245220\pi\)
0.717646 + 0.696408i \(0.245220\pi\)
\(228\) 0 0
\(229\) 10.4460 0.690294 0.345147 0.938549i \(-0.387829\pi\)
0.345147 + 0.938549i \(0.387829\pi\)
\(230\) 0 0
\(231\) 0.607919 + 2.52509i 0.0399981 + 0.166139i
\(232\) 0 0
\(233\) 13.5750 + 2.39364i 0.889330 + 0.156813i 0.599604 0.800297i \(-0.295325\pi\)
0.289726 + 0.957110i \(0.406436\pi\)
\(234\) 0 0
\(235\) −3.72062 6.44430i −0.242706 0.420380i
\(236\) 0 0
\(237\) 0.868264 + 1.30999i 0.0563998 + 0.0850932i
\(238\) 0 0
\(239\) 16.7801 + 9.68797i 1.08541 + 0.626663i 0.932351 0.361554i \(-0.117754\pi\)
0.153061 + 0.988217i \(0.451087\pi\)
\(240\) 0 0
\(241\) 8.64165 23.7427i 0.556657 1.52940i −0.267797 0.963475i \(-0.586296\pi\)
0.824454 0.565928i \(-0.191482\pi\)
\(242\) 0 0
\(243\) 5.91963 14.4207i 0.379745 0.925091i
\(244\) 0 0
\(245\) 13.2233 15.7589i 0.844804 1.00680i
\(246\) 0 0
\(247\) 4.64142 0.261758i 0.295327 0.0166553i
\(248\) 0 0
\(249\) 8.98395 8.53632i 0.569335 0.540967i
\(250\) 0 0
\(251\) 18.4169 3.24740i 1.16247 0.204974i 0.441054 0.897480i \(-0.354605\pi\)
0.721412 + 0.692506i \(0.243493\pi\)
\(252\) 0 0
\(253\) 25.1511 + 9.15424i 1.58123 + 0.575522i
\(254\) 0 0
\(255\) −4.22999 + 5.72411i −0.264892 + 0.358458i
\(256\) 0 0
\(257\) 6.22334 5.22200i 0.388201 0.325739i −0.427711 0.903916i \(-0.640680\pi\)
0.815912 + 0.578176i \(0.196235\pi\)
\(258\) 0 0
\(259\) −0.609688 + 0.352003i −0.0378842 + 0.0218724i
\(260\) 0 0
\(261\) −5.24399 + 12.3979i −0.324595 + 0.767409i
\(262\) 0 0
\(263\) −3.43690 9.44282i −0.211929 0.582269i 0.787491 0.616326i \(-0.211380\pi\)
−0.999420 + 0.0340568i \(0.989157\pi\)
\(264\) 0 0
\(265\) 34.7525i 2.13483i
\(266\) 0 0
\(267\) −25.1800 2.85268i −1.54099 0.174581i
\(268\) 0 0
\(269\) 3.82959 1.39386i 0.233494 0.0849850i −0.222623 0.974905i \(-0.571462\pi\)
0.456117 + 0.889920i \(0.349240\pi\)
\(270\) 0 0
\(271\) 0.785166 4.45290i 0.0476955 0.270494i −0.951629 0.307250i \(-0.900591\pi\)
0.999324 + 0.0367557i \(0.0117023\pi\)
\(272\) 0 0
\(273\) −0.850748 + 0.370559i −0.0514896 + 0.0224273i
\(274\) 0 0
\(275\) −8.24058 9.82074i −0.496926 0.592213i
\(276\) 0 0
\(277\) 11.8387 20.5052i 0.711317 1.23204i −0.253046 0.967454i \(-0.581432\pi\)
0.964363 0.264583i \(-0.0852344\pi\)
\(278\) 0 0
\(279\) 6.74705 10.4185i 0.403936 0.623741i
\(280\) 0 0
\(281\) −4.01031 22.7436i −0.239235 1.35677i −0.833508 0.552507i \(-0.813671\pi\)
0.594273 0.804264i \(-0.297440\pi\)
\(282\) 0 0
\(283\) −6.38454 5.35727i −0.379522 0.318457i 0.432993 0.901397i \(-0.357457\pi\)
−0.812515 + 0.582941i \(0.801902\pi\)
\(284\) 0 0
\(285\) 10.3652 + 20.5515i 0.613982 + 1.21736i
\(286\) 0 0
\(287\) −1.71648 1.44030i −0.101321 0.0850180i
\(288\) 0 0
\(289\) 2.63655 + 14.9526i 0.155091 + 0.879564i
\(290\) 0 0
\(291\) −11.3559 + 22.8128i −0.665697 + 1.33731i
\(292\) 0 0
\(293\) 4.06803 7.04603i 0.237657 0.411634i −0.722385 0.691491i \(-0.756954\pi\)
0.960041 + 0.279858i \(0.0902873\pi\)
\(294\) 0 0
\(295\) −21.9105 26.1119i −1.27568 1.52030i
\(296\) 0 0
\(297\) −15.2457 + 2.85570i −0.884643 + 0.165705i
\(298\) 0 0
\(299\) −1.66055 + 9.41745i −0.0960321 + 0.544625i
\(300\) 0 0
\(301\) 1.46651 0.533766i 0.0845282 0.0307657i
\(302\) 0 0
\(303\) −0.845826 + 7.46591i −0.0485914 + 0.428905i
\(304\) 0 0
\(305\) 26.7139i 1.52963i
\(306\) 0 0
\(307\) 3.01020 + 8.27046i 0.171801 + 0.472020i 0.995473 0.0950472i \(-0.0303002\pi\)
−0.823672 + 0.567067i \(0.808078\pi\)
\(308\) 0 0
\(309\) −18.0803 5.34313i −1.02855 0.303960i
\(310\) 0 0
\(311\) 2.88199 1.66392i 0.163423 0.0943522i −0.416058 0.909338i \(-0.636589\pi\)
0.579481 + 0.814986i \(0.303255\pi\)
\(312\) 0 0
\(313\) 2.30378 1.93310i 0.130217 0.109265i −0.575353 0.817905i \(-0.695135\pi\)
0.705570 + 0.708640i \(0.250691\pi\)
\(314\) 0 0
\(315\) −3.36419 3.12917i −0.189551 0.176309i
\(316\) 0 0
\(317\) 9.87705 + 3.59495i 0.554750 + 0.201913i 0.604156 0.796866i \(-0.293510\pi\)
−0.0494055 + 0.998779i \(0.515733\pi\)
\(318\) 0 0
\(319\) 13.1908 2.32589i 0.738541 0.130225i
\(320\) 0 0
\(321\) −0.0173267 0.0182353i −0.000967082 0.00101779i
\(322\) 0 0
\(323\) −5.62527 1.69539i −0.312998 0.0943338i
\(324\) 0 0
\(325\) 2.94421 3.50878i 0.163315 0.194632i
\(326\) 0 0
\(327\) 3.82744 0.236539i 0.211658 0.0130806i
\(328\) 0 0
\(329\) −0.419350 + 1.15216i −0.0231195 + 0.0635204i
\(330\) 0 0
\(331\) 12.2016 + 7.04460i 0.670660 + 0.387206i 0.796327 0.604867i \(-0.206774\pi\)
−0.125666 + 0.992073i \(0.540107\pi\)
\(332\) 0 0
\(333\) −1.91350 3.74368i −0.104859 0.205152i
\(334\) 0 0
\(335\) −16.4663 28.5204i −0.899649 1.55824i
\(336\) 0 0
\(337\) −23.2737 4.10377i −1.26780 0.223547i −0.501006 0.865444i \(-0.667037\pi\)
−0.766791 + 0.641897i \(0.778148\pi\)
\(338\) 0 0
\(339\) 3.86984 0.931669i 0.210181 0.0506013i
\(340\) 0 0
\(341\) −12.3506 −0.668823
\(342\) 0 0
\(343\) −6.90602 −0.372890
\(344\) 0 0
\(345\) −46.0323 + 11.0823i −2.47830 + 0.596653i
\(346\) 0 0
\(347\) −27.6393 4.87356i −1.48376 0.261626i −0.627679 0.778472i \(-0.715995\pi\)
−0.856078 + 0.516846i \(0.827106\pi\)
\(348\) 0 0
\(349\) −6.13085 10.6190i −0.328177 0.568419i 0.653973 0.756518i \(-0.273101\pi\)
−0.982150 + 0.188098i \(0.939768\pi\)
\(350\) 0 0
\(351\) −1.95065 5.18708i −0.104118 0.276866i
\(352\) 0 0
\(353\) 8.24176 + 4.75838i 0.438665 + 0.253263i 0.703031 0.711159i \(-0.251829\pi\)
−0.264366 + 0.964422i \(0.585163\pi\)
\(354\) 0 0
\(355\) −12.1764 + 33.4544i −0.646256 + 1.77557i
\(356\) 0 0
\(357\) 1.17052 0.0723389i 0.0619503 0.00382858i
\(358\) 0 0
\(359\) −13.5098 + 16.1003i −0.713018 + 0.849741i −0.993933 0.109991i \(-0.964918\pi\)
0.280915 + 0.959733i \(0.409362\pi\)
\(360\) 0 0
\(361\) −13.0894 + 13.7720i −0.688915 + 0.724842i
\(362\) 0 0
\(363\) −2.49284 2.62356i −0.130840 0.137701i
\(364\) 0 0
\(365\) 30.2084 5.32656i 1.58118 0.278805i
\(366\) 0 0
\(367\) −8.76232 3.18922i −0.457389 0.166476i 0.103042 0.994677i \(-0.467142\pi\)
−0.560431 + 0.828201i \(0.689365\pi\)
\(368\) 0 0
\(369\) 9.11375 9.79825i 0.474443 0.510076i
\(370\) 0 0
\(371\) 4.38652 3.68073i 0.227737 0.191094i
\(372\) 0 0
\(373\) −23.1689 + 13.3766i −1.19964 + 0.692612i −0.960475 0.278367i \(-0.910207\pi\)
−0.239164 + 0.970979i \(0.576873\pi\)
\(374\) 0 0
\(375\) −3.57142 1.05543i −0.184427 0.0545024i
\(376\) 0 0
\(377\) 1.63675 + 4.49692i 0.0842967 + 0.231603i
\(378\) 0 0
\(379\) 14.5951i 0.749702i 0.927085 + 0.374851i \(0.122306\pi\)
−0.927085 + 0.374851i \(0.877694\pi\)
\(380\) 0 0
\(381\) −2.28723 + 20.1889i −0.117179 + 1.03431i
\(382\) 0 0
\(383\) 8.09064 2.94475i 0.413412 0.150470i −0.126937 0.991911i \(-0.540514\pi\)
0.540349 + 0.841441i \(0.318292\pi\)
\(384\) 0 0
\(385\) −0.793854 + 4.50217i −0.0404585 + 0.229452i
\(386\) 0 0
\(387\) 2.73627 + 8.90939i 0.139092 + 0.452890i
\(388\) 0 0
\(389\) −6.90987 8.23486i −0.350344 0.417524i 0.561878 0.827220i \(-0.310079\pi\)
−0.912222 + 0.409696i \(0.865635\pi\)
\(390\) 0 0
\(391\) 6.04274 10.4663i 0.305595 0.529305i
\(392\) 0 0
\(393\) 8.01201 16.0952i 0.404152 0.811896i
\(394\) 0 0
\(395\) 0.480368 + 2.72430i 0.0241699 + 0.137074i
\(396\) 0 0
\(397\) −25.1589 21.1108i −1.26269 1.05952i −0.995390 0.0959094i \(-0.969424\pi\)
−0.267300 0.963613i \(-0.586131\pi\)
\(398\) 0 0
\(399\) 1.49624 3.48498i 0.0749055 0.174467i
\(400\) 0 0
\(401\) 28.2343 + 23.6914i 1.40995 + 1.18309i 0.956472 + 0.291823i \(0.0942618\pi\)
0.453479 + 0.891267i \(0.350183\pi\)
\(402\) 0 0
\(403\) −0.766248 4.34561i −0.0381695 0.216470i
\(404\) 0 0
\(405\) 19.6891 19.1106i 0.978360 0.949611i
\(406\) 0 0
\(407\) −2.09170 + 3.62294i −0.103682 + 0.179582i
\(408\) 0 0
\(409\) −4.93171 5.87739i −0.243858 0.290618i 0.630208 0.776427i \(-0.282970\pi\)
−0.874065 + 0.485808i \(0.838525\pi\)
\(410\) 0 0
\(411\) −20.7671 + 9.04549i −1.02436 + 0.446181i
\(412\) 0 0
\(413\) −0.975294 + 5.53117i −0.0479911 + 0.272171i
\(414\) 0 0
\(415\) 20.4980 7.46066i 1.00621 0.366230i
\(416\) 0 0
\(417\) 23.2512 + 2.63417i 1.13862 + 0.128996i
\(418\) 0 0
\(419\) 3.25003i 0.158774i −0.996844 0.0793872i \(-0.974704\pi\)
0.996844 0.0793872i \(-0.0252963\pi\)
\(420\) 0 0
\(421\) 2.10684 + 5.78848i 0.102681 + 0.282113i 0.980386 0.197088i \(-0.0631485\pi\)
−0.877705 + 0.479202i \(0.840926\pi\)
\(422\) 0 0
\(423\) −6.74385 2.85248i −0.327897 0.138692i
\(424\) 0 0
\(425\) −5.01319 + 2.89437i −0.243176 + 0.140397i
\(426\) 0 0
\(427\) 3.37187 2.82934i 0.163176 0.136921i
\(428\) 0 0
\(429\) −3.27711 + 4.43465i −0.158220 + 0.214107i
\(430\) 0 0
\(431\) 27.3336 + 9.94860i 1.31661 + 0.479207i 0.902371 0.430960i \(-0.141825\pi\)
0.414240 + 0.910168i \(0.364047\pi\)
\(432\) 0 0
\(433\) 1.86446 0.328754i 0.0896001 0.0157989i −0.128668 0.991688i \(-0.541070\pi\)
0.218268 + 0.975889i \(0.429959\pi\)
\(434\) 0 0
\(435\) −17.1769 + 16.3211i −0.823570 + 0.782535i
\(436\) 0 0
\(437\) −21.4167 32.6934i −1.02450 1.56394i
\(438\) 0 0
\(439\) −16.4094 + 19.5560i −0.783179 + 0.933357i −0.999072 0.0430602i \(-0.986289\pi\)
0.215893 + 0.976417i \(0.430734\pi\)
\(440\) 0 0
\(441\) 1.03373 20.2165i 0.0492252 0.962693i
\(442\) 0 0
\(443\) 3.36718 9.25126i 0.159980 0.439541i −0.833642 0.552305i \(-0.813748\pi\)
0.993622 + 0.112764i \(0.0359705\pi\)
\(444\) 0 0
\(445\) −38.6290 22.3025i −1.83119 1.05724i
\(446\) 0 0
\(447\) −19.4218 29.3026i −0.918618 1.38596i
\(448\) 0 0
\(449\) 4.70447 + 8.14838i 0.222018 + 0.384546i 0.955420 0.295249i \(-0.0954024\pi\)
−0.733403 + 0.679794i \(0.762069\pi\)
\(450\) 0 0
\(451\) −13.1126 2.31211i −0.617449 0.108873i
\(452\) 0 0
\(453\) 9.52189 + 39.5507i 0.447377 + 1.85825i
\(454\) 0 0
\(455\) −1.63336 −0.0765730
\(456\) 0 0
\(457\) −36.9364 −1.72781 −0.863906 0.503653i \(-0.831989\pi\)
−0.863906 + 0.503653i \(0.831989\pi\)
\(458\) 0 0
\(459\) 0.0744755 + 7.00331i 0.00347622 + 0.326886i
\(460\) 0 0
\(461\) 39.2642 + 6.92335i 1.82872 + 0.322452i 0.978856 0.204552i \(-0.0655738\pi\)
0.849862 + 0.527004i \(0.176685\pi\)
\(462\) 0 0
\(463\) 16.8000 + 29.0985i 0.780763 + 1.35232i 0.931498 + 0.363747i \(0.118503\pi\)
−0.150735 + 0.988574i \(0.548164\pi\)
\(464\) 0 0
\(465\) 18.2112 12.0704i 0.844525 0.559751i
\(466\) 0 0
\(467\) 19.8364 + 11.4526i 0.917920 + 0.529961i 0.882971 0.469428i \(-0.155540\pi\)
0.0349490 + 0.999389i \(0.488873\pi\)
\(468\) 0 0
\(469\) −1.85591 + 5.09908i −0.0856981 + 0.235454i
\(470\) 0 0
\(471\) −2.05574 33.2640i −0.0947235 1.53272i
\(472\) 0 0
\(473\) 5.96101 7.10405i 0.274087 0.326645i
\(474\) 0 0
\(475\) 1.05408 + 18.6907i 0.0483646 + 0.857587i
\(476\) 0 0
\(477\) 20.6150 + 27.2848i 0.943896 + 1.24928i
\(478\) 0 0
\(479\) 26.6499 4.69910i 1.21767 0.214707i 0.472345 0.881414i \(-0.343408\pi\)
0.745320 + 0.666706i \(0.232297\pi\)
\(480\) 0 0
\(481\) −1.40452 0.511203i −0.0640405 0.0233088i
\(482\) 0 0
\(483\) 6.27423 + 4.63652i 0.285488 + 0.210969i
\(484\) 0 0
\(485\) −34.3607 + 28.8320i −1.56024 + 1.30920i
\(486\) 0 0
\(487\) −7.28099 + 4.20368i −0.329933 + 0.190487i −0.655811 0.754925i \(-0.727673\pi\)
0.325878 + 0.945412i \(0.394340\pi\)
\(488\) 0 0
\(489\) 9.00917 30.4856i 0.407409 1.37861i
\(490\) 0 0
\(491\) −6.36016 17.4744i −0.287030 0.788608i −0.996478 0.0838507i \(-0.973278\pi\)
0.709449 0.704757i \(-0.248944\pi\)
\(492\) 0 0
\(493\) 6.04800i 0.272388i
\(494\) 0 0
\(495\) −26.6099 6.10776i −1.19603 0.274523i
\(496\) 0 0
\(497\) 5.51230 2.00631i 0.247261 0.0899955i
\(498\) 0 0
\(499\) 5.23041 29.6631i 0.234145 1.32790i −0.610261 0.792201i \(-0.708935\pi\)
0.844406 0.535704i \(-0.179954\pi\)
\(500\) 0 0
\(501\) 4.00153 + 9.18692i 0.178775 + 0.410441i
\(502\) 0 0
\(503\) −6.47202 7.71305i −0.288573 0.343908i 0.602209 0.798338i \(-0.294287\pi\)
−0.890782 + 0.454430i \(0.849843\pi\)
\(504\) 0 0
\(505\) −6.61273 + 11.4536i −0.294262 + 0.509677i
\(506\) 0 0
\(507\) 18.3936 + 9.15614i 0.816891 + 0.406638i
\(508\) 0 0
\(509\) −0.370885 2.10339i −0.0164392 0.0932312i 0.975484 0.220069i \(-0.0706283\pi\)
−0.991923 + 0.126838i \(0.959517\pi\)
\(510\) 0 0
\(511\) −3.87178 3.24881i −0.171277 0.143719i
\(512\) 0 0
\(513\) 20.3289 + 9.98672i 0.897544 + 0.440924i
\(514\) 0 0
\(515\) −25.4214 21.3311i −1.12020 0.939960i
\(516\) 0 0
\(517\) 1.26517 + 7.17514i 0.0556421 + 0.315562i
\(518\) 0 0
\(519\) 12.2126 + 6.07928i 0.536073 + 0.266851i
\(520\) 0 0
\(521\) −16.6879 + 28.9043i −0.731109 + 1.26632i 0.225300 + 0.974289i \(0.427664\pi\)
−0.956409 + 0.292029i \(0.905670\pi\)
\(522\) 0 0
\(523\) 4.68360 + 5.58170i 0.204800 + 0.244071i 0.858661 0.512543i \(-0.171297\pi\)
−0.653862 + 0.756614i \(0.726852\pi\)
\(524\) 0 0
\(525\) −1.49222 3.42590i −0.0651256 0.149519i
\(526\) 0 0
\(527\) −0.968393 + 5.49203i −0.0421839 + 0.239237i
\(528\) 0 0
\(529\) 53.9349 19.6307i 2.34500 0.853509i
\(530\) 0 0
\(531\) −32.6918 7.50372i −1.41870 0.325634i
\(532\) 0 0
\(533\) 4.75717i 0.206056i
\(534\) 0 0
\(535\) −0.0151434 0.0416061i −0.000654705 0.00179879i
\(536\) 0 0
\(537\) −1.52512 + 5.16077i −0.0658139 + 0.222704i
\(538\) 0 0
\(539\) −17.4436 + 10.0711i −0.751349 + 0.433791i
\(540\) 0 0
\(541\) 1.84017 1.54409i 0.0791152 0.0663855i −0.602372 0.798215i \(-0.705778\pi\)
0.681488 + 0.731830i \(0.261333\pi\)
\(542\) 0 0
\(543\) −28.3484 20.9488i −1.21655 0.899000i
\(544\) 0 0
\(545\) 6.34278 + 2.30858i 0.271695 + 0.0988889i
\(546\) 0 0
\(547\) −33.0653 + 5.83030i −1.41377 + 0.249286i −0.827789 0.561040i \(-0.810402\pi\)
−0.585980 + 0.810325i \(0.699290\pi\)
\(548\) 0 0
\(549\) 15.8465 + 20.9735i 0.676314 + 0.895128i
\(550\) 0 0
\(551\) −17.4622 8.81015i −0.743915 0.375325i
\(552\) 0 0
\(553\) 0.292989 0.349171i 0.0124592 0.0148482i
\(554\) 0 0
\(555\) −0.456482 7.38635i −0.0193766 0.313533i
\(556\) 0 0
\(557\) −3.34296 + 9.18470i −0.141646 + 0.389168i −0.990148 0.140023i \(-0.955282\pi\)
0.848503 + 0.529191i \(0.177505\pi\)
\(558\) 0 0
\(559\) 2.86942 + 1.65666i 0.121364 + 0.0700693i
\(560\) 0 0
\(561\) 5.80875 3.85004i 0.245246 0.162549i
\(562\) 0 0
\(563\) 9.04768 + 15.6710i 0.381314 + 0.660455i 0.991250 0.131995i \(-0.0421383\pi\)
−0.609936 + 0.792450i \(0.708805\pi\)
\(564\) 0 0
\(565\) 6.89982 + 1.21662i 0.290277 + 0.0511837i
\(566\) 0 0
\(567\) −4.49749 0.461145i −0.188877 0.0193663i
\(568\) 0 0
\(569\) −35.0017 −1.46735 −0.733674 0.679501i \(-0.762196\pi\)
−0.733674 + 0.679501i \(0.762196\pi\)
\(570\) 0 0
\(571\) 31.7338 1.32802 0.664009 0.747725i \(-0.268854\pi\)
0.664009 + 0.747725i \(0.268854\pi\)
\(572\) 0 0
\(573\) −1.72473 7.16395i −0.0720516 0.299278i
\(574\) 0 0
\(575\) −37.9234 6.68692i −1.58152 0.278864i
\(576\) 0 0
\(577\) 8.22977 + 14.2544i 0.342610 + 0.593418i 0.984917 0.173030i \(-0.0553558\pi\)
−0.642307 + 0.766448i \(0.722022\pi\)
\(578\) 0 0
\(579\) 18.8451 + 28.4325i 0.783174 + 1.18161i
\(580\) 0 0
\(581\) −3.11269 1.79712i −0.129136 0.0745569i
\(582\) 0 0
\(583\) 11.6378 31.9746i 0.481989 1.32425i
\(584\) 0 0
\(585\) 0.498123 9.74175i 0.0205949 0.402772i
\(586\) 0 0
\(587\) −12.4840 + 14.8778i −0.515269 + 0.614073i −0.959455 0.281861i \(-0.909048\pi\)
0.444186 + 0.895934i \(0.353493\pi\)
\(588\) 0 0
\(589\) 14.4463 + 10.7963i 0.595250 + 0.444853i
\(590\) 0 0
\(591\) −23.7719 + 22.5874i −0.977844 + 0.929122i
\(592\) 0 0
\(593\) −21.9176 + 3.86466i −0.900046 + 0.158702i −0.604481 0.796620i \(-0.706619\pi\)
−0.295566 + 0.955322i \(0.595508\pi\)
\(594\) 0 0
\(595\) 1.93977 + 0.706018i 0.0795227 + 0.0289439i
\(596\) 0 0
\(597\) 10.1377 13.7185i 0.414907 0.561460i
\(598\) 0 0
\(599\) 0.151035 0.126734i 0.00617113 0.00517819i −0.639697 0.768627i \(-0.720940\pi\)
0.645868 + 0.763449i \(0.276496\pi\)
\(600\) 0 0
\(601\) 3.50826 2.02550i 0.143105 0.0826217i −0.426738 0.904375i \(-0.640337\pi\)
0.569843 + 0.821754i \(0.307004\pi\)
\(602\) 0 0
\(603\) −29.8461 12.6242i −1.21543 0.514096i
\(604\) 0 0
\(605\) −2.17872 5.98597i −0.0885774 0.243364i
\(606\) 0 0
\(607\) 5.76518i 0.234001i 0.993132 + 0.117001i \(0.0373280\pi\)
−0.993132 + 0.117001i \(0.962672\pi\)
\(608\) 0 0
\(609\) 3.87932 + 0.439495i 0.157198 + 0.0178092i
\(610\) 0 0
\(611\) −2.44611 + 0.890311i −0.0989590 + 0.0360181i
\(612\) 0 0
\(613\) 6.67643 37.8639i 0.269659 1.52931i −0.485774 0.874084i \(-0.661462\pi\)
0.755433 0.655226i \(-0.227427\pi\)
\(614\) 0 0
\(615\) 21.5945 9.40587i 0.870773 0.379281i
\(616\) 0 0
\(617\) −5.06906 6.04107i −0.204073 0.243204i 0.654295 0.756239i \(-0.272965\pi\)
−0.858368 + 0.513035i \(0.828521\pi\)
\(618\) 0 0
\(619\) 18.8705 32.6847i 0.758469 1.31371i −0.185162 0.982708i \(-0.559281\pi\)
0.943631 0.330999i \(-0.107386\pi\)
\(620\) 0 0
\(621\) −29.5668 + 36.0071i −1.18647 + 1.44491i
\(622\) 0 0
\(623\) 1.27624 + 7.23794i 0.0511316 + 0.289982i
\(624\) 0 0
\(625\) −21.4714 18.0166i −0.858854 0.720664i
\(626\) 0 0
\(627\) −2.65448 22.3798i −0.106010 0.893763i
\(628\) 0 0
\(629\) 1.44703 + 1.21420i 0.0576969 + 0.0484134i
\(630\) 0 0
\(631\) 7.84793 + 44.5078i 0.312421 + 1.77183i 0.586330 + 0.810072i \(0.300572\pi\)
−0.273909 + 0.961755i \(0.588317\pi\)
\(632\) 0 0
\(633\) 4.95207 9.94816i 0.196827 0.395404i
\(634\) 0 0
\(635\) −17.8818 + 30.9721i −0.709616 + 1.22909i
\(636\) 0 0
\(637\) −4.62577 5.51278i −0.183280 0.218424i
\(638\) 0 0
\(639\) 10.2851 + 33.4886i 0.406871 + 1.32479i
\(640\) 0 0
\(641\) 5.87061 33.2939i 0.231875 1.31503i −0.617221 0.786790i \(-0.711741\pi\)
0.849096 0.528239i \(-0.177148\pi\)
\(642\) 0 0
\(643\) 24.7485 9.00773i 0.975987 0.355230i 0.195708 0.980662i \(-0.437299\pi\)
0.780279 + 0.625432i \(0.215077\pi\)
\(644\) 0 0
\(645\) −1.84675 + 16.3008i −0.0727157 + 0.641845i
\(646\) 0 0
\(647\) 35.2829i 1.38711i −0.720402 0.693557i \(-0.756043\pi\)
0.720402 0.693557i \(-0.243957\pi\)
\(648\) 0 0
\(649\) 11.4149 + 31.3621i 0.448072 + 1.23107i
\(650\) 0 0
\(651\) −3.45234 1.02024i −0.135308 0.0399865i
\(652\) 0 0
\(653\) 1.61603 0.933017i 0.0632403 0.0365118i −0.468046 0.883704i \(-0.655042\pi\)
0.531287 + 0.847192i \(0.321709\pi\)
\(654\) 0 0
\(655\) 24.2427 20.3420i 0.947239 0.794828i
\(656\) 0 0
\(657\) 20.5574 22.1014i 0.802022 0.862259i
\(658\) 0 0
\(659\) 21.7551 + 7.91819i 0.847457 + 0.308449i 0.729003 0.684511i \(-0.239984\pi\)
0.118454 + 0.992960i \(0.462206\pi\)
\(660\) 0 0
\(661\) 31.4688 5.54881i 1.22400 0.215824i 0.475951 0.879472i \(-0.342104\pi\)
0.748045 + 0.663648i \(0.230993\pi\)
\(662\) 0 0
\(663\) 1.71504 + 1.80497i 0.0666065 + 0.0700993i
\(664\) 0 0
\(665\) 4.86413 4.57217i 0.188623 0.177301i
\(666\) 0 0
\(667\) 25.8614 30.8204i 1.00136 1.19337i
\(668\) 0 0
\(669\) 22.2836 1.37714i 0.861534 0.0532435i
\(670\) 0 0
\(671\) 8.94587 24.5786i 0.345351 0.948845i
\(672\) 0 0
\(673\) 23.8610 + 13.7761i 0.919773 + 0.531031i 0.883563 0.468313i \(-0.155138\pi\)
0.0362101 + 0.999344i \(0.488471\pi\)
\(674\) 0 0
\(675\) 20.8880 7.85514i 0.803979 0.302345i
\(676\) 0 0
\(677\) 7.78920 + 13.4913i 0.299363 + 0.518512i 0.975990 0.217814i \(-0.0698925\pi\)
−0.676627 + 0.736326i \(0.736559\pi\)
\(678\) 0 0
\(679\) 7.27846 + 1.28339i 0.279322 + 0.0492520i
\(680\) 0 0
\(681\) 36.4149 8.76693i 1.39542 0.335949i
\(682\) 0 0
\(683\) −8.29883 −0.317546 −0.158773 0.987315i \(-0.550754\pi\)
−0.158773 + 0.987315i \(0.550754\pi\)
\(684\) 0 0
\(685\) −39.8709 −1.52339
\(686\) 0 0
\(687\) 17.5905 4.23493i 0.671119 0.161573i
\(688\) 0 0
\(689\) 11.9724 + 2.11106i 0.456113 + 0.0804251i
\(690\) 0 0
\(691\) 1.43902 + 2.49245i 0.0547428 + 0.0948173i 0.892098 0.451842i \(-0.149233\pi\)
−0.837355 + 0.546659i \(0.815899\pi\)
\(692\) 0 0
\(693\) 2.04739 + 4.00564i 0.0777741 + 0.152162i
\(694\) 0 0
\(695\) 35.6701 + 20.5941i 1.35304 + 0.781180i
\(696\) 0 0
\(697\) −2.05628 + 5.64959i −0.0778873 + 0.213994i
\(698\) 0 0
\(699\) 23.8299 1.47271i 0.901330 0.0557029i
\(700\) 0 0
\(701\) 27.5980 32.8900i 1.04236 1.24224i 0.0728104 0.997346i \(-0.476803\pi\)
0.969550 0.244892i \(-0.0787524\pi\)
\(702\) 0 0
\(703\) 5.61363 2.40923i 0.211722 0.0908660i
\(704\) 0 0
\(705\) −8.87787 9.34342i −0.334360 0.351894i
\(706\) 0 0
\(707\) 2.14606 0.378408i 0.0807109 0.0142315i
\(708\) 0 0
\(709\) 5.43501 + 1.97818i 0.204116 + 0.0742922i 0.442055 0.896988i \(-0.354250\pi\)
−0.237939 + 0.971280i \(0.576472\pi\)
\(710\) 0 0
\(711\) 1.99319 + 1.85394i 0.0747503 + 0.0695283i
\(712\) 0 0
\(713\) −28.4189 + 23.8463i −1.06430 + 0.893052i
\(714\) 0 0
\(715\) −8.40554 + 4.85294i −0.314349 + 0.181490i
\(716\) 0 0
\(717\) 32.1842 + 9.51113i 1.20194 + 0.355200i
\(718\) 0 0
\(719\) 6.82611 + 18.7546i 0.254571 + 0.699428i 0.999479 + 0.0322615i \(0.0102709\pi\)
−0.744908 + 0.667167i \(0.767507\pi\)
\(720\) 0 0
\(721\) 5.46797i 0.203638i
\(722\) 0 0
\(723\) 4.92645 43.4847i 0.183217 1.61721i
\(724\) 0 0
\(725\) −18.1088 + 6.59106i −0.672544 + 0.244786i
\(726\) 0 0
\(727\) −7.71938 + 43.7788i −0.286296 + 1.62367i 0.414323 + 0.910130i \(0.364018\pi\)
−0.700619 + 0.713536i \(0.747093\pi\)
\(728\) 0 0
\(729\) 4.12198 26.6835i 0.152666 0.988278i
\(730\) 0 0
\(731\) −2.69162 3.20774i −0.0995530 0.118643i
\(732\) 0 0
\(733\) −20.5246 + 35.5497i −0.758094 + 1.31306i 0.185728 + 0.982601i \(0.440536\pi\)
−0.943822 + 0.330455i \(0.892798\pi\)
\(734\) 0 0
\(735\) 15.8784 31.8978i 0.585682 1.17657i
\(736\) 0 0
\(737\) 5.59925 + 31.7549i 0.206251 + 1.16971i
\(738\) 0 0
\(739\) 16.8328 + 14.1244i 0.619203 + 0.519573i 0.897553 0.440907i \(-0.145343\pi\)
−0.278350 + 0.960480i \(0.589787\pi\)
\(740\) 0 0
\(741\) 7.70974 2.32246i 0.283224 0.0853178i
\(742\) 0 0
\(743\) −37.9084 31.8089i −1.39072 1.16696i −0.965046 0.262081i \(-0.915591\pi\)
−0.425678 0.904875i \(-0.639964\pi\)
\(744\) 0 0
\(745\) −10.7451 60.9385i −0.393670 2.23261i
\(746\) 0 0
\(747\) 11.6677 18.0168i 0.426899 0.659200i
\(748\) 0 0
\(749\) −0.00364772 + 0.00631803i −0.000133285 + 0.000230856i
\(750\) 0 0
\(751\) −13.7962 16.4416i −0.503429 0.599964i 0.453151 0.891434i \(-0.350300\pi\)
−0.956580 + 0.291470i \(0.905856\pi\)
\(752\) 0 0
\(753\) 29.6964 12.9348i 1.08220 0.471371i
\(754\) 0 0
\(755\) −12.4342 + 70.5178i −0.452527 + 2.56641i
\(756\) 0 0
\(757\) −42.8982 + 15.6137i −1.55916 + 0.567489i −0.970544 0.240922i \(-0.922550\pi\)
−0.588618 + 0.808411i \(0.700328\pi\)
\(758\) 0 0
\(759\) 46.0640 + 5.21867i 1.67202 + 0.189426i
\(760\) 0 0
\(761\) 39.4370i 1.42959i 0.699334 + 0.714795i \(0.253480\pi\)
−0.699334 + 0.714795i \(0.746520\pi\)
\(762\) 0 0
\(763\) −0.380387 1.04510i −0.0137709 0.0378353i
\(764\) 0 0
\(765\) −4.80243 + 11.3539i −0.173632 + 0.410502i
\(766\) 0 0
\(767\) −10.3267 + 5.96211i −0.372875 + 0.215279i
\(768\) 0 0
\(769\) −12.0324 + 10.0964i −0.433900 + 0.364085i −0.833421 0.552639i \(-0.813621\pi\)
0.399521 + 0.916724i \(0.369176\pi\)
\(770\) 0 0
\(771\) 8.36266 11.3165i 0.301174 0.407555i
\(772\) 0 0
\(773\) −30.7512 11.1925i −1.10604 0.402566i −0.276502 0.961013i \(-0.589175\pi\)
−0.829540 + 0.558447i \(0.811397\pi\)
\(774\) 0 0
\(775\) 17.4995 3.08563i 0.628600 0.110839i
\(776\) 0 0
\(777\) −0.883970 + 0.839925i −0.0317123 + 0.0301321i
\(778\) 0 0
\(779\) 13.3165 + 14.1668i 0.477113 + 0.507579i
\(780\) 0 0
\(781\) 22.4062 26.7027i 0.801757 0.955497i
\(782\) 0 0
\(783\) −3.80433 + 23.0032i −0.135956 + 0.822067i
\(784\) 0 0
\(785\) 20.0637 55.1247i 0.716106 1.96748i
\(786\) 0 0
\(787\) −0.916770 0.529298i −0.0326793 0.0188674i 0.483571 0.875305i \(-0.339339\pi\)
−0.516251 + 0.856438i \(0.672673\pi\)
\(788\) 0 0
\(789\) −9.61574 14.5077i −0.342329 0.516490i
\(790\) 0 0
\(791\) −0.577213 0.999762i −0.0205233 0.0355475i
\(792\) 0 0
\(793\) 9.20308 + 1.62275i 0.326811 + 0.0576256i
\(794\) 0 0
\(795\) 14.0890 + 58.5210i 0.499686 + 2.07553i
\(796\) 0 0
\(797\) −35.5116 −1.25789 −0.628944 0.777451i \(-0.716512\pi\)
−0.628944 + 0.777451i \(0.716512\pi\)
\(798\) 0 0
\(799\) 3.28982 0.116385
\(800\) 0 0
\(801\) −43.5580 + 5.40448i −1.53905 + 0.190958i
\(802\) 0 0
\(803\) −29.5775 5.21531i −1.04377 0.184044i
\(804\) 0 0
\(805\) 6.86604 + 11.8923i 0.241996 + 0.419149i
\(806\) 0 0
\(807\) 5.88371 3.89972i 0.207116 0.137277i
\(808\) 0 0
\(809\) −7.36932 4.25468i −0.259091 0.149587i 0.364829 0.931075i \(-0.381128\pi\)
−0.623920 + 0.781488i \(0.714461\pi\)
\(810\) 0 0
\(811\) 2.74045 7.52932i 0.0962302 0.264390i −0.882232 0.470814i \(-0.843960\pi\)
0.978463 + 0.206424i \(0.0661825\pi\)
\(812\) 0 0
\(813\) −0.483079 7.81671i −0.0169423 0.274144i
\(814\) 0 0
\(815\) 35.9668 42.8636i 1.25986 1.50144i
\(816\) 0 0
\(817\) −13.1825 + 3.09869i −0.461198 + 0.108409i
\(818\) 0 0
\(819\) −1.28238 + 0.968900i −0.0448099 + 0.0338561i
\(820\) 0 0
\(821\) 3.69233 0.651058i 0.128863 0.0227221i −0.108844 0.994059i \(-0.534715\pi\)
0.237708 + 0.971337i \(0.423604\pi\)
\(822\) 0 0
\(823\) −24.8907 9.05947i −0.867634 0.315793i −0.130426 0.991458i \(-0.541634\pi\)
−0.737209 + 0.675665i \(0.763857\pi\)
\(824\) 0 0
\(825\) −17.8580 13.1967i −0.621737 0.459450i
\(826\) 0 0
\(827\) −35.2983 + 29.6188i −1.22744 + 1.02995i −0.229041 + 0.973417i \(0.573559\pi\)
−0.998401 + 0.0565290i \(0.981997\pi\)
\(828\) 0 0
\(829\) 0.547722 0.316227i 0.0190232 0.0109830i −0.490458 0.871465i \(-0.663171\pi\)
0.509481 + 0.860482i \(0.329837\pi\)
\(830\) 0 0
\(831\) 11.6226 39.3290i 0.403183 1.36431i
\(832\) 0 0
\(833\) 3.11064 + 8.54643i 0.107777 + 0.296116i
\(834\) 0 0
\(835\) 17.6381i 0.610390i
\(836\) 0 0
\(837\) 7.13784 20.2795i 0.246720 0.700961i
\(838\) 0 0
\(839\) 27.7805 10.1113i 0.959090 0.349080i 0.185413 0.982661i \(-0.440638\pi\)
0.773677 + 0.633580i \(0.218415\pi\)
\(840\) 0 0
\(841\) −1.53955 + 8.73124i −0.0530880 + 0.301077i
\(842\) 0 0
\(843\) −15.9736 36.6730i −0.550160 1.26309i
\(844\) 0 0
\(845\) 23.2469 + 27.7046i 0.799717 + 0.953066i
\(846\) 0 0
\(847\) −0.524806 + 0.908991i −0.0180326 + 0.0312333i
\(848\) 0 0
\(849\) −12.9231 6.43294i −0.443518 0.220778i
\(850\) 0 0
\(851\) 2.18206 + 12.3751i 0.0748000 + 0.424212i
\(852\) 0 0
\(853\) 17.3096 + 14.5245i 0.592669 + 0.497308i 0.889080 0.457752i \(-0.151345\pi\)
−0.296411 + 0.955060i \(0.595790\pi\)
\(854\) 0 0
\(855\) 25.7861 + 30.4052i 0.881867 + 1.03984i
\(856\) 0 0
\(857\) −29.5954 24.8335i −1.01096 0.848297i −0.0224963 0.999747i \(-0.507161\pi\)
−0.988465 + 0.151450i \(0.951606\pi\)
\(858\) 0 0
\(859\) 4.80636 + 27.2582i 0.163991 + 0.930039i 0.950099 + 0.311950i \(0.100982\pi\)
−0.786108 + 0.618090i \(0.787907\pi\)
\(860\) 0 0
\(861\) −3.47435 1.72949i −0.118406 0.0589409i
\(862\) 0 0
\(863\) −5.59402 + 9.68913i −0.190423 + 0.329822i −0.945390 0.325940i \(-0.894319\pi\)
0.754968 + 0.655762i \(0.227653\pi\)
\(864\) 0 0
\(865\) 15.4349 + 18.3946i 0.524803 + 0.625436i
\(866\) 0 0
\(867\) 10.5017 + 24.1103i 0.356657 + 0.818830i
\(868\) 0 0
\(869\) 0.470335 2.66740i 0.0159550 0.0904854i
\(870\) 0 0
\(871\) −10.8257 + 3.94024i −0.366815 + 0.133510i
\(872\) 0 0
\(873\) −9.87415 + 43.0191i −0.334189 + 1.45598i
\(874\) 0 0
\(875\) 1.08009i 0.0365138i
\(876\) 0 0
\(877\) −9.82475 26.9933i −0.331758 0.911498i −0.987655 0.156647i \(-0.949931\pi\)
0.655897 0.754851i \(-0.272291\pi\)
\(878\) 0 0
\(879\) 3.99377 13.5143i 0.134707 0.455826i
\(880\) 0 0
\(881\) −9.40019 + 5.42720i −0.316700 + 0.182847i −0.649921 0.760002i \(-0.725198\pi\)
0.333220 + 0.942849i \(0.391865\pi\)
\(882\) 0 0
\(883\) −14.2903 + 11.9910i −0.480906 + 0.403528i −0.850754 0.525564i \(-0.823854\pi\)
0.369848 + 0.929092i \(0.379410\pi\)
\(884\) 0 0
\(885\) −47.4820 35.0881i −1.59609 1.17947i
\(886\) 0 0
\(887\) 4.51160 + 1.64209i 0.151485 + 0.0551359i 0.416650 0.909067i \(-0.363204\pi\)
−0.265165 + 0.964203i \(0.585426\pi\)
\(888\) 0 0
\(889\) 5.80326 1.02327i 0.194635 0.0343194i
\(890\) 0 0
\(891\) −24.5150 + 10.9896i −0.821283 + 0.368164i
\(892\) 0 0
\(893\) 4.79230 9.49860i 0.160368 0.317859i
\(894\) 0 0
\(895\) −6.08866 + 7.25619i −0.203522 + 0.242548i
\(896\) 0 0
\(897\) 1.02167 + 16.5316i 0.0341124 + 0.551974i
\(898\) 0 0
\(899\) −6.34970 + 17.4457i −0.211774 + 0.581845i
\(900\) 0 0
\(901\) −13.3059 7.68216i −0.443283 0.255930i
\(902\) 0 0
\(903\) 2.25311 1.49336i 0.0749789 0.0496961i
\(904\) 0 0
\(905\) −31.0223 53.7322i −1.03122 1.78612i
\(906\) 0 0
\(907\) −51.8502 9.14259i −1.72166 0.303575i −0.776483 0.630138i \(-0.782998\pi\)
−0.945175 + 0.326563i \(0.894109\pi\)
\(908\) 0 0
\(909\) 1.60244 + 12.9150i 0.0531495 + 0.428365i
\(910\) 0 0
\(911\) 1.55433 0.0514972 0.0257486 0.999668i \(-0.491803\pi\)
0.0257486 + 0.999668i \(0.491803\pi\)
\(912\) 0 0
\(913\) −21.3579 −0.706845
\(914\) 0 0
\(915\) 10.8301 + 44.9845i 0.358031 + 1.48714i
\(916\) 0 0
\(917\) −5.13521 0.905475i −0.169579 0.0299014i
\(918\) 0 0
\(919\) −18.3505 31.7840i −0.605327 1.04846i −0.992000 0.126241i \(-0.959709\pi\)
0.386672 0.922217i \(-0.373624\pi\)
\(920\) 0 0
\(921\) 8.42191 + 12.7066i 0.277512 + 0.418696i
\(922\) 0 0
\(923\) 10.7856 + 6.22704i 0.355011 + 0.204966i
\(924\) 0 0
\(925\) 2.05858 5.65590i 0.0676857 0.185965i
\(926\) 0 0
\(927\) −32.6123 1.66756i −1.07113 0.0547698i
\(928\) 0 0
\(929\) 15.9003 18.9493i 0.521673 0.621706i −0.439302 0.898339i \(-0.644774\pi\)
0.960976 + 0.276633i \(0.0892188\pi\)
\(930\) 0 0
\(931\) 29.2071 + 3.46834i 0.957225 + 0.113670i
\(932\) 0 0
\(933\) 4.17852 3.97032i 0.136799 0.129983i
\(934\) 0 0
\(935\) 12.0800 2.13004i 0.395060 0.0696597i
\(936\) 0 0
\(937\) −30.2959 11.0268i −0.989724 0.360230i −0.204110 0.978948i \(-0.565430\pi\)
−0.785613 + 0.618718i \(0.787652\pi\)
\(938\) 0 0
\(939\) 3.09572 4.18919i 0.101025 0.136709i
\(940\) 0 0
\(941\) −36.5786 + 30.6931i −1.19243 + 1.00057i −0.192614 + 0.981275i \(0.561697\pi\)
−0.999814 + 0.0192917i \(0.993859\pi\)
\(942\) 0 0
\(943\) −34.6365 + 19.9974i −1.12792 + 0.651205i
\(944\) 0 0
\(945\) −6.93369 3.90545i −0.225553 0.127044i
\(946\) 0 0
\(947\) −12.4715 34.2652i −0.405270 1.11347i −0.959648 0.281205i \(-0.909266\pi\)
0.554378 0.832265i \(-0.312956\pi\)
\(948\) 0 0
\(949\) 10.7305i 0.348328i
\(950\) 0 0
\(951\) 18.0898 + 2.04942i 0.586601 + 0.0664569i
\(952\) 0 0
\(953\) 35.9606 13.0886i 1.16488 0.423981i 0.314041 0.949409i \(-0.398317\pi\)
0.850838 + 0.525428i \(0.176095\pi\)
\(954\) 0 0
\(955\) 2.25225 12.7731i 0.0728810 0.413329i
\(956\) 0 0
\(957\) 21.2695 9.26431i 0.687544 0.299473i
\(958\) 0 0
\(959\) 4.22283 + 5.03257i 0.136362 + 0.162510i
\(960\) 0 0
\(961\) −6.94064 + 12.0215i −0.223892 + 0.387792i
\(962\) 0 0
\(963\) −0.0365698 0.0236827i −0.00117845 0.000763163i
\(964\) 0 0
\(965\) 10.4260 + 59.1291i 0.335626 + 1.90343i
\(966\) 0 0
\(967\) 8.52174 + 7.15059i 0.274041 + 0.229947i 0.769442 0.638717i \(-0.220534\pi\)
−0.495401 + 0.868664i \(0.664979\pi\)
\(968\) 0 0
\(969\) −10.1599 0.574384i −0.326384 0.0184519i
\(970\) 0 0
\(971\) 12.1336 + 10.1813i 0.389386 + 0.326734i 0.816374 0.577524i \(-0.195981\pi\)
−0.426988 + 0.904257i \(0.640425\pi\)
\(972\) 0 0
\(973\) −1.17848 6.68352i −0.0377805 0.214264i
\(974\) 0 0
\(975\) 3.53537 7.10217i 0.113223 0.227451i
\(976\) 0 0
\(977\) −4.12154 + 7.13872i −0.131860 + 0.228388i −0.924393 0.381440i \(-0.875428\pi\)
0.792534 + 0.609828i \(0.208762\pi\)
\(978\) 0 0
\(979\) 28.0727 + 33.4557i 0.897207 + 1.06925i
\(980\) 0 0
\(981\) 6.34926 1.95000i 0.202716 0.0622586i
\(982\) 0 0
\(983\) 3.81477 21.6346i 0.121672 0.690037i −0.861557 0.507661i \(-0.830510\pi\)
0.983229 0.182376i \(-0.0583787\pi\)
\(984\) 0 0
\(985\) −54.2385 + 19.7412i −1.72818 + 0.629006i
\(986\) 0 0
\(987\) −0.239064 + 2.11017i −0.00760950 + 0.0671673i
\(988\) 0 0
\(989\) 27.8560i 0.885768i
\(990\) 0 0
\(991\) −8.41455 23.1188i −0.267297 0.734393i −0.998628 0.0523696i \(-0.983323\pi\)
0.731331 0.682023i \(-0.238900\pi\)
\(992\) 0 0
\(993\) 23.4027 + 6.91600i 0.742661 + 0.219473i
\(994\) 0 0
\(995\) 26.0023 15.0124i 0.824329 0.475927i
\(996\) 0 0
\(997\) 13.6792 11.4782i 0.433225 0.363519i −0.399942 0.916540i \(-0.630970\pi\)
0.833167 + 0.553022i \(0.186525\pi\)
\(998\) 0 0
\(999\) −4.73993 5.52836i −0.149965 0.174910i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 456.2.bm.a.41.9 60
3.2 odd 2 456.2.bm.b.41.1 yes 60
4.3 odd 2 912.2.cc.h.497.2 60
12.11 even 2 912.2.cc.g.497.10 60
19.13 odd 18 456.2.bm.b.89.1 yes 60
57.32 even 18 inner 456.2.bm.a.89.9 yes 60
76.51 even 18 912.2.cc.g.545.10 60
228.203 odd 18 912.2.cc.h.545.2 60
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
456.2.bm.a.41.9 60 1.1 even 1 trivial
456.2.bm.a.89.9 yes 60 57.32 even 18 inner
456.2.bm.b.41.1 yes 60 3.2 odd 2
456.2.bm.b.89.1 yes 60 19.13 odd 18
912.2.cc.g.497.10 60 12.11 even 2
912.2.cc.g.545.10 60 76.51 even 18
912.2.cc.h.497.2 60 4.3 odd 2
912.2.cc.h.545.2 60 228.203 odd 18