Properties

Label 456.2.bm.b.89.1
Level $456$
Weight $2$
Character 456.89
Analytic conductor $3.641$
Analytic rank $0$
Dimension $60$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [456,2,Mod(41,456)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(456, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 0, 9, 13])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("456.41"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 456 = 2^{3} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 456.bm (of order \(18\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [60,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.64117833217\)
Analytic rank: \(0\)
Dimension: \(60\)
Relative dimension: \(10\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 89.1
Character \(\chi\) \(=\) 456.89
Dual form 456.2.bm.b.41.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.55056 - 0.771852i) q^{3} +(-3.00241 + 0.529406i) q^{5} +(-0.251171 + 0.435040i) q^{7} +(1.80849 + 2.39361i) q^{9} +(2.58513 - 1.49253i) q^{11} +(0.364767 + 1.00219i) q^{13} +(5.06405 + 1.49654i) q^{15} +(0.866390 + 1.03252i) q^{17} +(1.71910 - 4.00558i) q^{19} +(0.725243 - 0.480691i) q^{21} +(8.83018 + 1.55700i) q^{23} +(4.03575 - 1.46889i) q^{25} +(-0.956666 - 5.10733i) q^{27} +(3.43732 + 2.88425i) q^{29} +(3.58316 + 2.06874i) q^{31} +(-5.16042 + 0.318918i) q^{33} +(0.523805 - 1.43914i) q^{35} +1.40145i q^{37} +(0.207947 - 1.83550i) q^{39} +(-4.19152 - 1.52559i) q^{41} +(-0.539473 - 3.05951i) q^{43} +(-6.69702 - 6.22917i) q^{45} +(1.56889 - 1.86974i) q^{47} +(3.37383 + 5.84364i) q^{49} +(-0.546437 - 2.26972i) q^{51} +(-1.97942 + 11.2258i) q^{53} +(-6.97149 + 5.84977i) q^{55} +(-5.75729 + 4.88402i) q^{57} +(8.56486 - 7.18677i) q^{59} +(1.52156 - 8.62918i) q^{61} +(-1.49556 + 0.185562i) q^{63} +(-1.62575 - 2.81587i) q^{65} +(-6.94344 + 8.27486i) q^{67} +(-12.4900 - 9.22982i) q^{69} +(2.02777 + 11.5000i) q^{71} +(9.45460 + 3.44119i) q^{73} +(-7.39144 - 0.837389i) q^{75} +1.49952i q^{77} +(0.310339 - 0.852649i) q^{79} +(-2.45873 + 8.65764i) q^{81} +(-6.19637 - 3.57748i) q^{83} +(-3.14788 - 2.64139i) q^{85} +(-3.10356 - 7.12531i) q^{87} +(13.7483 - 5.00398i) q^{89} +(-0.527611 - 0.0930321i) q^{91} +(-3.95916 - 5.97338i) q^{93} +(-3.04087 + 12.9365i) q^{95} +(-9.45707 - 11.2705i) q^{97} +(8.24772 + 3.48858i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 60 q - 6 q^{9} + 3 q^{13} - 3 q^{15} - 6 q^{17} + 3 q^{19} + 6 q^{25} + 3 q^{27} + 6 q^{29} + 24 q^{35} + 18 q^{39} + 3 q^{41} - 21 q^{43} + 63 q^{45} - 18 q^{47} - 30 q^{49} + 33 q^{51} - 36 q^{53} + 18 q^{55}+ \cdots - 39 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/456\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(229\) \(305\) \(343\)
\(\chi(n)\) \(e\left(\frac{5}{18}\right)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.55056 0.771852i −0.895218 0.445629i
\(4\) 0 0
\(5\) −3.00241 + 0.529406i −1.34272 + 0.236758i −0.798404 0.602123i \(-0.794322\pi\)
−0.544316 + 0.838880i \(0.683211\pi\)
\(6\) 0 0
\(7\) −0.251171 + 0.435040i −0.0949336 + 0.164430i −0.909581 0.415527i \(-0.863597\pi\)
0.814647 + 0.579957i \(0.196931\pi\)
\(8\) 0 0
\(9\) 1.80849 + 2.39361i 0.602830 + 0.797870i
\(10\) 0 0
\(11\) 2.58513 1.49253i 0.779447 0.450014i −0.0567871 0.998386i \(-0.518086\pi\)
0.836234 + 0.548372i \(0.184752\pi\)
\(12\) 0 0
\(13\) 0.364767 + 1.00219i 0.101168 + 0.277957i 0.979943 0.199280i \(-0.0638604\pi\)
−0.878774 + 0.477237i \(0.841638\pi\)
\(14\) 0 0
\(15\) 5.06405 + 1.49654i 1.30753 + 0.386405i
\(16\) 0 0
\(17\) 0.866390 + 1.03252i 0.210130 + 0.250424i 0.860807 0.508931i \(-0.169959\pi\)
−0.650677 + 0.759355i \(0.725515\pi\)
\(18\) 0 0
\(19\) 1.71910 4.00558i 0.394389 0.918944i
\(20\) 0 0
\(21\) 0.725243 0.480691i 0.158261 0.104895i
\(22\) 0 0
\(23\) 8.83018 + 1.55700i 1.84122 + 0.324657i 0.982280 0.187419i \(-0.0600123\pi\)
0.858940 + 0.512076i \(0.171123\pi\)
\(24\) 0 0
\(25\) 4.03575 1.46889i 0.807149 0.293778i
\(26\) 0 0
\(27\) −0.956666 5.10733i −0.184111 0.982906i
\(28\) 0 0
\(29\) 3.43732 + 2.88425i 0.638294 + 0.535592i 0.903494 0.428601i \(-0.140993\pi\)
−0.265200 + 0.964193i \(0.585438\pi\)
\(30\) 0 0
\(31\) 3.58316 + 2.06874i 0.643555 + 0.371556i 0.785983 0.618249i \(-0.212158\pi\)
−0.142428 + 0.989805i \(0.545491\pi\)
\(32\) 0 0
\(33\) −5.16042 + 0.318918i −0.898314 + 0.0555165i
\(34\) 0 0
\(35\) 0.523805 1.43914i 0.0885392 0.243259i
\(36\) 0 0
\(37\) 1.40145i 0.230397i 0.993342 + 0.115199i \(0.0367504\pi\)
−0.993342 + 0.115199i \(0.963250\pi\)
\(38\) 0 0
\(39\) 0.207947 1.83550i 0.0332982 0.293916i
\(40\) 0 0
\(41\) −4.19152 1.52559i −0.654605 0.238257i −0.00669960 0.999978i \(-0.502133\pi\)
−0.647905 + 0.761721i \(0.724355\pi\)
\(42\) 0 0
\(43\) −0.539473 3.05951i −0.0822689 0.466570i −0.997913 0.0645793i \(-0.979429\pi\)
0.915644 0.401991i \(-0.131682\pi\)
\(44\) 0 0
\(45\) −6.69702 6.22917i −0.998333 0.928591i
\(46\) 0 0
\(47\) 1.56889 1.86974i 0.228847 0.272729i −0.639386 0.768886i \(-0.720811\pi\)
0.868233 + 0.496157i \(0.165256\pi\)
\(48\) 0 0
\(49\) 3.37383 + 5.84364i 0.481975 + 0.834806i
\(50\) 0 0
\(51\) −0.546437 2.26972i −0.0765165 0.317824i
\(52\) 0 0
\(53\) −1.97942 + 11.2258i −0.271894 + 1.54199i 0.476765 + 0.879031i \(0.341809\pi\)
−0.748659 + 0.662956i \(0.769302\pi\)
\(54\) 0 0
\(55\) −6.97149 + 5.84977i −0.940035 + 0.788783i
\(56\) 0 0
\(57\) −5.75729 + 4.88402i −0.762571 + 0.646904i
\(58\) 0 0
\(59\) 8.56486 7.18677i 1.11505 0.935638i 0.116706 0.993166i \(-0.462766\pi\)
0.998344 + 0.0575285i \(0.0183220\pi\)
\(60\) 0 0
\(61\) 1.52156 8.62918i 0.194816 1.10485i −0.717866 0.696182i \(-0.754881\pi\)
0.912681 0.408672i \(-0.134008\pi\)
\(62\) 0 0
\(63\) −1.49556 + 0.185562i −0.188422 + 0.0233786i
\(64\) 0 0
\(65\) −1.62575 2.81587i −0.201649 0.349266i
\(66\) 0 0
\(67\) −6.94344 + 8.27486i −0.848276 + 1.01094i 0.151472 + 0.988462i \(0.451599\pi\)
−0.999747 + 0.0224739i \(0.992846\pi\)
\(68\) 0 0
\(69\) −12.4900 9.22982i −1.50362 1.11114i
\(70\) 0 0
\(71\) 2.02777 + 11.5000i 0.240652 + 1.36480i 0.830378 + 0.557201i \(0.188125\pi\)
−0.589726 + 0.807604i \(0.700764\pi\)
\(72\) 0 0
\(73\) 9.45460 + 3.44119i 1.10658 + 0.402761i 0.829737 0.558155i \(-0.188490\pi\)
0.276841 + 0.960916i \(0.410713\pi\)
\(74\) 0 0
\(75\) −7.39144 0.837389i −0.853490 0.0966933i
\(76\) 0 0
\(77\) 1.49952i 0.170886i
\(78\) 0 0
\(79\) 0.310339 0.852649i 0.0349159 0.0959306i −0.921010 0.389540i \(-0.872634\pi\)
0.955926 + 0.293609i \(0.0948564\pi\)
\(80\) 0 0
\(81\) −2.45873 + 8.65764i −0.273192 + 0.961960i
\(82\) 0 0
\(83\) −6.19637 3.57748i −0.680140 0.392679i 0.119768 0.992802i \(-0.461785\pi\)
−0.799908 + 0.600123i \(0.795118\pi\)
\(84\) 0 0
\(85\) −3.14788 2.64139i −0.341436 0.286499i
\(86\) 0 0
\(87\) −3.10356 7.12531i −0.332737 0.763914i
\(88\) 0 0
\(89\) 13.7483 5.00398i 1.45732 0.530421i 0.512695 0.858571i \(-0.328647\pi\)
0.944626 + 0.328150i \(0.106425\pi\)
\(90\) 0 0
\(91\) −0.527611 0.0930321i −0.0553087 0.00975242i
\(92\) 0 0
\(93\) −3.95916 5.97338i −0.410545 0.619410i
\(94\) 0 0
\(95\) −3.04087 + 12.9365i −0.311986 + 1.32726i
\(96\) 0 0
\(97\) −9.45707 11.2705i −0.960220 1.14435i −0.989465 0.144773i \(-0.953755\pi\)
0.0292448 0.999572i \(-0.490690\pi\)
\(98\) 0 0
\(99\) 8.24772 + 3.48858i 0.828927 + 0.350615i
\(100\) 0 0
\(101\) 1.48369 + 4.07641i 0.147633 + 0.405618i 0.991362 0.131151i \(-0.0418672\pi\)
−0.843730 + 0.536768i \(0.819645\pi\)
\(102\) 0 0
\(103\) −9.42665 + 5.44248i −0.928836 + 0.536263i −0.886443 0.462838i \(-0.846831\pi\)
−0.0423924 + 0.999101i \(0.513498\pi\)
\(104\) 0 0
\(105\) −1.92300 + 1.82718i −0.187665 + 0.178315i
\(106\) 0 0
\(107\) 0.00726143 0.0125772i 0.000701989 0.00121588i −0.865674 0.500608i \(-0.833110\pi\)
0.866376 + 0.499392i \(0.166443\pi\)
\(108\) 0 0
\(109\) 2.18035 0.384455i 0.208840 0.0368241i −0.0682494 0.997668i \(-0.521741\pi\)
0.277089 + 0.960844i \(0.410630\pi\)
\(110\) 0 0
\(111\) 1.08171 2.17304i 0.102672 0.206256i
\(112\) 0 0
\(113\) −2.29809 −0.216186 −0.108093 0.994141i \(-0.534474\pi\)
−0.108093 + 0.994141i \(0.534474\pi\)
\(114\) 0 0
\(115\) −27.3361 −2.54911
\(116\) 0 0
\(117\) −1.73917 + 2.68556i −0.160786 + 0.248280i
\(118\) 0 0
\(119\) −0.666801 + 0.117575i −0.0611256 + 0.0107781i
\(120\) 0 0
\(121\) −1.04472 + 1.80951i −0.0949746 + 0.164501i
\(122\) 0 0
\(123\) 5.32168 + 5.60075i 0.479840 + 0.505002i
\(124\) 0 0
\(125\) 1.86205 1.07506i 0.166547 0.0961561i
\(126\) 0 0
\(127\) −4.01211 11.0232i −0.356018 0.978150i −0.980398 0.197029i \(-0.936871\pi\)
0.624380 0.781121i \(-0.285352\pi\)
\(128\) 0 0
\(129\) −1.52500 + 5.16035i −0.134269 + 0.454343i
\(130\) 0 0
\(131\) −6.67229 7.95173i −0.582961 0.694745i 0.391276 0.920273i \(-0.372034\pi\)
−0.974237 + 0.225528i \(0.927589\pi\)
\(132\) 0 0
\(133\) 1.31080 + 1.75396i 0.113661 + 0.152088i
\(134\) 0 0
\(135\) 5.57616 + 14.8278i 0.479919 + 1.27618i
\(136\) 0 0
\(137\) 12.8792 + 2.27095i 1.10034 + 0.194020i 0.694195 0.719787i \(-0.255760\pi\)
0.406148 + 0.913807i \(0.366872\pi\)
\(138\) 0 0
\(139\) 12.6952 4.62068i 1.07679 0.391921i 0.258081 0.966123i \(-0.416910\pi\)
0.818714 + 0.574202i \(0.194688\pi\)
\(140\) 0 0
\(141\) −3.87583 + 1.68819i −0.326404 + 0.142171i
\(142\) 0 0
\(143\) 2.43877 + 2.04637i 0.203940 + 0.171126i
\(144\) 0 0
\(145\) −11.8472 6.83998i −0.983855 0.568029i
\(146\) 0 0
\(147\) −0.720908 11.6650i −0.0594595 0.962115i
\(148\) 0 0
\(149\) 6.94182 19.0725i 0.568696 1.56248i −0.237846 0.971303i \(-0.576441\pi\)
0.806542 0.591176i \(-0.201336\pi\)
\(150\) 0 0
\(151\) 23.4871i 1.91135i −0.294424 0.955675i \(-0.595128\pi\)
0.294424 0.955675i \(-0.404872\pi\)
\(152\) 0 0
\(153\) −0.904600 + 3.94111i −0.0731325 + 0.318620i
\(154\) 0 0
\(155\) −11.8533 4.31426i −0.952082 0.346530i
\(156\) 0 0
\(157\) 3.34127 + 18.9493i 0.266662 + 1.51232i 0.764259 + 0.644909i \(0.223105\pi\)
−0.497597 + 0.867409i \(0.665784\pi\)
\(158\) 0 0
\(159\) 11.7339 15.8785i 0.930558 1.25925i
\(160\) 0 0
\(161\) −2.89524 + 3.45041i −0.228177 + 0.271931i
\(162\) 0 0
\(163\) 9.17668 + 15.8945i 0.718773 + 1.24495i 0.961486 + 0.274853i \(0.0886292\pi\)
−0.242714 + 0.970098i \(0.578038\pi\)
\(164\) 0 0
\(165\) 15.3249 3.68948i 1.19304 0.287226i
\(166\) 0 0
\(167\) −1.00462 + 5.69749i −0.0777399 + 0.440885i 0.920949 + 0.389684i \(0.127416\pi\)
−0.998688 + 0.0512005i \(0.983695\pi\)
\(168\) 0 0
\(169\) 9.08725 7.62511i 0.699019 0.586547i
\(170\) 0 0
\(171\) 12.6968 3.12920i 0.970947 0.239296i
\(172\) 0 0
\(173\) −6.03354 + 5.06274i −0.458722 + 0.384913i −0.842660 0.538445i \(-0.819012\pi\)
0.383939 + 0.923359i \(0.374567\pi\)
\(174\) 0 0
\(175\) −0.374634 + 2.12465i −0.0283197 + 0.160609i
\(176\) 0 0
\(177\) −18.8275 + 4.53274i −1.41516 + 0.340702i
\(178\) 0 0
\(179\) 1.55348 + 2.69071i 0.116113 + 0.201113i 0.918224 0.396062i \(-0.129623\pi\)
−0.802111 + 0.597174i \(0.796290\pi\)
\(180\) 0 0
\(181\) −13.0813 + 15.5897i −0.972329 + 1.15878i 0.0149680 + 0.999888i \(0.495235\pi\)
−0.987297 + 0.158888i \(0.949209\pi\)
\(182\) 0 0
\(183\) −9.01972 + 12.2057i −0.666757 + 0.902270i
\(184\) 0 0
\(185\) −0.741937 4.20773i −0.0545483 0.309359i
\(186\) 0 0
\(187\) 3.78080 + 1.37610i 0.276480 + 0.100630i
\(188\) 0 0
\(189\) 2.46218 + 0.866622i 0.179097 + 0.0630375i
\(190\) 0 0
\(191\) 4.25429i 0.307829i −0.988084 0.153915i \(-0.950812\pi\)
0.988084 0.153915i \(-0.0491881\pi\)
\(192\) 0 0
\(193\) 6.73569 18.5062i 0.484846 1.33210i −0.420448 0.907317i \(-0.638127\pi\)
0.905294 0.424786i \(-0.139651\pi\)
\(194\) 0 0
\(195\) 0.347384 + 5.62102i 0.0248767 + 0.402530i
\(196\) 0 0
\(197\) 16.3958 + 9.46613i 1.16815 + 0.674434i 0.953245 0.302200i \(-0.0977210\pi\)
0.214910 + 0.976634i \(0.431054\pi\)
\(198\) 0 0
\(199\) 7.54426 + 6.33039i 0.534798 + 0.448749i 0.869755 0.493485i \(-0.164277\pi\)
−0.334956 + 0.942234i \(0.608722\pi\)
\(200\) 0 0
\(201\) 17.1532 7.47139i 1.20989 0.526992i
\(202\) 0 0
\(203\) −2.11812 + 0.770933i −0.148663 + 0.0541089i
\(204\) 0 0
\(205\) 13.3923 + 2.36143i 0.935360 + 0.164929i
\(206\) 0 0
\(207\) 12.2424 + 23.9518i 0.850909 + 1.66477i
\(208\) 0 0
\(209\) −1.53434 12.9208i −0.106133 0.893749i
\(210\) 0 0
\(211\) 4.12402 + 4.91482i 0.283909 + 0.338350i 0.889085 0.457742i \(-0.151342\pi\)
−0.605176 + 0.796092i \(0.706897\pi\)
\(212\) 0 0
\(213\) 5.73215 19.3967i 0.392760 1.32904i
\(214\) 0 0
\(215\) 3.23944 + 8.90030i 0.220928 + 0.606995i
\(216\) 0 0
\(217\) −1.79997 + 1.03921i −0.122190 + 0.0705464i
\(218\) 0 0
\(219\) −12.0039 12.6333i −0.811146 0.853682i
\(220\) 0 0
\(221\) −0.718753 + 1.24492i −0.0483486 + 0.0837421i
\(222\) 0 0
\(223\) 12.6942 2.23832i 0.850064 0.149889i 0.268389 0.963311i \(-0.413509\pi\)
0.581675 + 0.813421i \(0.302398\pi\)
\(224\) 0 0
\(225\) 10.8146 + 7.00352i 0.720970 + 0.466901i
\(226\) 0 0
\(227\) −21.6249 −1.43529 −0.717646 0.696408i \(-0.754780\pi\)
−0.717646 + 0.696408i \(0.754780\pi\)
\(228\) 0 0
\(229\) 10.4460 0.690294 0.345147 0.938549i \(-0.387829\pi\)
0.345147 + 0.938549i \(0.387829\pi\)
\(230\) 0 0
\(231\) 1.15740 2.32510i 0.0761517 0.152980i
\(232\) 0 0
\(233\) −13.5750 + 2.39364i −0.889330 + 0.156813i −0.599604 0.800297i \(-0.704675\pi\)
−0.289726 + 0.957110i \(0.593564\pi\)
\(234\) 0 0
\(235\) −3.72062 + 6.44430i −0.242706 + 0.420380i
\(236\) 0 0
\(237\) −1.13932 + 1.08255i −0.0740067 + 0.0703192i
\(238\) 0 0
\(239\) −16.7801 + 9.68797i −1.08541 + 0.626663i −0.932351 0.361554i \(-0.882246\pi\)
−0.153061 + 0.988217i \(0.548913\pi\)
\(240\) 0 0
\(241\) 8.64165 + 23.7427i 0.556657 + 1.52940i 0.824454 + 0.565928i \(0.191482\pi\)
−0.267797 + 0.963475i \(0.586296\pi\)
\(242\) 0 0
\(243\) 10.4948 11.5264i 0.673243 0.739421i
\(244\) 0 0
\(245\) −13.2233 15.7589i −0.844804 1.00680i
\(246\) 0 0
\(247\) 4.64142 + 0.261758i 0.295327 + 0.0166553i
\(248\) 0 0
\(249\) 6.84658 + 10.3298i 0.433885 + 0.654623i
\(250\) 0 0
\(251\) −18.4169 3.24740i −1.16247 0.204974i −0.441054 0.897480i \(-0.645395\pi\)
−0.721412 + 0.692506i \(0.756507\pi\)
\(252\) 0 0
\(253\) 25.1511 9.15424i 1.58123 0.575522i
\(254\) 0 0
\(255\) 2.84223 + 6.52534i 0.177987 + 0.408633i
\(256\) 0 0
\(257\) −6.22334 5.22200i −0.388201 0.325739i 0.427711 0.903916i \(-0.359320\pi\)
−0.815912 + 0.578176i \(0.803765\pi\)
\(258\) 0 0
\(259\) −0.609688 0.352003i −0.0378842 0.0218724i
\(260\) 0 0
\(261\) −0.687417 + 13.4437i −0.0425500 + 0.832146i
\(262\) 0 0
\(263\) 3.43690 9.44282i 0.211929 0.582269i −0.787491 0.616326i \(-0.788620\pi\)
0.999420 + 0.0340568i \(0.0108427\pi\)
\(264\) 0 0
\(265\) 34.7525i 2.13483i
\(266\) 0 0
\(267\) −25.1800 2.85268i −1.54099 0.174581i
\(268\) 0 0
\(269\) −3.82959 1.39386i −0.233494 0.0849850i 0.222623 0.974905i \(-0.428538\pi\)
−0.456117 + 0.889920i \(0.650760\pi\)
\(270\) 0 0
\(271\) 0.785166 + 4.45290i 0.0476955 + 0.270494i 0.999324 0.0367557i \(-0.0117023\pi\)
−0.951629 + 0.307250i \(0.900591\pi\)
\(272\) 0 0
\(273\) 0.746288 + 0.551490i 0.0451674 + 0.0333777i
\(274\) 0 0
\(275\) 8.24058 9.82074i 0.496926 0.592213i
\(276\) 0 0
\(277\) 11.8387 + 20.5052i 0.711317 + 1.23204i 0.964363 + 0.264583i \(0.0852344\pi\)
−0.253046 + 0.967454i \(0.581432\pi\)
\(278\) 0 0
\(279\) 1.52836 + 12.3180i 0.0915004 + 0.737458i
\(280\) 0 0
\(281\) 4.01031 22.7436i 0.239235 1.35677i −0.594273 0.804264i \(-0.702560\pi\)
0.833508 0.552507i \(-0.186329\pi\)
\(282\) 0 0
\(283\) −6.38454 + 5.35727i −0.379522 + 0.318457i −0.812515 0.582941i \(-0.801902\pi\)
0.432993 + 0.901397i \(0.357457\pi\)
\(284\) 0 0
\(285\) 14.7001 17.7118i 0.870760 1.04916i
\(286\) 0 0
\(287\) 1.71648 1.44030i 0.101321 0.0850180i
\(288\) 0 0
\(289\) 2.63655 14.9526i 0.155091 0.879564i
\(290\) 0 0
\(291\) 5.96463 + 24.7751i 0.349653 + 1.45234i
\(292\) 0 0
\(293\) −4.06803 7.04603i −0.237657 0.411634i 0.722385 0.691491i \(-0.243046\pi\)
−0.960041 + 0.279858i \(0.909713\pi\)
\(294\) 0 0
\(295\) −21.9105 + 26.1119i −1.27568 + 1.52030i
\(296\) 0 0
\(297\) −10.0959 11.7753i −0.585826 0.683271i
\(298\) 0 0
\(299\) 1.66055 + 9.41745i 0.0960321 + 0.544625i
\(300\) 0 0
\(301\) 1.46651 + 0.533766i 0.0845282 + 0.0307657i
\(302\) 0 0
\(303\) 0.845826 7.46591i 0.0485914 0.428905i
\(304\) 0 0
\(305\) 26.7139i 1.52963i
\(306\) 0 0
\(307\) 3.01020 8.27046i 0.171801 0.472020i −0.823672 0.567067i \(-0.808078\pi\)
0.995473 + 0.0950472i \(0.0303002\pi\)
\(308\) 0 0
\(309\) 18.8174 1.16293i 1.07048 0.0661568i
\(310\) 0 0
\(311\) −2.88199 1.66392i −0.163423 0.0943522i 0.416058 0.909338i \(-0.363411\pi\)
−0.579481 + 0.814986i \(0.696745\pi\)
\(312\) 0 0
\(313\) 2.30378 + 1.93310i 0.130217 + 0.109265i 0.705570 0.708640i \(-0.250691\pi\)
−0.575353 + 0.817905i \(0.695135\pi\)
\(314\) 0 0
\(315\) 4.39204 1.34889i 0.247463 0.0760014i
\(316\) 0 0
\(317\) −9.87705 + 3.59495i −0.554750 + 0.201913i −0.604156 0.796866i \(-0.706490\pi\)
0.0494055 + 0.998779i \(0.484267\pi\)
\(318\) 0 0
\(319\) 13.1908 + 2.32589i 0.738541 + 0.130225i
\(320\) 0 0
\(321\) −0.0209670 + 0.0138969i −0.00117026 + 0.000775651i
\(322\) 0 0
\(323\) 5.62527 1.69539i 0.312998 0.0943338i
\(324\) 0 0
\(325\) 2.94421 + 3.50878i 0.163315 + 0.194632i
\(326\) 0 0
\(327\) −3.67751 1.08679i −0.203367 0.0600994i
\(328\) 0 0
\(329\) 0.419350 + 1.15216i 0.0231195 + 0.0635204i
\(330\) 0 0
\(331\) 12.2016 7.04460i 0.670660 0.387206i −0.125666 0.992073i \(-0.540107\pi\)
0.796327 + 0.604867i \(0.206774\pi\)
\(332\) 0 0
\(333\) −3.35453 + 2.53451i −0.183827 + 0.138890i
\(334\) 0 0
\(335\) 16.4663 28.5204i 0.899649 1.55824i
\(336\) 0 0
\(337\) −23.2737 + 4.10377i −1.26780 + 0.223547i −0.766791 0.641897i \(-0.778148\pi\)
−0.501006 + 0.865444i \(0.667037\pi\)
\(338\) 0 0
\(339\) 3.56333 + 1.77379i 0.193534 + 0.0963388i
\(340\) 0 0
\(341\) 12.3506 0.668823
\(342\) 0 0
\(343\) −6.90602 −0.372890
\(344\) 0 0
\(345\) 42.3864 + 21.0994i 2.28201 + 1.13596i
\(346\) 0 0
\(347\) 27.6393 4.87356i 1.48376 0.261626i 0.627679 0.778472i \(-0.284005\pi\)
0.856078 + 0.516846i \(0.172894\pi\)
\(348\) 0 0
\(349\) −6.13085 + 10.6190i −0.328177 + 0.568419i −0.982150 0.188098i \(-0.939768\pi\)
0.653973 + 0.756518i \(0.273101\pi\)
\(350\) 0 0
\(351\) 4.76955 2.82174i 0.254579 0.150614i
\(352\) 0 0
\(353\) −8.24176 + 4.75838i −0.438665 + 0.253263i −0.703031 0.711159i \(-0.748171\pi\)
0.264366 + 0.964422i \(0.414837\pi\)
\(354\) 0 0
\(355\) −12.1764 33.4544i −0.646256 1.77557i
\(356\) 0 0
\(357\) 1.12467 + 0.332364i 0.0595237 + 0.0175906i
\(358\) 0 0
\(359\) 13.5098 + 16.1003i 0.713018 + 0.849741i 0.993933 0.109991i \(-0.0350823\pi\)
−0.280915 + 0.959733i \(0.590638\pi\)
\(360\) 0 0
\(361\) −13.0894 13.7720i −0.688915 0.724842i
\(362\) 0 0
\(363\) 3.01658 1.99939i 0.158329 0.104941i
\(364\) 0 0
\(365\) −30.2084 5.32656i −1.58118 0.278805i
\(366\) 0 0
\(367\) −8.76232 + 3.18922i −0.457389 + 0.166476i −0.560431 0.828201i \(-0.689365\pi\)
0.103042 + 0.994677i \(0.467142\pi\)
\(368\) 0 0
\(369\) −3.92866 12.7919i −0.204518 0.665918i
\(370\) 0 0
\(371\) −4.38652 3.68073i −0.227737 0.191094i
\(372\) 0 0
\(373\) −23.1689 13.3766i −1.19964 0.692612i −0.239164 0.970979i \(-0.576873\pi\)
−0.960475 + 0.278367i \(0.910207\pi\)
\(374\) 0 0
\(375\) −3.71702 + 0.229715i −0.191946 + 0.0118624i
\(376\) 0 0
\(377\) −1.63675 + 4.49692i −0.0842967 + 0.231603i
\(378\) 0 0
\(379\) 14.5951i 0.749702i −0.927085 0.374851i \(-0.877694\pi\)
0.927085 0.374851i \(-0.122306\pi\)
\(380\) 0 0
\(381\) −2.28723 + 20.1889i −0.117179 + 1.03431i
\(382\) 0 0
\(383\) −8.09064 2.94475i −0.413412 0.150470i 0.126937 0.991911i \(-0.459486\pi\)
−0.540349 + 0.841441i \(0.681708\pi\)
\(384\) 0 0
\(385\) −0.793854 4.50217i −0.0404585 0.229452i
\(386\) 0 0
\(387\) 6.34763 6.82437i 0.322668 0.346902i
\(388\) 0 0
\(389\) 6.90987 8.23486i 0.350344 0.417524i −0.561878 0.827220i \(-0.689921\pi\)
0.912222 + 0.409696i \(0.134365\pi\)
\(390\) 0 0
\(391\) 6.04274 + 10.4663i 0.305595 + 0.529305i
\(392\) 0 0
\(393\) 4.20825 + 17.4797i 0.212278 + 0.881733i
\(394\) 0 0
\(395\) −0.480368 + 2.72430i −0.0241699 + 0.137074i
\(396\) 0 0
\(397\) −25.1589 + 21.1108i −1.26269 + 1.05952i −0.267300 + 0.963613i \(0.586131\pi\)
−0.995390 + 0.0959094i \(0.969424\pi\)
\(398\) 0 0
\(399\) −0.678683 3.73138i −0.0339767 0.186802i
\(400\) 0 0
\(401\) −28.2343 + 23.6914i −1.40995 + 1.18309i −0.453479 + 0.891267i \(0.649817\pi\)
−0.956472 + 0.291823i \(0.905738\pi\)
\(402\) 0 0
\(403\) −0.766248 + 4.34561i −0.0381695 + 0.216470i
\(404\) 0 0
\(405\) 2.79871 27.2955i 0.139069 1.35632i
\(406\) 0 0
\(407\) 2.09170 + 3.62294i 0.103682 + 0.179582i
\(408\) 0 0
\(409\) −4.93171 + 5.87739i −0.243858 + 0.290618i −0.874065 0.485808i \(-0.838525\pi\)
0.630208 + 0.776427i \(0.282970\pi\)
\(410\) 0 0
\(411\) −18.2172 13.4621i −0.898586 0.664035i
\(412\) 0 0
\(413\) 0.975294 + 5.53117i 0.0479911 + 0.272171i
\(414\) 0 0
\(415\) 20.4980 + 7.46066i 1.00621 + 0.366230i
\(416\) 0 0
\(417\) −23.2512 2.63417i −1.13862 0.128996i
\(418\) 0 0
\(419\) 3.25003i 0.158774i −0.996844 0.0793872i \(-0.974704\pi\)
0.996844 0.0793872i \(-0.0252963\pi\)
\(420\) 0 0
\(421\) 2.10684 5.78848i 0.102681 0.282113i −0.877705 0.479202i \(-0.840926\pi\)
0.980386 + 0.197088i \(0.0631485\pi\)
\(422\) 0 0
\(423\) 7.31275 + 0.373922i 0.355558 + 0.0181807i
\(424\) 0 0
\(425\) 5.01319 + 2.89437i 0.243176 + 0.140397i
\(426\) 0 0
\(427\) 3.37187 + 2.82934i 0.163176 + 0.136921i
\(428\) 0 0
\(429\) −2.20197 5.05539i −0.106312 0.244076i
\(430\) 0 0
\(431\) −27.3336 + 9.94860i −1.31661 + 0.479207i −0.902371 0.430960i \(-0.858175\pi\)
−0.414240 + 0.910168i \(0.635953\pi\)
\(432\) 0 0
\(433\) 1.86446 + 0.328754i 0.0896001 + 0.0157989i 0.218268 0.975889i \(-0.429959\pi\)
−0.128668 + 0.991688i \(0.541070\pi\)
\(434\) 0 0
\(435\) 13.0904 + 19.7501i 0.627635 + 0.946944i
\(436\) 0 0
\(437\) 21.4167 32.6934i 1.02450 1.56394i
\(438\) 0 0
\(439\) −16.4094 19.5560i −0.783179 0.933357i 0.215893 0.976417i \(-0.430734\pi\)
−0.999072 + 0.0430602i \(0.986289\pi\)
\(440\) 0 0
\(441\) −7.88585 + 18.6438i −0.375517 + 0.887799i
\(442\) 0 0
\(443\) −3.36718 9.25126i −0.159980 0.439541i 0.833642 0.552305i \(-0.186252\pi\)
−0.993622 + 0.112764i \(0.964029\pi\)
\(444\) 0 0
\(445\) −38.6290 + 22.3025i −1.83119 + 1.05724i
\(446\) 0 0
\(447\) −25.4849 + 24.2150i −1.20539 + 1.14533i
\(448\) 0 0
\(449\) −4.70447 + 8.14838i −0.222018 + 0.384546i −0.955420 0.295249i \(-0.904598\pi\)
0.733403 + 0.679794i \(0.237931\pi\)
\(450\) 0 0
\(451\) −13.1126 + 2.31211i −0.617449 + 0.108873i
\(452\) 0 0
\(453\) −18.1285 + 36.4182i −0.851752 + 1.71107i
\(454\) 0 0
\(455\) 1.63336 0.0765730
\(456\) 0 0
\(457\) −36.9364 −1.72781 −0.863906 0.503653i \(-0.831989\pi\)
−0.863906 + 0.503653i \(0.831989\pi\)
\(458\) 0 0
\(459\) 4.44459 5.41272i 0.207456 0.252644i
\(460\) 0 0
\(461\) −39.2642 + 6.92335i −1.82872 + 0.322452i −0.978856 0.204552i \(-0.934426\pi\)
−0.849862 + 0.527004i \(0.823315\pi\)
\(462\) 0 0
\(463\) 16.8000 29.0985i 0.780763 1.35232i −0.150735 0.988574i \(-0.548164\pi\)
0.931498 0.363747i \(-0.118503\pi\)
\(464\) 0 0
\(465\) 15.0494 + 15.8385i 0.697898 + 0.734495i
\(466\) 0 0
\(467\) −19.8364 + 11.4526i −0.917920 + 0.529961i −0.882971 0.469428i \(-0.844460\pi\)
−0.0349490 + 0.999389i \(0.511127\pi\)
\(468\) 0 0
\(469\) −1.85591 5.09908i −0.0856981 0.235454i
\(470\) 0 0
\(471\) 9.44519 31.9610i 0.435211 1.47269i
\(472\) 0 0
\(473\) −5.96101 7.10405i −0.274087 0.326645i
\(474\) 0 0
\(475\) 1.05408 18.6907i 0.0483646 0.857587i
\(476\) 0 0
\(477\) −30.4500 + 15.5639i −1.39421 + 0.712620i
\(478\) 0 0
\(479\) −26.6499 4.69910i −1.21767 0.214707i −0.472345 0.881414i \(-0.656592\pi\)
−0.745320 + 0.666706i \(0.767703\pi\)
\(480\) 0 0
\(481\) −1.40452 + 0.511203i −0.0640405 + 0.0233088i
\(482\) 0 0
\(483\) 7.15246 3.11539i 0.325448 0.141755i
\(484\) 0 0
\(485\) 34.3607 + 28.8320i 1.56024 + 1.30920i
\(486\) 0 0
\(487\) −7.28099 4.20368i −0.329933 0.190487i 0.325878 0.945412i \(-0.394340\pi\)
−0.655811 + 0.754925i \(0.727673\pi\)
\(488\) 0 0
\(489\) −1.96084 31.7284i −0.0886723 1.43481i
\(490\) 0 0
\(491\) 6.36016 17.4744i 0.287030 0.788608i −0.709449 0.704757i \(-0.751056\pi\)
0.996478 0.0838507i \(-0.0267219\pi\)
\(492\) 0 0
\(493\) 6.04800i 0.272388i
\(494\) 0 0
\(495\) −26.6099 6.10776i −1.19603 0.274523i
\(496\) 0 0
\(497\) −5.51230 2.00631i −0.247261 0.0899955i
\(498\) 0 0
\(499\) 5.23041 + 29.6631i 0.234145 + 1.32790i 0.844406 + 0.535704i \(0.179954\pi\)
−0.610261 + 0.792201i \(0.708935\pi\)
\(500\) 0 0
\(501\) 5.95534 8.05889i 0.266065 0.360045i
\(502\) 0 0
\(503\) 6.47202 7.71305i 0.288573 0.343908i −0.602209 0.798338i \(-0.705713\pi\)
0.890782 + 0.454430i \(0.150157\pi\)
\(504\) 0 0
\(505\) −6.61273 11.4536i −0.294262 0.509677i
\(506\) 0 0
\(507\) −19.9758 + 4.80920i −0.887157 + 0.213584i
\(508\) 0 0
\(509\) 0.370885 2.10339i 0.0164392 0.0932312i −0.975484 0.220069i \(-0.929372\pi\)
0.991923 + 0.126838i \(0.0404828\pi\)
\(510\) 0 0
\(511\) −3.87178 + 3.24881i −0.171277 + 0.143719i
\(512\) 0 0
\(513\) −22.1024 4.94800i −0.975846 0.218459i
\(514\) 0 0
\(515\) 25.4214 21.3311i 1.12020 0.939960i
\(516\) 0 0
\(517\) 1.26517 7.17514i 0.0556421 0.315562i
\(518\) 0 0
\(519\) 13.2631 3.19310i 0.582184 0.140162i
\(520\) 0 0
\(521\) 16.6879 + 28.9043i 0.731109 + 1.26632i 0.956409 + 0.292029i \(0.0943304\pi\)
−0.225300 + 0.974289i \(0.572336\pi\)
\(522\) 0 0
\(523\) 4.68360 5.58170i 0.204800 0.244071i −0.653862 0.756614i \(-0.726852\pi\)
0.858661 + 0.512543i \(0.171297\pi\)
\(524\) 0 0
\(525\) 2.22081 3.00525i 0.0969242 0.131160i
\(526\) 0 0
\(527\) 0.968393 + 5.49203i 0.0421839 + 0.239237i
\(528\) 0 0
\(529\) 53.9349 + 19.6307i 2.34500 + 0.853509i
\(530\) 0 0
\(531\) 32.6918 + 7.50372i 1.41870 + 0.325634i
\(532\) 0 0
\(533\) 4.75717i 0.206056i
\(534\) 0 0
\(535\) −0.0151434 + 0.0416061i −0.000654705 + 0.00179879i
\(536\) 0 0
\(537\) −0.331942 5.37116i −0.0143244 0.231783i
\(538\) 0 0
\(539\) 17.4436 + 10.0711i 0.751349 + 0.433791i
\(540\) 0 0
\(541\) 1.84017 + 1.54409i 0.0791152 + 0.0663855i 0.681488 0.731830i \(-0.261333\pi\)
−0.602372 + 0.798215i \(0.705778\pi\)
\(542\) 0 0
\(543\) 32.3164 14.0760i 1.38683 0.604059i
\(544\) 0 0
\(545\) −6.34278 + 2.30858i −0.271695 + 0.0988889i
\(546\) 0 0
\(547\) −33.0653 5.83030i −1.41377 0.249286i −0.585980 0.810325i \(-0.699290\pi\)
−0.827789 + 0.561040i \(0.810402\pi\)
\(548\) 0 0
\(549\) 23.4066 11.9638i 0.998970 0.510602i
\(550\) 0 0
\(551\) 17.4622 8.81015i 0.743915 0.375325i
\(552\) 0 0
\(553\) 0.292989 + 0.349171i 0.0124592 + 0.0148482i
\(554\) 0 0
\(555\) −2.09733 + 7.09702i −0.0890265 + 0.301252i
\(556\) 0 0
\(557\) 3.34296 + 9.18470i 0.141646 + 0.389168i 0.990148 0.140023i \(-0.0447176\pi\)
−0.848503 + 0.529191i \(0.822495\pi\)
\(558\) 0 0
\(559\) 2.86942 1.65666i 0.121364 0.0700693i
\(560\) 0 0
\(561\) −4.80023 5.05195i −0.202666 0.213294i
\(562\) 0 0
\(563\) −9.04768 + 15.6710i −0.381314 + 0.660455i −0.991250 0.131995i \(-0.957862\pi\)
0.609936 + 0.792450i \(0.291195\pi\)
\(564\) 0 0
\(565\) 6.89982 1.21662i 0.290277 0.0511837i
\(566\) 0 0
\(567\) −3.14886 3.24419i −0.132240 0.136243i
\(568\) 0 0
\(569\) 35.0017 1.46735 0.733674 0.679501i \(-0.237804\pi\)
0.733674 + 0.679501i \(0.237804\pi\)
\(570\) 0 0
\(571\) 31.7338 1.32802 0.664009 0.747725i \(-0.268854\pi\)
0.664009 + 0.747725i \(0.268854\pi\)
\(572\) 0 0
\(573\) −3.28368 + 6.59654i −0.137178 + 0.275574i
\(574\) 0 0
\(575\) 37.9234 6.68692i 1.58152 0.278864i
\(576\) 0 0
\(577\) 8.22977 14.2544i 0.342610 0.593418i −0.642307 0.766448i \(-0.722022\pi\)
0.984917 + 0.173030i \(0.0553558\pi\)
\(578\) 0 0
\(579\) −24.7281 + 23.4960i −1.02767 + 0.976461i
\(580\) 0 0
\(581\) 3.11269 1.79712i 0.129136 0.0745569i
\(582\) 0 0
\(583\) 11.6378 + 31.9746i 0.481989 + 1.32425i
\(584\) 0 0
\(585\) 3.79996 8.98388i 0.157109 0.371438i
\(586\) 0 0
\(587\) 12.4840 + 14.8778i 0.515269 + 0.614073i 0.959455 0.281861i \(-0.0909517\pi\)
−0.444186 + 0.895934i \(0.646507\pi\)
\(588\) 0 0
\(589\) 14.4463 10.7963i 0.595250 0.444853i
\(590\) 0 0
\(591\) −18.1163 27.3330i −0.745205 1.12433i
\(592\) 0 0
\(593\) 21.9176 + 3.86466i 0.900046 + 0.158702i 0.604481 0.796620i \(-0.293381\pi\)
0.295566 + 0.955322i \(0.404492\pi\)
\(594\) 0 0
\(595\) 1.93977 0.706018i 0.0795227 0.0289439i
\(596\) 0 0
\(597\) −6.81173 15.6387i −0.278786 0.640050i
\(598\) 0 0
\(599\) −0.151035 0.126734i −0.00617113 0.00517819i 0.639697 0.768627i \(-0.279060\pi\)
−0.645868 + 0.763449i \(0.723504\pi\)
\(600\) 0 0
\(601\) 3.50826 + 2.02550i 0.143105 + 0.0826217i 0.569843 0.821754i \(-0.307004\pi\)
−0.426738 + 0.904375i \(0.640337\pi\)
\(602\) 0 0
\(603\) −32.3639 1.65486i −1.31796 0.0673911i
\(604\) 0 0
\(605\) 2.17872 5.98597i 0.0885774 0.243364i
\(606\) 0 0
\(607\) 5.76518i 0.234001i −0.993132 0.117001i \(-0.962672\pi\)
0.993132 0.117001i \(-0.0373280\pi\)
\(608\) 0 0
\(609\) 3.87932 + 0.439495i 0.157198 + 0.0178092i
\(610\) 0 0
\(611\) 2.44611 + 0.890311i 0.0989590 + 0.0360181i
\(612\) 0 0
\(613\) 6.67643 + 37.8639i 0.269659 + 1.52931i 0.755433 + 0.655226i \(0.227427\pi\)
−0.485774 + 0.874084i \(0.661462\pi\)
\(614\) 0 0
\(615\) −18.9430 13.9984i −0.763854 0.564471i
\(616\) 0 0
\(617\) 5.06906 6.04107i 0.204073 0.243204i −0.654295 0.756239i \(-0.727035\pi\)
0.858368 + 0.513035i \(0.171479\pi\)
\(618\) 0 0
\(619\) 18.8705 + 32.6847i 0.758469 + 1.31371i 0.943631 + 0.330999i \(0.107386\pi\)
−0.185162 + 0.982708i \(0.559281\pi\)
\(620\) 0 0
\(621\) −0.495434 46.5882i −0.0198811 1.86952i
\(622\) 0 0
\(623\) −1.27624 + 7.23794i −0.0511316 + 0.289982i
\(624\) 0 0
\(625\) −21.4714 + 18.0166i −0.858854 + 0.720664i
\(626\) 0 0
\(627\) −7.59383 + 21.2188i −0.303268 + 0.847396i
\(628\) 0 0
\(629\) −1.44703 + 1.21420i −0.0576969 + 0.0484134i
\(630\) 0 0
\(631\) 7.84793 44.5078i 0.312421 1.77183i −0.273909 0.961755i \(-0.588317\pi\)
0.586330 0.810072i \(-0.300572\pi\)
\(632\) 0 0
\(633\) −2.60104 10.8039i −0.103382 0.429415i
\(634\) 0 0
\(635\) 17.8818 + 30.9721i 0.709616 + 1.22909i
\(636\) 0 0
\(637\) −4.62577 + 5.51278i −0.183280 + 0.218424i
\(638\) 0 0
\(639\) −23.8594 + 25.6514i −0.943864 + 1.01475i
\(640\) 0 0
\(641\) −5.87061 33.2939i −0.231875 1.31503i −0.849096 0.528239i \(-0.822852\pi\)
0.617221 0.786790i \(-0.288259\pi\)
\(642\) 0 0
\(643\) 24.7485 + 9.00773i 0.975987 + 0.355230i 0.780279 0.625432i \(-0.215077\pi\)
0.195708 + 0.980662i \(0.437299\pi\)
\(644\) 0 0
\(645\) 1.84675 16.3008i 0.0727157 0.641845i
\(646\) 0 0
\(647\) 35.2829i 1.38711i −0.720402 0.693557i \(-0.756043\pi\)
0.720402 0.693557i \(-0.243957\pi\)
\(648\) 0 0
\(649\) 11.4149 31.3621i 0.448072 1.23107i
\(650\) 0 0
\(651\) 3.59309 0.222055i 0.140824 0.00870304i
\(652\) 0 0
\(653\) −1.61603 0.933017i −0.0632403 0.0365118i 0.468046 0.883704i \(-0.344958\pi\)
−0.531287 + 0.847192i \(0.678291\pi\)
\(654\) 0 0
\(655\) 24.2427 + 20.3420i 0.947239 + 0.794828i
\(656\) 0 0
\(657\) 8.86168 + 28.8540i 0.345727 + 1.12570i
\(658\) 0 0
\(659\) −21.7551 + 7.91819i −0.847457 + 0.308449i −0.729003 0.684511i \(-0.760016\pi\)
−0.118454 + 0.992960i \(0.537794\pi\)
\(660\) 0 0
\(661\) 31.4688 + 5.54881i 1.22400 + 0.215824i 0.748045 0.663648i \(-0.230993\pi\)
0.475951 + 0.879472i \(0.342104\pi\)
\(662\) 0 0
\(663\) 2.07536 1.37555i 0.0806004 0.0534220i
\(664\) 0 0
\(665\) −4.86413 4.57217i −0.188623 0.177301i
\(666\) 0 0
\(667\) 25.8614 + 30.8204i 1.00136 + 1.19337i
\(668\) 0 0
\(669\) −21.4107 6.32735i −0.827787 0.244629i
\(670\) 0 0
\(671\) −8.94587 24.5786i −0.345351 0.948845i
\(672\) 0 0
\(673\) 23.8610 13.7761i 0.919773 0.531031i 0.0362101 0.999344i \(-0.488471\pi\)
0.883563 + 0.468313i \(0.155138\pi\)
\(674\) 0 0
\(675\) −11.3630 19.2066i −0.437361 0.739264i
\(676\) 0 0
\(677\) −7.78920 + 13.4913i −0.299363 + 0.518512i −0.975990 0.217814i \(-0.930108\pi\)
0.676627 + 0.736326i \(0.263441\pi\)
\(678\) 0 0
\(679\) 7.27846 1.28339i 0.279322 0.0492520i
\(680\) 0 0
\(681\) 33.5307 + 16.6912i 1.28490 + 0.639607i
\(682\) 0 0
\(683\) 8.29883 0.317546 0.158773 0.987315i \(-0.449246\pi\)
0.158773 + 0.987315i \(0.449246\pi\)
\(684\) 0 0
\(685\) −39.8709 −1.52339
\(686\) 0 0
\(687\) −16.1973 8.06280i −0.617964 0.307615i
\(688\) 0 0
\(689\) −11.9724 + 2.11106i −0.456113 + 0.0804251i
\(690\) 0 0
\(691\) 1.43902 2.49245i 0.0547428 0.0948173i −0.837355 0.546659i \(-0.815899\pi\)
0.892098 + 0.451842i \(0.149233\pi\)
\(692\) 0 0
\(693\) −3.58926 + 2.71186i −0.136345 + 0.103015i
\(694\) 0 0
\(695\) −35.6701 + 20.5941i −1.35304 + 0.781180i
\(696\) 0 0
\(697\) −2.05628 5.64959i −0.0778873 0.213994i
\(698\) 0 0
\(699\) 22.8965 + 6.76642i 0.866024 + 0.255929i
\(700\) 0 0
\(701\) −27.5980 32.8900i −1.04236 1.24224i −0.969550 0.244892i \(-0.921248\pi\)
−0.0728104 0.997346i \(-0.523197\pi\)
\(702\) 0 0
\(703\) 5.61363 + 2.40923i 0.211722 + 0.0908660i
\(704\) 0 0
\(705\) 10.7431 7.12053i 0.404608 0.268175i
\(706\) 0 0
\(707\) −2.14606 0.378408i −0.0807109 0.0142315i
\(708\) 0 0
\(709\) 5.43501 1.97818i 0.204116 0.0742922i −0.237939 0.971280i \(-0.576472\pi\)
0.442055 + 0.896988i \(0.354250\pi\)
\(710\) 0 0
\(711\) 2.60215 0.799178i 0.0975884 0.0299715i
\(712\) 0 0
\(713\) 28.4189 + 23.8463i 1.06430 + 0.893052i
\(714\) 0 0
\(715\) −8.40554 4.85294i −0.314349 0.181490i
\(716\) 0 0
\(717\) 33.4962 2.07009i 1.25094 0.0773090i
\(718\) 0 0
\(719\) −6.82611 + 18.7546i −0.254571 + 0.699428i 0.744908 + 0.667167i \(0.232493\pi\)
−0.999479 + 0.0322615i \(0.989729\pi\)
\(720\) 0 0
\(721\) 5.46797i 0.203638i
\(722\) 0 0
\(723\) 4.92645 43.4847i 0.183217 1.61721i
\(724\) 0 0
\(725\) 18.1088 + 6.59106i 0.672544 + 0.244786i
\(726\) 0 0
\(727\) −7.71938 43.7788i −0.286296 1.62367i −0.700619 0.713536i \(-0.747093\pi\)
0.414323 0.910130i \(-0.364018\pi\)
\(728\) 0 0
\(729\) −25.1696 + 9.77202i −0.932207 + 0.361927i
\(730\) 0 0
\(731\) 2.69162 3.20774i 0.0995530 0.118643i
\(732\) 0 0
\(733\) −20.5246 35.5497i −0.758094 1.31306i −0.943822 0.330455i \(-0.892798\pi\)
0.185728 0.982601i \(-0.440536\pi\)
\(734\) 0 0
\(735\) 8.34000 + 34.6416i 0.307625 + 1.27777i
\(736\) 0 0
\(737\) −5.59925 + 31.7549i −0.206251 + 1.16971i
\(738\) 0 0
\(739\) 16.8328 14.1244i 0.619203 0.519573i −0.278350 0.960480i \(-0.589787\pi\)
0.897553 + 0.440907i \(0.145343\pi\)
\(740\) 0 0
\(741\) −6.99478 3.98836i −0.256959 0.146516i
\(742\) 0 0
\(743\) 37.9084 31.8089i 1.39072 1.16696i 0.425678 0.904875i \(-0.360036\pi\)
0.965046 0.262081i \(-0.0844088\pi\)
\(744\) 0 0
\(745\) −10.7451 + 60.9385i −0.393670 + 2.23261i
\(746\) 0 0
\(747\) −2.64300 21.3015i −0.0967022 0.779382i
\(748\) 0 0
\(749\) 0.00364772 + 0.00631803i 0.000133285 + 0.000230856i
\(750\) 0 0
\(751\) −13.7962 + 16.4416i −0.503429 + 0.599964i −0.956580 0.291470i \(-0.905856\pi\)
0.453151 + 0.891434i \(0.350300\pi\)
\(752\) 0 0
\(753\) 26.0501 + 19.2504i 0.949318 + 0.701525i
\(754\) 0 0
\(755\) 12.4342 + 70.5178i 0.452527 + 2.56641i
\(756\) 0 0
\(757\) −42.8982 15.6137i −1.55916 0.567489i −0.588618 0.808411i \(-0.700328\pi\)
−0.970544 + 0.240922i \(0.922550\pi\)
\(758\) 0 0
\(759\) −46.0640 5.21867i −1.67202 0.189426i
\(760\) 0 0
\(761\) 39.4370i 1.42959i 0.699334 + 0.714795i \(0.253480\pi\)
−0.699334 + 0.714795i \(0.746520\pi\)
\(762\) 0 0
\(763\) −0.380387 + 1.04510i −0.0137709 + 0.0378353i
\(764\) 0 0
\(765\) 0.629534 12.3117i 0.0227608 0.445131i
\(766\) 0 0
\(767\) 10.3267 + 5.96211i 0.372875 + 0.215279i
\(768\) 0 0
\(769\) −12.0324 10.0964i −0.433900 0.364085i 0.399521 0.916724i \(-0.369176\pi\)
−0.833421 + 0.552639i \(0.813621\pi\)
\(770\) 0 0
\(771\) 5.61907 + 12.9005i 0.202366 + 0.464601i
\(772\) 0 0
\(773\) 30.7512 11.1925i 1.10604 0.402566i 0.276502 0.961013i \(-0.410825\pi\)
0.829540 + 0.558447i \(0.188603\pi\)
\(774\) 0 0
\(775\) 17.4995 + 3.08563i 0.628600 + 0.110839i
\(776\) 0 0
\(777\) 0.673665 + 1.01639i 0.0241676 + 0.0364629i
\(778\) 0 0
\(779\) −13.3165 + 14.1668i −0.477113 + 0.507579i
\(780\) 0 0
\(781\) 22.4062 + 26.7027i 0.801757 + 0.955497i
\(782\) 0 0
\(783\) 11.4425 20.3148i 0.408920 0.725991i
\(784\) 0 0
\(785\) −20.0637 55.1247i −0.716106 1.96748i
\(786\) 0 0
\(787\) −0.916770 + 0.529298i −0.0326793 + 0.0188674i −0.516251 0.856438i \(-0.672673\pi\)
0.483571 + 0.875305i \(0.339339\pi\)
\(788\) 0 0
\(789\) −12.6176 + 11.9889i −0.449198 + 0.426816i
\(790\) 0 0
\(791\) 0.577213 0.999762i 0.0205233 0.0355475i
\(792\) 0 0
\(793\) 9.20308 1.62275i 0.326811 0.0576256i
\(794\) 0 0
\(795\) −26.8238 + 53.8859i −0.951341 + 1.91114i
\(796\) 0 0
\(797\) 35.5116 1.25789 0.628944 0.777451i \(-0.283488\pi\)
0.628944 + 0.777451i \(0.283488\pi\)
\(798\) 0 0
\(799\) 3.28982 0.116385
\(800\) 0 0
\(801\) 36.8413 + 23.8585i 1.30172 + 0.842998i
\(802\) 0 0
\(803\) 29.5775 5.21531i 1.04377 0.184044i
\(804\) 0 0
\(805\) 6.86604 11.8923i 0.241996 0.419149i
\(806\) 0 0
\(807\) 4.86217 + 5.11714i 0.171157 + 0.180132i
\(808\) 0 0
\(809\) 7.36932 4.25468i 0.259091 0.149587i −0.364829 0.931075i \(-0.618872\pi\)
0.623920 + 0.781488i \(0.285539\pi\)
\(810\) 0 0
\(811\) 2.74045 + 7.52932i 0.0962302 + 0.264390i 0.978463 0.206424i \(-0.0661825\pi\)
−0.882232 + 0.470814i \(0.843960\pi\)
\(812\) 0 0
\(813\) 2.21953 7.51053i 0.0778422 0.263406i
\(814\) 0 0
\(815\) −35.9668 42.8636i −1.25986 1.50144i
\(816\) 0 0
\(817\) −13.1825 3.09869i −0.461198 0.108409i
\(818\) 0 0
\(819\) −0.731497 1.43114i −0.0255606 0.0500082i
\(820\) 0 0
\(821\) −3.69233 0.651058i −0.128863 0.0227221i 0.108844 0.994059i \(-0.465285\pi\)
−0.237708 + 0.971337i \(0.576396\pi\)
\(822\) 0 0
\(823\) −24.8907 + 9.05947i −0.867634 + 0.315793i −0.737209 0.675665i \(-0.763857\pi\)
−0.130426 + 0.991458i \(0.541634\pi\)
\(824\) 0 0
\(825\) −20.3577 + 8.86717i −0.708764 + 0.308715i
\(826\) 0 0
\(827\) 35.2983 + 29.6188i 1.22744 + 1.02995i 0.998401 + 0.0565290i \(0.0180033\pi\)
0.229041 + 0.973417i \(0.426441\pi\)
\(828\) 0 0
\(829\) 0.547722 + 0.316227i 0.0190232 + 0.0109830i 0.509481 0.860482i \(-0.329837\pi\)
−0.490458 + 0.871465i \(0.663171\pi\)
\(830\) 0 0
\(831\) −2.52965 40.9323i −0.0877525 1.41993i
\(832\) 0 0
\(833\) −3.11064 + 8.54643i −0.107777 + 0.296116i
\(834\) 0 0
\(835\) 17.6381i 0.610390i
\(836\) 0 0
\(837\) 7.13784 20.2795i 0.246720 0.700961i
\(838\) 0 0
\(839\) −27.7805 10.1113i −0.959090 0.349080i −0.185413 0.982661i \(-0.559362\pi\)
−0.773677 + 0.633580i \(0.781585\pi\)
\(840\) 0 0
\(841\) −1.53955 8.73124i −0.0530880 0.301077i
\(842\) 0 0
\(843\) −23.7729 + 32.1700i −0.818784 + 1.10800i
\(844\) 0 0
\(845\) −23.2469 + 27.7046i −0.799717 + 0.953066i
\(846\) 0 0
\(847\) −0.524806 0.908991i −0.0180326 0.0312333i
\(848\) 0 0
\(849\) 14.0347 3.37886i 0.481668 0.115962i
\(850\) 0 0
\(851\) −2.18206 + 12.3751i −0.0748000 + 0.424212i
\(852\) 0 0
\(853\) 17.3096 14.5245i 0.592669 0.497308i −0.296411 0.955060i \(-0.595790\pi\)
0.889080 + 0.457752i \(0.151345\pi\)
\(854\) 0 0
\(855\) −36.4643 + 16.1169i −1.24705 + 0.551187i
\(856\) 0 0
\(857\) 29.5954 24.8335i 1.01096 0.848297i 0.0224963 0.999747i \(-0.492839\pi\)
0.988465 + 0.151450i \(0.0483941\pi\)
\(858\) 0 0
\(859\) 4.80636 27.2582i 0.163991 0.930039i −0.786108 0.618090i \(-0.787907\pi\)
0.950099 0.311950i \(-0.100982\pi\)
\(860\) 0 0
\(861\) −3.77320 + 0.908403i −0.128590 + 0.0309583i
\(862\) 0 0
\(863\) 5.59402 + 9.68913i 0.190423 + 0.329822i 0.945390 0.325940i \(-0.105681\pi\)
−0.754968 + 0.655762i \(0.772347\pi\)
\(864\) 0 0
\(865\) 15.4349 18.3946i 0.524803 0.625436i
\(866\) 0 0
\(867\) −15.6293 + 21.1499i −0.530799 + 0.718289i
\(868\) 0 0
\(869\) −0.470335 2.66740i −0.0159550 0.0904854i
\(870\) 0 0
\(871\) −10.8257 3.94024i −0.366815 0.133510i
\(872\) 0 0
\(873\) 9.87415 43.0191i 0.334189 1.45598i
\(874\) 0 0
\(875\) 1.08009i 0.0365138i
\(876\) 0 0
\(877\) −9.82475 + 26.9933i −0.331758 + 0.911498i 0.655897 + 0.754851i \(0.272291\pi\)
−0.987655 + 0.156647i \(0.949931\pi\)
\(878\) 0 0
\(879\) 0.869242 + 14.0652i 0.0293188 + 0.474408i
\(880\) 0 0
\(881\) 9.40019 + 5.42720i 0.316700 + 0.182847i 0.649921 0.760002i \(-0.274802\pi\)
−0.333220 + 0.942849i \(0.608135\pi\)
\(882\) 0 0
\(883\) −14.2903 11.9910i −0.480906 0.403528i 0.369848 0.929092i \(-0.379410\pi\)
−0.850754 + 0.525564i \(0.823854\pi\)
\(884\) 0 0
\(885\) 54.1282 23.5765i 1.81950 0.792517i
\(886\) 0 0
\(887\) −4.51160 + 1.64209i −0.151485 + 0.0551359i −0.416650 0.909067i \(-0.636796\pi\)
0.265165 + 0.964203i \(0.414574\pi\)
\(888\) 0 0
\(889\) 5.80326 + 1.02327i 0.194635 + 0.0343194i
\(890\) 0 0
\(891\) 6.56562 + 26.0509i 0.219957 + 0.872737i
\(892\) 0 0
\(893\) −4.79230 9.49860i −0.160368 0.317859i
\(894\) 0 0
\(895\) −6.08866 7.25619i −0.203522 0.242548i
\(896\) 0 0
\(897\) 4.69409 15.8840i 0.156731 0.530353i
\(898\) 0 0
\(899\) 6.34970 + 17.4457i 0.211774 + 0.581845i
\(900\) 0 0
\(901\) −13.3059 + 7.68216i −0.443283 + 0.255930i
\(902\) 0 0
\(903\) −1.86193 1.95956i −0.0619610 0.0652102i
\(904\) 0 0
\(905\) 31.0223 53.7322i 1.03122 1.78612i
\(906\) 0 0
\(907\) −51.8502 + 9.14259i −1.72166 + 0.303575i −0.945175 0.326563i \(-0.894109\pi\)
−0.776483 + 0.630138i \(0.782998\pi\)
\(908\) 0 0
\(909\) −7.07408 + 10.9235i −0.234633 + 0.362310i
\(910\) 0 0
\(911\) −1.55433 −0.0514972 −0.0257486 0.999668i \(-0.508197\pi\)
−0.0257486 + 0.999668i \(0.508197\pi\)
\(912\) 0 0
\(913\) −21.3579 −0.706845
\(914\) 0 0
\(915\) 20.6192 41.4216i 0.681648 1.36935i
\(916\) 0 0
\(917\) 5.13521 0.905475i 0.169579 0.0299014i
\(918\) 0 0
\(919\) −18.3505 + 31.7840i −0.605327 + 1.04846i 0.386672 + 0.922217i \(0.373624\pi\)
−0.992000 + 0.126241i \(0.959709\pi\)
\(920\) 0 0
\(921\) −11.0511 + 10.5004i −0.364145 + 0.346001i
\(922\) 0 0
\(923\) −10.7856 + 6.22704i −0.355011 + 0.204966i
\(924\) 0 0
\(925\) 2.05858 + 5.65590i 0.0676857 + 0.185965i
\(926\) 0 0
\(927\) −30.0752 12.7210i −0.987798 0.417814i
\(928\) 0 0
\(929\) −15.9003 18.9493i −0.521673 0.621706i 0.439302 0.898339i \(-0.355226\pi\)
−0.960976 + 0.276633i \(0.910781\pi\)
\(930\) 0 0
\(931\) 29.2071 3.46834i 0.957225 0.113670i
\(932\) 0 0
\(933\) 3.18441 + 4.80448i 0.104253 + 0.157292i
\(934\) 0 0
\(935\) −12.0800 2.13004i −0.395060 0.0696597i
\(936\) 0 0
\(937\) −30.2959 + 11.0268i −0.989724 + 0.360230i −0.785613 0.618718i \(-0.787652\pi\)
−0.204110 + 0.978948i \(0.565430\pi\)
\(938\) 0 0
\(939\) −2.08009 4.77557i −0.0678811 0.155845i
\(940\) 0 0
\(941\) 36.5786 + 30.6931i 1.19243 + 1.00057i 0.999814 + 0.0192917i \(0.00614113\pi\)
0.192614 + 0.981275i \(0.438303\pi\)
\(942\) 0 0
\(943\) −34.6365 19.9974i −1.12792 0.651205i
\(944\) 0 0
\(945\) −7.85128 1.29846i −0.255402 0.0422390i
\(946\) 0 0
\(947\) 12.4715 34.2652i 0.405270 1.11347i −0.554378 0.832265i \(-0.687044\pi\)
0.959648 0.281205i \(-0.0907340\pi\)
\(948\) 0 0
\(949\) 10.7305i 0.348328i
\(950\) 0 0
\(951\) 18.0898 + 2.04942i 0.586601 + 0.0664569i
\(952\) 0 0
\(953\) −35.9606 13.0886i −1.16488 0.423981i −0.314041 0.949409i \(-0.601683\pi\)
−0.850838 + 0.525428i \(0.823905\pi\)
\(954\) 0 0
\(955\) 2.25225 + 12.7731i 0.0728810 + 0.413329i
\(956\) 0 0
\(957\) −18.6579 13.7877i −0.603123 0.445694i
\(958\) 0 0
\(959\) −4.22283 + 5.03257i −0.136362 + 0.162510i
\(960\) 0 0
\(961\) −6.94064 12.0215i −0.223892 0.387792i
\(962\) 0 0
\(963\) 0.0432370 0.00536465i 0.00139329 0.000172874i
\(964\) 0 0
\(965\) −10.4260 + 59.1291i −0.335626 + 1.90343i
\(966\) 0 0
\(967\) 8.52174 7.15059i 0.274041 0.229947i −0.495401 0.868664i \(-0.664979\pi\)
0.769442 + 0.638717i \(0.220534\pi\)
\(968\) 0 0
\(969\) −10.0309 1.71307i −0.322240 0.0550317i
\(970\) 0 0
\(971\) −12.1336 + 10.1813i −0.389386 + 0.326734i −0.816374 0.577524i \(-0.804019\pi\)
0.426988 + 0.904257i \(0.359575\pi\)
\(972\) 0 0
\(973\) −1.17848 + 6.68352i −0.0377805 + 0.214264i
\(974\) 0 0
\(975\) −1.85693 7.71307i −0.0594694 0.247016i
\(976\) 0 0
\(977\) 4.12154 + 7.13872i 0.131860 + 0.228388i 0.924393 0.381440i \(-0.124572\pi\)
−0.792534 + 0.609828i \(0.791238\pi\)
\(978\) 0 0
\(979\) 28.0727 33.4557i 0.897207 1.06925i
\(980\) 0 0
\(981\) 4.86338 + 4.52363i 0.155276 + 0.144428i
\(982\) 0 0
\(983\) −3.81477 21.6346i −0.121672 0.690037i −0.983229 0.182376i \(-0.941621\pi\)
0.861557 0.507661i \(-0.169490\pi\)
\(984\) 0 0
\(985\) −54.2385 19.7412i −1.72818 0.629006i
\(986\) 0 0
\(987\) 0.239064 2.11017i 0.00760950 0.0671673i
\(988\) 0 0
\(989\) 27.8560i 0.885768i
\(990\) 0 0
\(991\) −8.41455 + 23.1188i −0.267297 + 0.734393i 0.731331 + 0.682023i \(0.238900\pi\)
−0.998628 + 0.0523696i \(0.983323\pi\)
\(992\) 0 0
\(993\) −24.3567 + 1.50526i −0.772937 + 0.0477681i
\(994\) 0 0
\(995\) −26.0023 15.0124i −0.824329 0.475927i
\(996\) 0 0
\(997\) 13.6792 + 11.4782i 0.433225 + 0.363519i 0.833167 0.553022i \(-0.186525\pi\)
−0.399942 + 0.916540i \(0.630970\pi\)
\(998\) 0 0
\(999\) 7.15767 1.34072i 0.226459 0.0424185i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 456.2.bm.b.89.1 yes 60
3.2 odd 2 456.2.bm.a.89.9 yes 60
4.3 odd 2 912.2.cc.g.545.10 60
12.11 even 2 912.2.cc.h.545.2 60
19.3 odd 18 456.2.bm.a.41.9 60
57.41 even 18 inner 456.2.bm.b.41.1 yes 60
76.3 even 18 912.2.cc.h.497.2 60
228.155 odd 18 912.2.cc.g.497.10 60
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
456.2.bm.a.41.9 60 19.3 odd 18
456.2.bm.a.89.9 yes 60 3.2 odd 2
456.2.bm.b.41.1 yes 60 57.41 even 18 inner
456.2.bm.b.89.1 yes 60 1.1 even 1 trivial
912.2.cc.g.497.10 60 228.155 odd 18
912.2.cc.g.545.10 60 4.3 odd 2
912.2.cc.h.497.2 60 76.3 even 18
912.2.cc.h.545.2 60 12.11 even 2