Properties

Label 456.2.bm
Level $456$
Weight $2$
Character orbit 456.bm
Rep. character $\chi_{456}(41,\cdot)$
Character field $\Q(\zeta_{18})$
Dimension $120$
Newform subspaces $2$
Sturm bound $160$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 456 = 2^{3} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 456.bm (of order \(18\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 57 \)
Character field: \(\Q(\zeta_{18})\)
Newform subspaces: \( 2 \)
Sturm bound: \(160\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(456, [\chi])\).

Total New Old
Modular forms 528 120 408
Cusp forms 432 120 312
Eisenstein series 96 0 96

Trace form

\( 120 q - 3 q^{3} - 9 q^{9} + 6 q^{13} - 12 q^{15} + 6 q^{19} + 12 q^{25} + 9 q^{27} + 45 q^{33} + 36 q^{39} - 42 q^{43} + 18 q^{45} - 60 q^{49} + 27 q^{51} + 36 q^{55} + 24 q^{57} - 12 q^{61} + 54 q^{63}+ \cdots - 42 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(456, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
456.2.bm.a 456.bm 57.j $60$ $3.641$ None 456.2.bm.a \(0\) \(-3\) \(0\) \(0\) $\mathrm{SU}(2)[C_{18}]$
456.2.bm.b 456.bm 57.j $60$ $3.641$ None 456.2.bm.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{18}]$

Decomposition of \(S_{2}^{\mathrm{old}}(456, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(456, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(57, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(114, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(228, [\chi])\)\(^{\oplus 2}\)