Defining parameters
Level: | \( N \) | \(=\) | \( 456 = 2^{3} \cdot 3 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 456.bm (of order \(18\) and degree \(6\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 57 \) |
Character field: | \(\Q(\zeta_{18})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(160\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(456, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 528 | 120 | 408 |
Cusp forms | 432 | 120 | 312 |
Eisenstein series | 96 | 0 | 96 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(456, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
456.2.bm.a | $60$ | $3.641$ | None | \(0\) | \(-3\) | \(0\) | \(0\) | ||
456.2.bm.b | $60$ | $3.641$ | None | \(0\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(456, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(456, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(57, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(114, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(228, [\chi])\)\(^{\oplus 2}\)