Properties

Label 450.8.a.bi
Level $450$
Weight $8$
Character orbit 450.a
Self dual yes
Analytic conductor $140.573$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [450,8,Mod(1,450)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(450, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 8, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("450.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Level: \( N \) \(=\) \( 450 = 2 \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 450.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,16,0,128,0,0,-408] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(140.573261468\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{31}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 31 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2\cdot 5 \)
Twist minimal: no (minimal twist has level 10)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 10\sqrt{31}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 8 q^{2} + 64 q^{4} + (7 \beta - 204) q^{7} + 512 q^{8} + (16 \beta - 4452) q^{11} + (78 \beta + 1752) q^{13} + (56 \beta - 1632) q^{14} + 4096 q^{16} + ( - 168 \beta + 21824) q^{17} + ( - 624 \beta - 15900) q^{19}+ \cdots + ( - 22848 \beta - 5040216) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 16 q^{2} + 128 q^{4} - 408 q^{7} + 1024 q^{8} - 8904 q^{11} + 3504 q^{13} - 3264 q^{14} + 8192 q^{16} + 43648 q^{17} - 31800 q^{19} - 71232 q^{22} + 71656 q^{23} + 28032 q^{26} - 26112 q^{28} + 84780 q^{29}+ \cdots - 10080432 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−5.56776
5.56776
8.00000 0 64.0000 0 0 −593.744 512.000 0 0
1.2 8.00000 0 64.0000 0 0 185.744 512.000 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(5\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 450.8.a.bi 2
3.b odd 2 1 50.8.a.i 2
5.b even 2 1 450.8.a.bd 2
5.c odd 4 2 90.8.c.c 4
12.b even 2 1 400.8.a.bf 2
15.d odd 2 1 50.8.a.j 2
15.e even 4 2 10.8.b.a 4
60.h even 2 1 400.8.a.t 2
60.l odd 4 2 80.8.c.d 4
120.q odd 4 2 320.8.c.g 4
120.w even 4 2 320.8.c.f 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
10.8.b.a 4 15.e even 4 2
50.8.a.i 2 3.b odd 2 1
50.8.a.j 2 15.d odd 2 1
80.8.c.d 4 60.l odd 4 2
90.8.c.c 4 5.c odd 4 2
320.8.c.f 4 120.w even 4 2
320.8.c.g 4 120.q odd 4 2
400.8.a.t 2 60.h even 2 1
400.8.a.bf 2 12.b even 2 1
450.8.a.bd 2 5.b even 2 1
450.8.a.bi 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(450))\):

\( T_{7}^{2} + 408T_{7} - 110284 \) Copy content Toggle raw display
\( T_{11}^{2} + 8904T_{11} + 19026704 \) Copy content Toggle raw display
\( T_{17}^{2} - 43648T_{17} + 388792576 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 8)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 408T - 110284 \) Copy content Toggle raw display
$11$ \( T^{2} + 8904 T + 19026704 \) Copy content Toggle raw display
$13$ \( T^{2} - 3504 T - 15790896 \) Copy content Toggle raw display
$17$ \( T^{2} - 43648 T + 388792576 \) Copy content Toggle raw display
$19$ \( T^{2} + 31800 T - 954255600 \) Copy content Toggle raw display
$23$ \( T^{2} - 71656 T - 950837516 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots - 19030326300 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots + 4879504384 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots - 51511044784 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots - 183681487516 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots + 17685717524 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots - 599256039404 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots + 504522481104 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots - 159475001200 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots + 1716951910564 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots - 2422233726604 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots - 4934358737856 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots + 296239095104 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots - 3963839328000 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots - 36935334540236 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 66278240560100 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots - 1192948931584 \) Copy content Toggle raw display
show more
show less