Properties

Label 2-450-1.1-c7-0-49
Degree $2$
Conductor $450$
Sign $-1$
Analytic cond. $140.573$
Root an. cond. $11.8563$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·2-s + 64·4-s + 185.·7-s + 512·8-s − 3.56e3·11-s + 6.09e3·13-s + 1.48e3·14-s + 4.09e3·16-s + 1.24e4·17-s − 5.06e4·19-s − 2.84e4·22-s − 1.14e4·23-s + 4.87e4·26-s + 1.18e4·28-s − 1.01e5·29-s − 2.90e4·31-s + 3.27e4·32-s + 9.97e4·34-s + 1.49e5·37-s − 4.05e5·38-s + 3.74e5·41-s − 1.74e5·43-s − 2.27e5·44-s − 9.15e4·46-s + 4.28e5·47-s − 7.89e5·49-s + 3.90e5·52-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.5·4-s + 0.204·7-s + 0.353·8-s − 0.806·11-s + 0.769·13-s + 0.144·14-s + 0.250·16-s + 0.615·17-s − 1.69·19-s − 0.570·22-s − 0.196·23-s + 0.544·26-s + 0.102·28-s − 0.776·29-s − 0.175·31-s + 0.176·32-s + 0.435·34-s + 0.484·37-s − 1.19·38-s + 0.848·41-s − 0.334·43-s − 0.403·44-s − 0.138·46-s + 0.601·47-s − 0.958·49-s + 0.384·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 450 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 450 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(450\)    =    \(2 \cdot 3^{2} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(140.573\)
Root analytic conductor: \(11.8563\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 450,\ (\ :7/2),\ -1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 8T \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 - 185.T + 8.23e5T^{2} \)
11 \( 1 + 3.56e3T + 1.94e7T^{2} \)
13 \( 1 - 6.09e3T + 6.27e7T^{2} \)
17 \( 1 - 1.24e4T + 4.10e8T^{2} \)
19 \( 1 + 5.06e4T + 8.93e8T^{2} \)
23 \( 1 + 1.14e4T + 3.40e9T^{2} \)
29 \( 1 + 1.01e5T + 1.72e10T^{2} \)
31 \( 1 + 2.90e4T + 2.75e10T^{2} \)
37 \( 1 - 1.49e5T + 9.49e10T^{2} \)
41 \( 1 - 3.74e5T + 1.94e11T^{2} \)
43 \( 1 + 1.74e5T + 2.71e11T^{2} \)
47 \( 1 - 4.28e5T + 5.06e11T^{2} \)
53 \( 1 + 1.71e6T + 1.17e12T^{2} \)
59 \( 1 + 1.34e5T + 2.48e12T^{2} \)
61 \( 1 + 1.39e6T + 3.14e12T^{2} \)
67 \( 1 + 2.60e6T + 6.06e12T^{2} \)
71 \( 1 - 4.91e6T + 9.09e12T^{2} \)
73 \( 1 + 1.19e5T + 1.10e13T^{2} \)
79 \( 1 + 4.70e6T + 1.92e13T^{2} \)
83 \( 1 - 9.19e6T + 2.71e13T^{2} \)
89 \( 1 + 6.43e6T + 4.42e13T^{2} \)
97 \( 1 + 1.26e7T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.561215876394600424421358741446, −8.374146497875781960296678004949, −7.66252878688094910152667771158, −6.45860136924397388092003986044, −5.70054225728703442163803236721, −4.65379503698302706851937841161, −3.71321474091213529429111589498, −2.57903430492260954369627349893, −1.50053354951703354754029326458, 0, 1.50053354951703354754029326458, 2.57903430492260954369627349893, 3.71321474091213529429111589498, 4.65379503698302706851937841161, 5.70054225728703442163803236721, 6.45860136924397388092003986044, 7.66252878688094910152667771158, 8.374146497875781960296678004949, 9.561215876394600424421358741446

Graph of the $Z$-function along the critical line