Newspace parameters
Level: | \( N \) | \(=\) | \( 450 = 2 \cdot 3^{2} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 450.b (of order \(2\), degree \(1\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(12.2616118962\) |
Analytic rank: | \(0\) |
Dimension: | \(4\) |
Coefficient field: | \(\Q(\zeta_{8})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{4} + 1 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{29}]\) |
Coefficient ring index: | \( 2^{2} \) |
Twist minimal: | no (minimal twist has level 18) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring
\(\beta_{1}\) | \(=\) |
\( 2\zeta_{8}^{2} \)
|
\(\beta_{2}\) | \(=\) |
\( \zeta_{8}^{3} + \zeta_{8} \)
|
\(\beta_{3}\) | \(=\) |
\( -\zeta_{8}^{3} + \zeta_{8} \)
|
\(\zeta_{8}\) | \(=\) |
\( ( \beta_{3} + \beta_{2} ) / 2 \)
|
\(\zeta_{8}^{2}\) | \(=\) |
\( ( \beta_1 ) / 2 \)
|
\(\zeta_{8}^{3}\) | \(=\) |
\( ( -\beta_{3} + \beta_{2} ) / 2 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/450\mathbb{Z}\right)^\times\).
\(n\) | \(101\) | \(127\) |
\(\chi(n)\) | \(-1\) | \(-1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
449.1 |
|
−1.41421 | 0 | 2.00000 | 0 | 0 | − | 4.00000i | −2.82843 | 0 | 0 | |||||||||||||||||||||||||||||
449.2 | −1.41421 | 0 | 2.00000 | 0 | 0 | 4.00000i | −2.82843 | 0 | 0 | |||||||||||||||||||||||||||||||
449.3 | 1.41421 | 0 | 2.00000 | 0 | 0 | − | 4.00000i | 2.82843 | 0 | 0 | ||||||||||||||||||||||||||||||
449.4 | 1.41421 | 0 | 2.00000 | 0 | 0 | 4.00000i | 2.82843 | 0 | 0 | |||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
5.b | even | 2 | 1 | inner |
15.d | odd | 2 | 1 | inner |
Twists
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{7}^{2} + 16 \)
acting on \(S_{3}^{\mathrm{new}}(450, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( (T^{2} - 2)^{2} \)
$3$
\( T^{4} \)
$5$
\( T^{4} \)
$7$
\( (T^{2} + 16)^{2} \)
$11$
\( (T^{2} + 288)^{2} \)
$13$
\( (T^{2} + 64)^{2} \)
$17$
\( (T^{2} - 162)^{2} \)
$19$
\( (T - 16)^{4} \)
$23$
\( (T^{2} - 288)^{2} \)
$29$
\( (T^{2} + 18)^{2} \)
$31$
\( (T - 44)^{4} \)
$37$
\( (T^{2} + 1156)^{2} \)
$41$
\( (T^{2} + 2178)^{2} \)
$43$
\( (T^{2} + 1600)^{2} \)
$47$
\( (T^{2} - 7200)^{2} \)
$53$
\( (T^{2} - 1458)^{2} \)
$59$
\( (T^{2} + 1152)^{2} \)
$61$
\( (T - 50)^{4} \)
$67$
\( (T^{2} + 64)^{2} \)
$71$
\( (T^{2} + 2592)^{2} \)
$73$
\( (T^{2} + 256)^{2} \)
$79$
\( (T - 76)^{4} \)
$83$
\( (T^{2} - 14112)^{2} \)
$89$
\( (T^{2} + 162)^{2} \)
$97$
\( (T^{2} + 30976)^{2} \)
show more
show less