Properties

Label 448.2.ba.c.177.6
Level $448$
Weight $2$
Character 448.177
Analytic conductor $3.577$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [448,2,Mod(81,448)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(448, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 9, 8])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("448.81"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 448 = 2^{6} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 448.ba (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.57729801055\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(12\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 112)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 177.6
Character \(\chi\) \(=\) 448.177
Dual form 448.2.ba.c.81.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.827840 - 0.221819i) q^{3} +(4.10878 - 1.10095i) q^{5} +(2.50325 - 0.856573i) q^{7} +(-1.96196 - 1.13274i) q^{9} +(0.318576 - 1.18894i) q^{11} +(-1.73092 + 1.73092i) q^{13} -3.64563 q^{15} +(-0.931914 - 1.61412i) q^{17} +(0.989804 + 3.69400i) q^{19} +(-2.26230 + 0.153836i) q^{21} +(-1.23305 - 0.711901i) q^{23} +(11.3399 - 6.54709i) q^{25} +(3.19099 + 3.19099i) q^{27} +(-0.181826 + 0.181826i) q^{29} +(-3.23200 - 5.59799i) q^{31} +(-0.527459 + 0.913587i) q^{33} +(9.34229 - 6.27542i) q^{35} +(0.238000 - 0.0637719i) q^{37} +(1.81687 - 1.04897i) q^{39} +0.440182i q^{41} +(5.54503 + 5.54503i) q^{43} +(-9.30835 - 2.49417i) q^{45} +(3.61427 - 6.26009i) q^{47} +(5.53257 - 4.28844i) q^{49} +(0.413433 + 1.54295i) q^{51} +(-2.59716 + 9.69274i) q^{53} -5.23583i q^{55} -3.27760i q^{57} +(0.438601 - 1.63688i) q^{59} +(2.41596 + 9.01647i) q^{61} +(-5.88156 - 1.15497i) q^{63} +(-5.20632 + 9.01761i) q^{65} +(-9.59422 - 2.57076i) q^{67} +(0.862854 + 0.862854i) q^{69} +11.2912i q^{71} +(-8.13092 + 4.69439i) q^{73} +(-10.8399 + 2.90454i) q^{75} +(-0.220938 - 3.24910i) q^{77} +(-6.52948 + 11.3094i) q^{79} +(1.46441 + 2.53643i) q^{81} +(3.06926 - 3.06926i) q^{83} +(-5.60609 - 5.60609i) q^{85} +(0.190855 - 0.110190i) q^{87} +(-5.66084 - 3.26829i) q^{89} +(-2.85027 + 5.81558i) q^{91} +(1.43384 + 5.35117i) q^{93} +(8.13378 + 14.0881i) q^{95} +1.70409 q^{97} +(-1.97179 + 1.97179i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 4 q^{5} + 4 q^{11} - 24 q^{13} + 40 q^{15} + 8 q^{17} + 4 q^{19} - 8 q^{21} + 24 q^{27} + 24 q^{29} - 28 q^{31} + 16 q^{33} - 28 q^{35} - 24 q^{37} + 40 q^{43} - 28 q^{45} + 20 q^{47} - 24 q^{51}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/448\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(197\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.827840 0.221819i −0.477954 0.128067i 0.0117959 0.999930i \(-0.496245\pi\)
−0.489750 + 0.871863i \(0.662912\pi\)
\(4\) 0 0
\(5\) 4.10878 1.10095i 1.83750 0.492358i 0.838857 0.544352i \(-0.183225\pi\)
0.998647 + 0.0519945i \(0.0165578\pi\)
\(6\) 0 0
\(7\) 2.50325 0.856573i 0.946141 0.323754i
\(8\) 0 0
\(9\) −1.96196 1.13274i −0.653987 0.377579i
\(10\) 0 0
\(11\) 0.318576 1.18894i 0.0960542 0.358479i −0.901123 0.433564i \(-0.857256\pi\)
0.997177 + 0.0750845i \(0.0239226\pi\)
\(12\) 0 0
\(13\) −1.73092 + 1.73092i −0.480070 + 0.480070i −0.905154 0.425084i \(-0.860245\pi\)
0.425084 + 0.905154i \(0.360245\pi\)
\(14\) 0 0
\(15\) −3.64563 −0.941297
\(16\) 0 0
\(17\) −0.931914 1.61412i −0.226022 0.391482i 0.730603 0.682802i \(-0.239239\pi\)
−0.956626 + 0.291320i \(0.905906\pi\)
\(18\) 0 0
\(19\) 0.989804 + 3.69400i 0.227077 + 0.847462i 0.981562 + 0.191145i \(0.0612199\pi\)
−0.754485 + 0.656317i \(0.772113\pi\)
\(20\) 0 0
\(21\) −2.26230 + 0.153836i −0.493674 + 0.0335697i
\(22\) 0 0
\(23\) −1.23305 0.711901i −0.257108 0.148442i 0.365906 0.930652i \(-0.380759\pi\)
−0.623015 + 0.782210i \(0.714092\pi\)
\(24\) 0 0
\(25\) 11.3399 6.54709i 2.26798 1.30942i
\(26\) 0 0
\(27\) 3.19099 + 3.19099i 0.614106 + 0.614106i
\(28\) 0 0
\(29\) −0.181826 + 0.181826i −0.0337642 + 0.0337642i −0.723787 0.690023i \(-0.757600\pi\)
0.690023 + 0.723787i \(0.257600\pi\)
\(30\) 0 0
\(31\) −3.23200 5.59799i −0.580485 1.00543i −0.995422 0.0955792i \(-0.969530\pi\)
0.414937 0.909850i \(-0.363804\pi\)
\(32\) 0 0
\(33\) −0.527459 + 0.913587i −0.0918189 + 0.159035i
\(34\) 0 0
\(35\) 9.34229 6.27542i 1.57914 1.06074i
\(36\) 0 0
\(37\) 0.238000 0.0637719i 0.0391269 0.0104840i −0.239202 0.970970i \(-0.576886\pi\)
0.278329 + 0.960486i \(0.410219\pi\)
\(38\) 0 0
\(39\) 1.81687 1.04897i 0.290933 0.167970i
\(40\) 0 0
\(41\) 0.440182i 0.0687448i 0.999409 + 0.0343724i \(0.0109432\pi\)
−0.999409 + 0.0343724i \(0.989057\pi\)
\(42\) 0 0
\(43\) 5.54503 + 5.54503i 0.845609 + 0.845609i 0.989582 0.143972i \(-0.0459877\pi\)
−0.143972 + 0.989582i \(0.545988\pi\)
\(44\) 0 0
\(45\) −9.30835 2.49417i −1.38761 0.371808i
\(46\) 0 0
\(47\) 3.61427 6.26009i 0.527195 0.913128i −0.472303 0.881436i \(-0.656577\pi\)
0.999498 0.0316918i \(-0.0100895\pi\)
\(48\) 0 0
\(49\) 5.53257 4.28844i 0.790366 0.612634i
\(50\) 0 0
\(51\) 0.413433 + 1.54295i 0.0578921 + 0.216056i
\(52\) 0 0
\(53\) −2.59716 + 9.69274i −0.356747 + 1.33140i 0.521524 + 0.853237i \(0.325364\pi\)
−0.878271 + 0.478163i \(0.841303\pi\)
\(54\) 0 0
\(55\) 5.23583i 0.706000i
\(56\) 0 0
\(57\) 3.27760i 0.434129i
\(58\) 0 0
\(59\) 0.438601 1.63688i 0.0571010 0.213104i −0.931480 0.363791i \(-0.881482\pi\)
0.988581 + 0.150688i \(0.0481488\pi\)
\(60\) 0 0
\(61\) 2.41596 + 9.01647i 0.309331 + 1.15444i 0.929152 + 0.369697i \(0.120539\pi\)
−0.619821 + 0.784743i \(0.712795\pi\)
\(62\) 0 0
\(63\) −5.88156 1.15497i −0.741007 0.145513i
\(64\) 0 0
\(65\) −5.20632 + 9.01761i −0.645765 + 1.11850i
\(66\) 0 0
\(67\) −9.59422 2.57076i −1.17212 0.314069i −0.380324 0.924853i \(-0.624187\pi\)
−0.791797 + 0.610785i \(0.790854\pi\)
\(68\) 0 0
\(69\) 0.862854 + 0.862854i 0.103875 + 0.103875i
\(70\) 0 0
\(71\) 11.2912i 1.34002i 0.742352 + 0.670010i \(0.233710\pi\)
−0.742352 + 0.670010i \(0.766290\pi\)
\(72\) 0 0
\(73\) −8.13092 + 4.69439i −0.951652 + 0.549437i −0.893594 0.448877i \(-0.851824\pi\)
−0.0580583 + 0.998313i \(0.518491\pi\)
\(74\) 0 0
\(75\) −10.8399 + 2.90454i −1.25168 + 0.335388i
\(76\) 0 0
\(77\) −0.220938 3.24910i −0.0251783 0.370270i
\(78\) 0 0
\(79\) −6.52948 + 11.3094i −0.734624 + 1.27241i 0.220264 + 0.975440i \(0.429308\pi\)
−0.954888 + 0.296966i \(0.904025\pi\)
\(80\) 0 0
\(81\) 1.46441 + 2.53643i 0.162712 + 0.281825i
\(82\) 0 0
\(83\) 3.06926 3.06926i 0.336895 0.336895i −0.518302 0.855198i \(-0.673436\pi\)
0.855198 + 0.518302i \(0.173436\pi\)
\(84\) 0 0
\(85\) −5.60609 5.60609i −0.608066 0.608066i
\(86\) 0 0
\(87\) 0.190855 0.110190i 0.0204618 0.0118137i
\(88\) 0 0
\(89\) −5.66084 3.26829i −0.600047 0.346438i 0.169013 0.985614i \(-0.445942\pi\)
−0.769060 + 0.639176i \(0.779275\pi\)
\(90\) 0 0
\(91\) −2.85027 + 5.81558i −0.298789 + 0.609639i
\(92\) 0 0
\(93\) 1.43384 + 5.35117i 0.148682 + 0.554890i
\(94\) 0 0
\(95\) 8.13378 + 14.0881i 0.834508 + 1.44541i
\(96\) 0 0
\(97\) 1.70409 0.173024 0.0865122 0.996251i \(-0.472428\pi\)
0.0865122 + 0.996251i \(0.472428\pi\)
\(98\) 0 0
\(99\) −1.97179 + 1.97179i −0.198172 + 0.198172i
\(100\) 0 0
\(101\) 0.632838 2.36178i 0.0629697 0.235006i −0.927267 0.374400i \(-0.877849\pi\)
0.990237 + 0.139394i \(0.0445154\pi\)
\(102\) 0 0
\(103\) −12.6328 7.29353i −1.24474 0.718653i −0.274687 0.961534i \(-0.588574\pi\)
−0.970056 + 0.242881i \(0.921908\pi\)
\(104\) 0 0
\(105\) −9.12593 + 3.12275i −0.890600 + 0.304749i
\(106\) 0 0
\(107\) 4.80256 1.28684i 0.464281 0.124404i −0.0190927 0.999818i \(-0.506078\pi\)
0.483374 + 0.875414i \(0.339411\pi\)
\(108\) 0 0
\(109\) −9.76613 2.61683i −0.935426 0.250647i −0.241259 0.970461i \(-0.577560\pi\)
−0.694167 + 0.719814i \(0.744227\pi\)
\(110\) 0 0
\(111\) −0.211172 −0.0200435
\(112\) 0 0
\(113\) 5.22780 0.491791 0.245895 0.969296i \(-0.420918\pi\)
0.245895 + 0.969296i \(0.420918\pi\)
\(114\) 0 0
\(115\) −5.85009 1.56753i −0.545524 0.146173i
\(116\) 0 0
\(117\) 5.35667 1.43532i 0.495224 0.132695i
\(118\) 0 0
\(119\) −3.71543 3.24230i −0.340593 0.297222i
\(120\) 0 0
\(121\) 8.21419 + 4.74247i 0.746745 + 0.431133i
\(122\) 0 0
\(123\) 0.0976407 0.364400i 0.00880396 0.0328568i
\(124\) 0 0
\(125\) 24.3460 24.3460i 2.17757 2.17757i
\(126\) 0 0
\(127\) 1.20463 0.106893 0.0534467 0.998571i \(-0.482979\pi\)
0.0534467 + 0.998571i \(0.482979\pi\)
\(128\) 0 0
\(129\) −3.36041 5.82039i −0.295867 0.512457i
\(130\) 0 0
\(131\) 0.809509 + 3.02113i 0.0707272 + 0.263957i 0.992231 0.124413i \(-0.0397048\pi\)
−0.921503 + 0.388370i \(0.873038\pi\)
\(132\) 0 0
\(133\) 5.64191 + 8.39918i 0.489216 + 0.728301i
\(134\) 0 0
\(135\) 16.6242 + 9.59798i 1.43078 + 0.826063i
\(136\) 0 0
\(137\) 0.286357 0.165329i 0.0244652 0.0141250i −0.487718 0.873001i \(-0.662170\pi\)
0.512183 + 0.858877i \(0.328837\pi\)
\(138\) 0 0
\(139\) 2.41295 + 2.41295i 0.204663 + 0.204663i 0.801995 0.597331i \(-0.203772\pi\)
−0.597331 + 0.801995i \(0.703772\pi\)
\(140\) 0 0
\(141\) −4.38064 + 4.38064i −0.368917 + 0.368917i
\(142\) 0 0
\(143\) 1.50653 + 2.60939i 0.125982 + 0.218208i
\(144\) 0 0
\(145\) −0.546903 + 0.947264i −0.0454179 + 0.0786660i
\(146\) 0 0
\(147\) −5.53134 + 2.32291i −0.456217 + 0.191591i
\(148\) 0 0
\(149\) −2.36381 + 0.633381i −0.193651 + 0.0518886i −0.354341 0.935116i \(-0.615295\pi\)
0.160690 + 0.987005i \(0.448628\pi\)
\(150\) 0 0
\(151\) −11.4320 + 6.60029i −0.930326 + 0.537124i −0.886915 0.461934i \(-0.847156\pi\)
−0.0434110 + 0.999057i \(0.513823\pi\)
\(152\) 0 0
\(153\) 4.22246i 0.341365i
\(154\) 0 0
\(155\) −19.4427 19.4427i −1.56167 1.56167i
\(156\) 0 0
\(157\) −3.45433 0.925585i −0.275685 0.0738697i 0.118327 0.992975i \(-0.462247\pi\)
−0.394013 + 0.919105i \(0.628913\pi\)
\(158\) 0 0
\(159\) 4.30007 7.44794i 0.341018 0.590660i
\(160\) 0 0
\(161\) −3.69643 0.725873i −0.291319 0.0572068i
\(162\) 0 0
\(163\) 2.90781 + 10.8521i 0.227757 + 0.850001i 0.981281 + 0.192581i \(0.0616857\pi\)
−0.753524 + 0.657420i \(0.771648\pi\)
\(164\) 0 0
\(165\) −1.16141 + 4.33443i −0.0904155 + 0.337435i
\(166\) 0 0
\(167\) 11.7171i 0.906693i −0.891334 0.453346i \(-0.850230\pi\)
0.891334 0.453346i \(-0.149770\pi\)
\(168\) 0 0
\(169\) 7.00785i 0.539065i
\(170\) 0 0
\(171\) 2.24238 8.36867i 0.171479 0.639968i
\(172\) 0 0
\(173\) 2.83415 + 10.5772i 0.215476 + 0.804169i 0.985998 + 0.166755i \(0.0533290\pi\)
−0.770522 + 0.637413i \(0.780004\pi\)
\(174\) 0 0
\(175\) 22.7786 26.1025i 1.72190 1.97316i
\(176\) 0 0
\(177\) −0.726183 + 1.25779i −0.0545833 + 0.0945410i
\(178\) 0 0
\(179\) 16.1464 + 4.32641i 1.20684 + 0.323371i 0.805520 0.592568i \(-0.201886\pi\)
0.401317 + 0.915939i \(0.368553\pi\)
\(180\) 0 0
\(181\) −15.9791 15.9791i −1.18772 1.18772i −0.977696 0.210025i \(-0.932646\pi\)
−0.210025 0.977696i \(-0.567354\pi\)
\(182\) 0 0
\(183\) 8.00010i 0.591385i
\(184\) 0 0
\(185\) 0.907680 0.524050i 0.0667340 0.0385289i
\(186\) 0 0
\(187\) −2.21598 + 0.593770i −0.162048 + 0.0434208i
\(188\) 0 0
\(189\) 10.7212 + 5.25454i 0.779851 + 0.382212i
\(190\) 0 0
\(191\) −4.97963 + 8.62497i −0.360313 + 0.624081i −0.988012 0.154375i \(-0.950664\pi\)
0.627699 + 0.778456i \(0.283997\pi\)
\(192\) 0 0
\(193\) −4.02312 6.96824i −0.289590 0.501585i 0.684122 0.729368i \(-0.260186\pi\)
−0.973712 + 0.227783i \(0.926852\pi\)
\(194\) 0 0
\(195\) 6.31028 6.31028i 0.451889 0.451889i
\(196\) 0 0
\(197\) 6.01951 + 6.01951i 0.428873 + 0.428873i 0.888244 0.459372i \(-0.151925\pi\)
−0.459372 + 0.888244i \(0.651925\pi\)
\(198\) 0 0
\(199\) −12.7812 + 7.37922i −0.906035 + 0.523099i −0.879153 0.476539i \(-0.841891\pi\)
−0.0268814 + 0.999639i \(0.508558\pi\)
\(200\) 0 0
\(201\) 7.37224 + 4.25636i 0.519998 + 0.300221i
\(202\) 0 0
\(203\) −0.299410 + 0.610904i −0.0210144 + 0.0428771i
\(204\) 0 0
\(205\) 0.484616 + 1.80861i 0.0338470 + 0.126319i
\(206\) 0 0
\(207\) 1.61279 + 2.79344i 0.112097 + 0.194158i
\(208\) 0 0
\(209\) 4.70727 0.325609
\(210\) 0 0
\(211\) −14.5016 + 14.5016i −0.998329 + 0.998329i −0.999999 0.00166940i \(-0.999469\pi\)
0.00166940 + 0.999999i \(0.499469\pi\)
\(212\) 0 0
\(213\) 2.50461 9.34732i 0.171613 0.640468i
\(214\) 0 0
\(215\) 28.8881 + 16.6786i 1.97015 + 1.13747i
\(216\) 0 0
\(217\) −12.8856 11.2448i −0.874733 0.763344i
\(218\) 0 0
\(219\) 7.77241 2.08261i 0.525211 0.140730i
\(220\) 0 0
\(221\) 4.40698 + 1.18085i 0.296445 + 0.0794323i
\(222\) 0 0
\(223\) −4.72461 −0.316383 −0.158192 0.987408i \(-0.550566\pi\)
−0.158192 + 0.987408i \(0.550566\pi\)
\(224\) 0 0
\(225\) −29.6646 −1.97764
\(226\) 0 0
\(227\) −15.9081 4.26257i −1.05586 0.282917i −0.311189 0.950348i \(-0.600727\pi\)
−0.744671 + 0.667431i \(0.767394\pi\)
\(228\) 0 0
\(229\) −13.3085 + 3.56601i −0.879453 + 0.235649i −0.670171 0.742207i \(-0.733779\pi\)
−0.209282 + 0.977855i \(0.567113\pi\)
\(230\) 0 0
\(231\) −0.537812 + 2.73875i −0.0353854 + 0.180196i
\(232\) 0 0
\(233\) 12.0806 + 6.97475i 0.791428 + 0.456931i 0.840465 0.541866i \(-0.182282\pi\)
−0.0490370 + 0.998797i \(0.515615\pi\)
\(234\) 0 0
\(235\) 7.95822 29.7005i 0.519137 1.93745i
\(236\) 0 0
\(237\) 7.91401 7.91401i 0.514070 0.514070i
\(238\) 0 0
\(239\) 23.1794 1.49935 0.749674 0.661807i \(-0.230210\pi\)
0.749674 + 0.661807i \(0.230210\pi\)
\(240\) 0 0
\(241\) 2.09690 + 3.63195i 0.135073 + 0.233954i 0.925626 0.378441i \(-0.123540\pi\)
−0.790552 + 0.612395i \(0.790206\pi\)
\(242\) 0 0
\(243\) −4.15362 15.5015i −0.266455 0.994422i
\(244\) 0 0
\(245\) 18.0108 23.7113i 1.15067 1.51486i
\(246\) 0 0
\(247\) −8.10728 4.68074i −0.515854 0.297828i
\(248\) 0 0
\(249\) −3.22168 + 1.86004i −0.204166 + 0.117875i
\(250\) 0 0
\(251\) 16.5937 + 16.5937i 1.04739 + 1.04739i 0.998820 + 0.0485679i \(0.0154657\pi\)
0.0485679 + 0.998820i \(0.484534\pi\)
\(252\) 0 0
\(253\) −1.23923 + 1.23923i −0.0779095 + 0.0779095i
\(254\) 0 0
\(255\) 3.39741 + 5.88449i 0.212754 + 0.368501i
\(256\) 0 0
\(257\) 5.52727 9.57351i 0.344782 0.597179i −0.640532 0.767931i \(-0.721286\pi\)
0.985314 + 0.170752i \(0.0546196\pi\)
\(258\) 0 0
\(259\) 0.541149 0.363501i 0.0336254 0.0225869i
\(260\) 0 0
\(261\) 0.562697 0.150774i 0.0348301 0.00933269i
\(262\) 0 0
\(263\) 14.1936 8.19466i 0.875213 0.505304i 0.00613562 0.999981i \(-0.498047\pi\)
0.869077 + 0.494677i \(0.164714\pi\)
\(264\) 0 0
\(265\) 42.6847i 2.62210i
\(266\) 0 0
\(267\) 3.96130 + 3.96130i 0.242428 + 0.242428i
\(268\) 0 0
\(269\) −1.24494 0.333581i −0.0759055 0.0203388i 0.220666 0.975349i \(-0.429177\pi\)
−0.296572 + 0.955011i \(0.595843\pi\)
\(270\) 0 0
\(271\) −10.0688 + 17.4397i −0.611639 + 1.05939i 0.379326 + 0.925263i \(0.376156\pi\)
−0.990964 + 0.134126i \(0.957177\pi\)
\(272\) 0 0
\(273\) 3.64958 4.18213i 0.220882 0.253114i
\(274\) 0 0
\(275\) −4.17149 15.5682i −0.251550 0.938798i
\(276\) 0 0
\(277\) 8.35382 31.1769i 0.501932 1.87324i 0.0148319 0.999890i \(-0.495279\pi\)
0.487100 0.873346i \(-0.338055\pi\)
\(278\) 0 0
\(279\) 14.6441i 0.876717i
\(280\) 0 0
\(281\) 13.6466i 0.814089i −0.913408 0.407044i \(-0.866559\pi\)
0.913408 0.407044i \(-0.133441\pi\)
\(282\) 0 0
\(283\) 4.86306 18.1492i 0.289079 1.07886i −0.656728 0.754128i \(-0.728060\pi\)
0.945807 0.324730i \(-0.105273\pi\)
\(284\) 0 0
\(285\) −3.60846 13.4669i −0.213747 0.797713i
\(286\) 0 0
\(287\) 0.377048 + 1.10189i 0.0222564 + 0.0650423i
\(288\) 0 0
\(289\) 6.76307 11.7140i 0.397828 0.689058i
\(290\) 0 0
\(291\) −1.41072 0.378000i −0.0826977 0.0221588i
\(292\) 0 0
\(293\) 2.19433 + 2.19433i 0.128194 + 0.128194i 0.768293 0.640099i \(-0.221107\pi\)
−0.640099 + 0.768293i \(0.721107\pi\)
\(294\) 0 0
\(295\) 7.20847i 0.419693i
\(296\) 0 0
\(297\) 4.81047 2.77733i 0.279132 0.161157i
\(298\) 0 0
\(299\) 3.36655 0.902063i 0.194692 0.0521677i
\(300\) 0 0
\(301\) 18.6303 + 9.13090i 1.07384 + 0.526296i
\(302\) 0 0
\(303\) −1.04778 + 1.81480i −0.0601932 + 0.104258i
\(304\) 0 0
\(305\) 19.8533 + 34.3869i 1.13680 + 1.96899i
\(306\) 0 0
\(307\) 8.28029 8.28029i 0.472581 0.472581i −0.430168 0.902749i \(-0.641546\pi\)
0.902749 + 0.430168i \(0.141546\pi\)
\(308\) 0 0
\(309\) 8.84007 + 8.84007i 0.502894 + 0.502894i
\(310\) 0 0
\(311\) 7.36500 4.25218i 0.417631 0.241119i −0.276432 0.961033i \(-0.589152\pi\)
0.694063 + 0.719914i \(0.255819\pi\)
\(312\) 0 0
\(313\) −14.1001 8.14069i −0.796984 0.460139i 0.0454317 0.998967i \(-0.485534\pi\)
−0.842415 + 0.538829i \(0.818867\pi\)
\(314\) 0 0
\(315\) −25.4376 + 1.72975i −1.43325 + 0.0974605i
\(316\) 0 0
\(317\) −5.85666 21.8574i −0.328943 1.22763i −0.910288 0.413975i \(-0.864140\pi\)
0.581345 0.813657i \(-0.302526\pi\)
\(318\) 0 0
\(319\) 0.158255 + 0.274106i 0.00886058 + 0.0153470i
\(320\) 0 0
\(321\) −4.26120 −0.237837
\(322\) 0 0
\(323\) 5.04015 5.04015i 0.280442 0.280442i
\(324\) 0 0
\(325\) −8.29595 + 30.9609i −0.460177 + 1.71740i
\(326\) 0 0
\(327\) 7.50434 + 4.33263i 0.414991 + 0.239595i
\(328\) 0 0
\(329\) 3.68520 18.7665i 0.203172 1.03463i
\(330\) 0 0
\(331\) −11.2314 + 3.00945i −0.617334 + 0.165414i −0.553915 0.832573i \(-0.686867\pi\)
−0.0634183 + 0.997987i \(0.520200\pi\)
\(332\) 0 0
\(333\) −0.539183 0.144474i −0.0295470 0.00791711i
\(334\) 0 0
\(335\) −42.2509 −2.30841
\(336\) 0 0
\(337\) 15.7590 0.858445 0.429223 0.903199i \(-0.358788\pi\)
0.429223 + 0.903199i \(0.358788\pi\)
\(338\) 0 0
\(339\) −4.32779 1.15963i −0.235053 0.0629823i
\(340\) 0 0
\(341\) −7.68532 + 2.05928i −0.416183 + 0.111516i
\(342\) 0 0
\(343\) 10.1761 15.4741i 0.549455 0.835523i
\(344\) 0 0
\(345\) 4.49523 + 2.59533i 0.242015 + 0.139728i
\(346\) 0 0
\(347\) −3.95167 + 14.7478i −0.212137 + 0.791706i 0.775018 + 0.631939i \(0.217741\pi\)
−0.987155 + 0.159766i \(0.948926\pi\)
\(348\) 0 0
\(349\) −6.62124 + 6.62124i −0.354427 + 0.354427i −0.861754 0.507327i \(-0.830634\pi\)
0.507327 + 0.861754i \(0.330634\pi\)
\(350\) 0 0
\(351\) −11.0467 −0.589628
\(352\) 0 0
\(353\) −10.9032 18.8849i −0.580319 1.00514i −0.995441 0.0953759i \(-0.969595\pi\)
0.415123 0.909765i \(-0.363739\pi\)
\(354\) 0 0
\(355\) 12.4310 + 46.3931i 0.659769 + 2.46229i
\(356\) 0 0
\(357\) 2.35658 + 3.50826i 0.124723 + 0.185677i
\(358\) 0 0
\(359\) −29.8216 17.2175i −1.57392 0.908704i −0.995681 0.0928386i \(-0.970406\pi\)
−0.578241 0.815866i \(-0.696261\pi\)
\(360\) 0 0
\(361\) 3.78856 2.18733i 0.199398 0.115123i
\(362\) 0 0
\(363\) −5.74807 5.74807i −0.301695 0.301695i
\(364\) 0 0
\(365\) −28.2399 + 28.2399i −1.47815 + 1.47815i
\(366\) 0 0
\(367\) 1.65812 + 2.87195i 0.0865533 + 0.149915i 0.906052 0.423166i \(-0.139081\pi\)
−0.819499 + 0.573081i \(0.805748\pi\)
\(368\) 0 0
\(369\) 0.498611 0.863619i 0.0259566 0.0449582i
\(370\) 0 0
\(371\) 1.80118 + 26.4880i 0.0935127 + 1.37519i
\(372\) 0 0
\(373\) −22.4918 + 6.02667i −1.16458 + 0.312049i −0.788795 0.614656i \(-0.789295\pi\)
−0.375789 + 0.926705i \(0.622628\pi\)
\(374\) 0 0
\(375\) −25.5550 + 14.7542i −1.31966 + 0.761903i
\(376\) 0 0
\(377\) 0.629452i 0.0324184i
\(378\) 0 0
\(379\) −2.77271 2.77271i −0.142425 0.142425i 0.632299 0.774724i \(-0.282111\pi\)
−0.774724 + 0.632299i \(0.782111\pi\)
\(380\) 0 0
\(381\) −0.997239 0.267209i −0.0510901 0.0136895i
\(382\) 0 0
\(383\) 10.6953 18.5248i 0.546504 0.946572i −0.452007 0.892014i \(-0.649292\pi\)
0.998511 0.0545578i \(-0.0173749\pi\)
\(384\) 0 0
\(385\) −4.48487 13.1066i −0.228570 0.667975i
\(386\) 0 0
\(387\) −4.59806 17.1602i −0.233733 0.872302i
\(388\) 0 0
\(389\) −6.51295 + 24.3067i −0.330220 + 1.23240i 0.578740 + 0.815512i \(0.303545\pi\)
−0.908959 + 0.416885i \(0.863122\pi\)
\(390\) 0 0
\(391\) 2.65372i 0.134204i
\(392\) 0 0
\(393\) 2.68058i 0.135217i
\(394\) 0 0
\(395\) −14.3772 + 53.6564i −0.723395 + 2.69975i
\(396\) 0 0
\(397\) 0.101204 + 0.377699i 0.00507929 + 0.0189562i 0.968419 0.249328i \(-0.0802099\pi\)
−0.963340 + 0.268285i \(0.913543\pi\)
\(398\) 0 0
\(399\) −2.80750 8.20466i −0.140551 0.410747i
\(400\) 0 0
\(401\) −9.92701 + 17.1941i −0.495731 + 0.858631i −0.999988 0.00492242i \(-0.998433\pi\)
0.504257 + 0.863554i \(0.331766\pi\)
\(402\) 0 0
\(403\) 15.2840 + 4.09534i 0.761350 + 0.204003i
\(404\) 0 0
\(405\) 8.80940 + 8.80940i 0.437743 + 0.437743i
\(406\) 0 0
\(407\) 0.303284i 0.0150332i
\(408\) 0 0
\(409\) 30.4501 17.5804i 1.50566 0.869295i 0.505685 0.862718i \(-0.331240\pi\)
0.999978 0.00657643i \(-0.00209336\pi\)
\(410\) 0 0
\(411\) −0.273731 + 0.0733461i −0.0135022 + 0.00361789i
\(412\) 0 0
\(413\) −0.304178 4.47322i −0.0149676 0.220113i
\(414\) 0 0
\(415\) 9.23185 15.9900i 0.453174 0.784920i
\(416\) 0 0
\(417\) −1.46230 2.53277i −0.0716089 0.124030i
\(418\) 0 0
\(419\) 17.1877 17.1877i 0.839673 0.839673i −0.149142 0.988816i \(-0.547651\pi\)
0.988816 + 0.149142i \(0.0476513\pi\)
\(420\) 0 0
\(421\) 12.9543 + 12.9543i 0.631352 + 0.631352i 0.948407 0.317055i \(-0.102694\pi\)
−0.317055 + 0.948407i \(0.602694\pi\)
\(422\) 0 0
\(423\) −14.1821 + 8.18803i −0.689557 + 0.398116i
\(424\) 0 0
\(425\) −21.1356 12.2026i −1.02523 0.591915i
\(426\) 0 0
\(427\) 13.7710 + 20.5011i 0.666426 + 0.992117i
\(428\) 0 0
\(429\) −0.668354 2.49433i −0.0322685 0.120427i
\(430\) 0 0
\(431\) −2.85225 4.94025i −0.137388 0.237963i 0.789119 0.614240i \(-0.210537\pi\)
−0.926507 + 0.376277i \(0.877204\pi\)
\(432\) 0 0
\(433\) −8.09187 −0.388870 −0.194435 0.980915i \(-0.562287\pi\)
−0.194435 + 0.980915i \(0.562287\pi\)
\(434\) 0 0
\(435\) 0.662870 0.662870i 0.0317822 0.0317822i
\(436\) 0 0
\(437\) 1.40928 5.25952i 0.0674152 0.251597i
\(438\) 0 0
\(439\) −6.11379 3.52980i −0.291795 0.168468i 0.346956 0.937881i \(-0.387215\pi\)
−0.638751 + 0.769413i \(0.720549\pi\)
\(440\) 0 0
\(441\) −15.7124 + 2.14680i −0.748207 + 0.102229i
\(442\) 0 0
\(443\) 14.7590 3.95466i 0.701221 0.187891i 0.109443 0.993993i \(-0.465093\pi\)
0.591777 + 0.806102i \(0.298427\pi\)
\(444\) 0 0
\(445\) −26.8574 7.19641i −1.27316 0.341142i
\(446\) 0 0
\(447\) 2.09735 0.0992014
\(448\) 0 0
\(449\) 19.5020 0.920356 0.460178 0.887827i \(-0.347786\pi\)
0.460178 + 0.887827i \(0.347786\pi\)
\(450\) 0 0
\(451\) 0.523350 + 0.140231i 0.0246436 + 0.00660322i
\(452\) 0 0
\(453\) 10.9280 2.92814i 0.513441 0.137576i
\(454\) 0 0
\(455\) −5.30850 + 27.0330i −0.248866 + 1.26733i
\(456\) 0 0
\(457\) −8.72578 5.03783i −0.408175 0.235660i 0.281830 0.959464i \(-0.409058\pi\)
−0.690005 + 0.723804i \(0.742392\pi\)
\(458\) 0 0
\(459\) 2.17692 8.12437i 0.101610 0.379213i
\(460\) 0 0
\(461\) −15.9419 + 15.9419i −0.742487 + 0.742487i −0.973056 0.230569i \(-0.925941\pi\)
0.230569 + 0.973056i \(0.425941\pi\)
\(462\) 0 0
\(463\) 8.23452 0.382690 0.191345 0.981523i \(-0.438715\pi\)
0.191345 + 0.981523i \(0.438715\pi\)
\(464\) 0 0
\(465\) 11.7827 + 20.4082i 0.546409 + 0.946408i
\(466\) 0 0
\(467\) −8.94417 33.3801i −0.413887 1.54465i −0.787055 0.616882i \(-0.788395\pi\)
0.373169 0.927764i \(-0.378271\pi\)
\(468\) 0 0
\(469\) −26.2188 + 1.78288i −1.21067 + 0.0823255i
\(470\) 0 0
\(471\) 2.65432 + 1.53247i 0.122305 + 0.0706126i
\(472\) 0 0
\(473\) 8.35922 4.82620i 0.384357 0.221909i
\(474\) 0 0
\(475\) 35.4092 + 35.4092i 1.62469 + 1.62469i
\(476\) 0 0
\(477\) 16.0749 16.0749i 0.736017 0.736017i
\(478\) 0 0
\(479\) −3.70229 6.41255i −0.169162 0.292997i 0.768964 0.639293i \(-0.220773\pi\)
−0.938125 + 0.346296i \(0.887439\pi\)
\(480\) 0 0
\(481\) −0.301574 + 0.522342i −0.0137506 + 0.0238167i
\(482\) 0 0
\(483\) 2.89904 + 1.42085i 0.131911 + 0.0646507i
\(484\) 0 0
\(485\) 7.00175 1.87611i 0.317933 0.0851899i
\(486\) 0 0
\(487\) 29.4458 17.0005i 1.33432 0.770368i 0.348359 0.937361i \(-0.386739\pi\)
0.985958 + 0.166993i \(0.0534056\pi\)
\(488\) 0 0
\(489\) 9.62880i 0.435429i
\(490\) 0 0
\(491\) −2.03871 2.03871i −0.0920055 0.0920055i 0.659606 0.751612i \(-0.270723\pi\)
−0.751612 + 0.659606i \(0.770723\pi\)
\(492\) 0 0
\(493\) 0.462935 + 0.124043i 0.0208496 + 0.00558662i
\(494\) 0 0
\(495\) −5.93083 + 10.2725i −0.266571 + 0.461714i
\(496\) 0 0
\(497\) 9.67175 + 28.2648i 0.433837 + 1.26785i
\(498\) 0 0
\(499\) 3.72332 + 13.8956i 0.166679 + 0.622053i 0.997820 + 0.0659922i \(0.0210212\pi\)
−0.831141 + 0.556061i \(0.812312\pi\)
\(500\) 0 0
\(501\) −2.59907 + 9.69985i −0.116118 + 0.433357i
\(502\) 0 0
\(503\) 27.2980i 1.21716i −0.793494 0.608579i \(-0.791740\pi\)
0.793494 0.608579i \(-0.208260\pi\)
\(504\) 0 0
\(505\) 10.4008i 0.462828i
\(506\) 0 0
\(507\) 1.55447 5.80138i 0.0690366 0.257648i
\(508\) 0 0
\(509\) 5.34620 + 19.9523i 0.236966 + 0.884370i 0.977253 + 0.212078i \(0.0680232\pi\)
−0.740286 + 0.672292i \(0.765310\pi\)
\(510\) 0 0
\(511\) −16.3327 + 18.7160i −0.722515 + 0.827946i
\(512\) 0 0
\(513\) −8.62906 + 14.9460i −0.380982 + 0.659881i
\(514\) 0 0
\(515\) −59.9351 16.0596i −2.64106 0.707669i
\(516\) 0 0
\(517\) −6.29146 6.29146i −0.276698 0.276698i
\(518\) 0 0
\(519\) 9.38489i 0.411951i
\(520\) 0 0
\(521\) −9.46400 + 5.46404i −0.414625 + 0.239384i −0.692775 0.721154i \(-0.743612\pi\)
0.278150 + 0.960538i \(0.410279\pi\)
\(522\) 0 0
\(523\) −11.8976 + 3.18796i −0.520247 + 0.139400i −0.509381 0.860541i \(-0.670125\pi\)
−0.0108660 + 0.999941i \(0.503459\pi\)
\(524\) 0 0
\(525\) −24.6471 + 16.5560i −1.07569 + 0.722562i
\(526\) 0 0
\(527\) −6.02390 + 10.4337i −0.262405 + 0.454499i
\(528\) 0 0
\(529\) −10.4864 18.1630i −0.455930 0.789694i
\(530\) 0 0
\(531\) −2.71468 + 2.71468i −0.117807 + 0.117807i
\(532\) 0 0
\(533\) −0.761918 0.761918i −0.0330023 0.0330023i
\(534\) 0 0
\(535\) 18.3160 10.5747i 0.791868 0.457185i
\(536\) 0 0
\(537\) −12.4069 7.16316i −0.535399 0.309113i
\(538\) 0 0
\(539\) −3.33616 7.94408i −0.143699 0.342176i
\(540\) 0 0
\(541\) 4.34231 + 16.2057i 0.186691 + 0.696739i 0.994262 + 0.106969i \(0.0341146\pi\)
−0.807572 + 0.589769i \(0.799219\pi\)
\(542\) 0 0
\(543\) 9.68370 + 16.7727i 0.415567 + 0.719784i
\(544\) 0 0
\(545\) −43.0079 −1.84226
\(546\) 0 0
\(547\) 23.2429 23.2429i 0.993797 0.993797i −0.00618416 0.999981i \(-0.501968\pi\)
0.999981 + 0.00618416i \(0.00196849\pi\)
\(548\) 0 0
\(549\) 5.47329 20.4266i 0.233594 0.871786i
\(550\) 0 0
\(551\) −0.851637 0.491693i −0.0362810 0.0209468i
\(552\) 0 0
\(553\) −6.65763 + 33.9033i −0.283111 + 1.44171i
\(554\) 0 0
\(555\) −0.867659 + 0.232488i −0.0368301 + 0.00986858i
\(556\) 0 0
\(557\) −22.7871 6.10578i −0.965519 0.258710i −0.258584 0.965989i \(-0.583256\pi\)
−0.706935 + 0.707279i \(0.749923\pi\)
\(558\) 0 0
\(559\) −19.1960 −0.811904
\(560\) 0 0
\(561\) 1.96619 0.0830125
\(562\) 0 0
\(563\) 37.6366 + 10.0847i 1.58620 + 0.425020i 0.940837 0.338860i \(-0.110041\pi\)
0.645358 + 0.763880i \(0.276708\pi\)
\(564\) 0 0
\(565\) 21.4799 5.75553i 0.903667 0.242137i
\(566\) 0 0
\(567\) 5.83842 + 5.09495i 0.245191 + 0.213968i
\(568\) 0 0
\(569\) 10.2086 + 5.89395i 0.427968 + 0.247087i 0.698481 0.715629i \(-0.253860\pi\)
−0.270513 + 0.962716i \(0.587193\pi\)
\(570\) 0 0
\(571\) 0.732074 2.73214i 0.0306363 0.114336i −0.948914 0.315534i \(-0.897817\pi\)
0.979551 + 0.201197i \(0.0644832\pi\)
\(572\) 0 0
\(573\) 6.03552 6.03552i 0.252138 0.252138i
\(574\) 0 0
\(575\) −18.6435 −0.777489
\(576\) 0 0
\(577\) 21.6020 + 37.4157i 0.899302 + 1.55764i 0.828389 + 0.560154i \(0.189258\pi\)
0.0709133 + 0.997482i \(0.477409\pi\)
\(578\) 0 0
\(579\) 1.78481 + 6.66100i 0.0741741 + 0.276822i
\(580\) 0 0
\(581\) 5.05410 10.3122i 0.209679 0.427822i
\(582\) 0 0
\(583\) 10.6967 + 6.17574i 0.443012 + 0.255773i
\(584\) 0 0
\(585\) 20.4292 11.7948i 0.844643 0.487655i
\(586\) 0 0
\(587\) −28.1127 28.1127i −1.16034 1.16034i −0.984402 0.175935i \(-0.943705\pi\)
−0.175935 0.984402i \(-0.556295\pi\)
\(588\) 0 0
\(589\) 17.4799 17.4799i 0.720248 0.720248i
\(590\) 0 0
\(591\) −3.64795 6.31844i −0.150057 0.259906i
\(592\) 0 0
\(593\) 8.44544 14.6279i 0.346812 0.600697i −0.638869 0.769316i \(-0.720597\pi\)
0.985681 + 0.168619i \(0.0539307\pi\)
\(594\) 0 0
\(595\) −18.8355 9.23145i −0.772180 0.378452i
\(596\) 0 0
\(597\) 12.2176 3.27371i 0.500035 0.133984i
\(598\) 0 0
\(599\) −25.7194 + 14.8491i −1.05087 + 0.606718i −0.922892 0.385059i \(-0.874181\pi\)
−0.127975 + 0.991777i \(0.540848\pi\)
\(600\) 0 0
\(601\) 30.4663i 1.24275i −0.783515 0.621373i \(-0.786575\pi\)
0.783515 0.621373i \(-0.213425\pi\)
\(602\) 0 0
\(603\) 15.9115 + 15.9115i 0.647966 + 0.647966i
\(604\) 0 0
\(605\) 38.9715 + 10.4424i 1.58442 + 0.424544i
\(606\) 0 0
\(607\) 16.6272 28.7992i 0.674879 1.16892i −0.301626 0.953426i \(-0.597529\pi\)
0.976504 0.215498i \(-0.0691373\pi\)
\(608\) 0 0
\(609\) 0.383374 0.439316i 0.0155351 0.0178020i
\(610\) 0 0
\(611\) 4.57971 + 17.0917i 0.185275 + 0.691456i
\(612\) 0 0
\(613\) −5.29950 + 19.7780i −0.214045 + 0.798827i 0.772456 + 0.635069i \(0.219028\pi\)
−0.986501 + 0.163758i \(0.947638\pi\)
\(614\) 0 0
\(615\) 1.60474i 0.0647093i
\(616\) 0 0
\(617\) 2.64884i 0.106638i 0.998578 + 0.0533192i \(0.0169801\pi\)
−0.998578 + 0.0533192i \(0.983020\pi\)
\(618\) 0 0
\(619\) 9.69816 36.1940i 0.389802 1.45476i −0.440654 0.897677i \(-0.645253\pi\)
0.830456 0.557084i \(-0.188080\pi\)
\(620\) 0 0
\(621\) −1.66298 6.20631i −0.0667330 0.249051i
\(622\) 0 0
\(623\) −16.9700 3.33243i −0.679890 0.133511i
\(624\) 0 0
\(625\) 40.4934 70.1366i 1.61974 2.80546i
\(626\) 0 0
\(627\) −3.89687 1.04416i −0.155626 0.0416999i
\(628\) 0 0
\(629\) −0.324731 0.324731i −0.0129479 0.0129479i
\(630\) 0 0
\(631\) 10.0919i 0.401753i 0.979617 + 0.200877i \(0.0643791\pi\)
−0.979617 + 0.200877i \(0.935621\pi\)
\(632\) 0 0
\(633\) 15.2217 8.78826i 0.605009 0.349302i
\(634\) 0 0
\(635\) 4.94955 1.32623i 0.196417 0.0526298i
\(636\) 0 0
\(637\) −2.15348 + 16.9994i −0.0853239 + 0.673539i
\(638\) 0 0
\(639\) 12.7900 22.1529i 0.505964 0.876355i
\(640\) 0 0
\(641\) −15.3814 26.6413i −0.607528 1.05227i −0.991646 0.128986i \(-0.958828\pi\)
0.384118 0.923284i \(-0.374505\pi\)
\(642\) 0 0
\(643\) −22.2297 + 22.2297i −0.876653 + 0.876653i −0.993187 0.116533i \(-0.962822\pi\)
0.116533 + 0.993187i \(0.462822\pi\)
\(644\) 0 0
\(645\) −20.2151 20.2151i −0.795970 0.795970i
\(646\) 0 0
\(647\) 14.3410 8.27978i 0.563803 0.325512i −0.190867 0.981616i \(-0.561130\pi\)
0.754670 + 0.656104i \(0.227797\pi\)
\(648\) 0 0
\(649\) −1.80643 1.04294i −0.0709085 0.0409390i
\(650\) 0 0
\(651\) 8.17293 + 12.1671i 0.320322 + 0.476868i
\(652\) 0 0
\(653\) −9.67497 36.1075i −0.378611 1.41300i −0.847996 0.530002i \(-0.822191\pi\)
0.469385 0.882993i \(-0.344476\pi\)
\(654\) 0 0
\(655\) 6.65220 + 11.5219i 0.259923 + 0.450200i
\(656\) 0 0
\(657\) 21.2701 0.829824
\(658\) 0 0
\(659\) 14.8808 14.8808i 0.579674 0.579674i −0.355139 0.934813i \(-0.615567\pi\)
0.934813 + 0.355139i \(0.115567\pi\)
\(660\) 0 0
\(661\) −2.96488 + 11.0651i −0.115321 + 0.430382i −0.999311 0.0371232i \(-0.988181\pi\)
0.883990 + 0.467506i \(0.154847\pi\)
\(662\) 0 0
\(663\) −3.38634 1.95510i −0.131515 0.0759299i
\(664\) 0 0
\(665\) 32.4284 + 28.2990i 1.25752 + 1.09739i
\(666\) 0 0
\(667\) 0.353642 0.0947582i 0.0136931 0.00366905i
\(668\) 0 0
\(669\) 3.91122 + 1.04801i 0.151217 + 0.0405183i
\(670\) 0 0
\(671\) 11.4897 0.443555
\(672\) 0 0
\(673\) 20.7704 0.800639 0.400319 0.916376i \(-0.368899\pi\)
0.400319 + 0.916376i \(0.368899\pi\)
\(674\) 0 0
\(675\) 57.0772 + 15.2938i 2.19690 + 0.588658i
\(676\) 0 0
\(677\) 26.5605 7.11687i 1.02080 0.273524i 0.290667 0.956824i \(-0.406123\pi\)
0.730137 + 0.683301i \(0.239456\pi\)
\(678\) 0 0
\(679\) 4.26578 1.45968i 0.163706 0.0560174i
\(680\) 0 0
\(681\) 12.2239 + 7.05746i 0.468420 + 0.270442i
\(682\) 0 0
\(683\) 0.558762 2.08533i 0.0213804 0.0797928i −0.954411 0.298495i \(-0.903516\pi\)
0.975792 + 0.218702i \(0.0701822\pi\)
\(684\) 0 0
\(685\) 0.994563 0.994563i 0.0380003 0.0380003i
\(686\) 0 0
\(687\) 11.8083 0.450517
\(688\) 0 0
\(689\) −12.2819 21.2728i −0.467902 0.810429i
\(690\) 0 0
\(691\) 0.631272 + 2.35594i 0.0240147 + 0.0896242i 0.976893 0.213728i \(-0.0685607\pi\)
−0.952878 + 0.303352i \(0.901894\pi\)
\(692\) 0 0
\(693\) −3.24691 + 6.62488i −0.123340 + 0.251658i
\(694\) 0 0
\(695\) 12.5708 + 7.25775i 0.476837 + 0.275302i
\(696\) 0 0
\(697\) 0.710506 0.410211i 0.0269124 0.0155379i
\(698\) 0 0
\(699\) −8.45369 8.45369i −0.319748 0.319748i
\(700\) 0 0
\(701\) 6.81795 6.81795i 0.257510 0.257510i −0.566530 0.824041i \(-0.691715\pi\)
0.824041 + 0.566530i \(0.191715\pi\)
\(702\) 0 0
\(703\) 0.471146 + 0.816049i 0.0177696 + 0.0307779i
\(704\) 0 0
\(705\) −13.1763 + 22.8220i −0.496247 + 0.859525i
\(706\) 0 0
\(707\) −0.438885 6.45421i −0.0165060 0.242736i
\(708\) 0 0
\(709\) 11.3630 3.04470i 0.426745 0.114346i −0.0390527 0.999237i \(-0.512434\pi\)
0.465798 + 0.884891i \(0.345767\pi\)
\(710\) 0 0
\(711\) 25.6212 14.7924i 0.960869 0.554758i
\(712\) 0 0
\(713\) 9.20346i 0.344672i
\(714\) 0 0
\(715\) 9.06280 + 9.06280i 0.338929 + 0.338929i
\(716\) 0 0
\(717\) −19.1888 5.14163i −0.716619 0.192018i
\(718\) 0 0
\(719\) 16.4827 28.5490i 0.614703 1.06470i −0.375734 0.926728i \(-0.622609\pi\)
0.990437 0.137969i \(-0.0440573\pi\)
\(720\) 0 0
\(721\) −37.8705 7.43668i −1.41037 0.276956i
\(722\) 0 0
\(723\) −0.930267 3.47180i −0.0345970 0.129118i
\(724\) 0 0
\(725\) −0.871457 + 3.25232i −0.0323651 + 0.120788i
\(726\) 0 0
\(727\) 13.8871i 0.515045i 0.966272 + 0.257523i \(0.0829062\pi\)
−0.966272 + 0.257523i \(0.917094\pi\)
\(728\) 0 0
\(729\) 4.96768i 0.183988i
\(730\) 0 0
\(731\) 3.78286 14.1178i 0.139914 0.522167i
\(732\) 0 0
\(733\) −2.86505 10.6925i −0.105823 0.394936i 0.892614 0.450821i \(-0.148869\pi\)
−0.998437 + 0.0558846i \(0.982202\pi\)
\(734\) 0 0
\(735\) −20.1697 + 15.6341i −0.743970 + 0.576671i
\(736\) 0 0
\(737\) −6.11297 + 10.5880i −0.225174 + 0.390013i
\(738\) 0 0
\(739\) −10.7856 2.88999i −0.396754 0.106310i 0.0549249 0.998490i \(-0.482508\pi\)
−0.451679 + 0.892181i \(0.649175\pi\)
\(740\) 0 0
\(741\) 5.67325 + 5.67325i 0.208412 + 0.208412i
\(742\) 0 0
\(743\) 49.5292i 1.81705i 0.417832 + 0.908524i \(0.362790\pi\)
−0.417832 + 0.908524i \(0.637210\pi\)
\(744\) 0 0
\(745\) −9.01507 + 5.20485i −0.330287 + 0.190691i
\(746\) 0 0
\(747\) −9.49845 + 2.54510i −0.347530 + 0.0931204i
\(748\) 0 0
\(749\) 10.9198 7.33504i 0.398999 0.268017i
\(750\) 0 0
\(751\) −0.523146 + 0.906116i −0.0190899 + 0.0330646i −0.875413 0.483377i \(-0.839410\pi\)
0.856323 + 0.516441i \(0.172744\pi\)
\(752\) 0 0
\(753\) −10.0562 17.4178i −0.366467 0.634739i
\(754\) 0 0
\(755\) −39.7052 + 39.7052i −1.44502 + 1.44502i
\(756\) 0 0
\(757\) −29.5274 29.5274i −1.07319 1.07319i −0.997101 0.0760892i \(-0.975757\pi\)
−0.0760892 0.997101i \(-0.524243\pi\)
\(758\) 0 0
\(759\) 1.30077 0.750998i 0.0472148 0.0272595i
\(760\) 0 0
\(761\) 33.9144 + 19.5805i 1.22940 + 0.709793i 0.966904 0.255141i \(-0.0821220\pi\)
0.262493 + 0.964934i \(0.415455\pi\)
\(762\) 0 0
\(763\) −26.6886 + 1.81482i −0.966193 + 0.0657009i
\(764\) 0 0
\(765\) 4.64869 + 17.3492i 0.168074 + 0.627260i
\(766\) 0 0
\(767\) 2.07412 + 3.59249i 0.0748923 + 0.129717i
\(768\) 0 0
\(769\) 28.7025 1.03504 0.517519 0.855672i \(-0.326856\pi\)
0.517519 + 0.855672i \(0.326856\pi\)
\(770\) 0 0
\(771\) −6.69929 + 6.69929i −0.241269 + 0.241269i
\(772\) 0 0
\(773\) 3.90180 14.5617i 0.140338 0.523748i −0.859581 0.511000i \(-0.829275\pi\)
0.999919 0.0127485i \(-0.00405807\pi\)
\(774\) 0 0
\(775\) −73.3012 42.3205i −2.63306 1.52020i
\(776\) 0 0
\(777\) −0.528616 + 0.180884i −0.0189640 + 0.00648917i
\(778\) 0 0
\(779\) −1.62603 + 0.435693i −0.0582586 + 0.0156103i
\(780\) 0 0
\(781\) 13.4246 + 3.59710i 0.480369 + 0.128715i
\(782\) 0 0
\(783\) −1.16041 −0.0414697
\(784\) 0 0
\(785\) −15.2121 −0.542944
\(786\) 0 0
\(787\) −22.6434 6.06728i −0.807150 0.216275i −0.168429 0.985714i \(-0.553869\pi\)
−0.638721 + 0.769438i \(0.720536\pi\)
\(788\) 0 0
\(789\) −13.5677 + 3.63546i −0.483024 + 0.129426i
\(790\) 0 0
\(791\) 13.0865 4.47800i 0.465303 0.159219i
\(792\) 0 0
\(793\) −19.7886 11.4249i −0.702713 0.405712i
\(794\) 0 0
\(795\) 9.46828 35.3361i 0.335805 1.25324i
\(796\) 0 0
\(797\) 3.81531 3.81531i 0.135145 0.135145i −0.636298 0.771443i \(-0.719535\pi\)
0.771443 + 0.636298i \(0.219535\pi\)
\(798\) 0 0
\(799\) −13.4727 −0.476631
\(800\) 0 0
\(801\) 7.40422 + 12.8245i 0.261615 + 0.453131i
\(802\) 0 0
\(803\) 2.99104 + 11.1627i 0.105551 + 0.393923i
\(804\) 0 0
\(805\) −15.9870 + 1.08711i −0.563467 + 0.0383156i
\(806\) 0 0
\(807\) 0.956619 + 0.552304i 0.0336746 + 0.0194420i
\(808\) 0 0
\(809\) −24.7881 + 14.3114i −0.871505 + 0.503164i −0.867848 0.496830i \(-0.834497\pi\)
−0.00365682 + 0.999993i \(0.501164\pi\)
\(810\) 0 0
\(811\) −9.30808 9.30808i −0.326851 0.326851i 0.524537 0.851388i \(-0.324238\pi\)
−0.851388 + 0.524537i \(0.824238\pi\)
\(812\) 0 0
\(813\) 12.2039 12.2039i 0.428008 0.428008i
\(814\) 0 0
\(815\) 23.8951 + 41.3875i 0.837009 + 1.44974i
\(816\) 0 0
\(817\) −14.9948 + 25.9718i −0.524603 + 0.908639i
\(818\) 0 0
\(819\) 12.1797 8.18134i 0.425592 0.285879i
\(820\) 0 0
\(821\) −16.1169 + 4.31850i −0.562482 + 0.150717i −0.528846 0.848718i \(-0.677375\pi\)
−0.0336357 + 0.999434i \(0.510709\pi\)
\(822\) 0 0
\(823\) −9.41497 + 5.43573i −0.328185 + 0.189478i −0.655035 0.755598i \(-0.727346\pi\)
0.326850 + 0.945076i \(0.394013\pi\)
\(824\) 0 0
\(825\) 13.8133i 0.480918i
\(826\) 0 0
\(827\) −9.97483 9.97483i −0.346859 0.346859i 0.512079 0.858938i \(-0.328875\pi\)
−0.858938 + 0.512079i \(0.828875\pi\)
\(828\) 0 0
\(829\) 24.9645 + 6.68921i 0.867052 + 0.232326i 0.664813 0.747010i \(-0.268511\pi\)
0.202240 + 0.979336i \(0.435178\pi\)
\(830\) 0 0
\(831\) −13.8312 + 23.9564i −0.479801 + 0.831039i
\(832\) 0 0
\(833\) −12.0779 4.93378i −0.418476 0.170945i
\(834\) 0 0
\(835\) −12.8998 48.1428i −0.446417 1.66605i
\(836\) 0 0
\(837\) 7.54985 28.1764i 0.260961 0.973920i
\(838\) 0 0
\(839\) 35.9931i 1.24262i 0.783565 + 0.621310i \(0.213399\pi\)
−0.783565 + 0.621310i \(0.786601\pi\)
\(840\) 0 0
\(841\) 28.9339i 0.997720i
\(842\) 0 0
\(843\) −3.02708 + 11.2972i −0.104258 + 0.389097i
\(844\) 0 0
\(845\) 7.71526 + 28.7937i 0.265413 + 0.990535i
\(846\) 0 0
\(847\) 24.6245 + 4.83554i 0.846107 + 0.166151i
\(848\) 0 0
\(849\) −8.05167 + 13.9459i −0.276333 + 0.478622i
\(850\) 0 0
\(851\) −0.338864 0.0907985i −0.0116161 0.00311253i
\(852\) 0 0
\(853\) 11.5045 + 11.5045i 0.393906 + 0.393906i 0.876077 0.482171i \(-0.160152\pi\)
−0.482171 + 0.876077i \(0.660152\pi\)
\(854\) 0 0
\(855\) 36.8538i 1.26037i
\(856\) 0 0
\(857\) −46.8795 + 27.0659i −1.60137 + 0.924554i −0.610161 + 0.792277i \(0.708895\pi\)
−0.991213 + 0.132276i \(0.957771\pi\)
\(858\) 0 0
\(859\) 6.87557 1.84230i 0.234591 0.0628586i −0.139608 0.990207i \(-0.544584\pi\)
0.374199 + 0.927348i \(0.377918\pi\)
\(860\) 0 0
\(861\) −0.0677157 0.995822i −0.00230775 0.0339375i
\(862\) 0 0
\(863\) 8.29596 14.3690i 0.282398 0.489127i −0.689577 0.724212i \(-0.742204\pi\)
0.971975 + 0.235085i \(0.0755369\pi\)
\(864\) 0 0
\(865\) 23.2898 + 40.3391i 0.791877 + 1.37157i
\(866\) 0 0
\(867\) −8.19713 + 8.19713i −0.278389 + 0.278389i
\(868\) 0 0
\(869\) 11.3661 + 11.3661i 0.385567 + 0.385567i
\(870\) 0 0
\(871\) 21.0566 12.1570i 0.713475 0.411925i
\(872\) 0 0
\(873\) −3.34336 1.93029i −0.113156 0.0653305i
\(874\) 0 0
\(875\) 40.0901 81.7984i 1.35529 2.76529i
\(876\) 0 0
\(877\) −7.85634 29.3202i −0.265290 0.990074i −0.962073 0.272793i \(-0.912053\pi\)
0.696783 0.717282i \(-0.254614\pi\)
\(878\) 0 0
\(879\) −1.32981 2.30330i −0.0448534 0.0776883i
\(880\) 0 0
\(881\) −48.7213 −1.64146 −0.820731 0.571314i \(-0.806434\pi\)
−0.820731 + 0.571314i \(0.806434\pi\)
\(882\) 0 0
\(883\) −2.32744 + 2.32744i −0.0783247 + 0.0783247i −0.745184 0.666859i \(-0.767638\pi\)
0.666859 + 0.745184i \(0.267638\pi\)
\(884\) 0 0
\(885\) −1.59898 + 5.96746i −0.0537490 + 0.200594i
\(886\) 0 0
\(887\) 45.9577 + 26.5337i 1.54311 + 0.890914i 0.998640 + 0.0521315i \(0.0166015\pi\)
0.544467 + 0.838782i \(0.316732\pi\)
\(888\) 0 0
\(889\) 3.01549 1.03185i 0.101136 0.0346072i
\(890\) 0 0
\(891\) 3.48219 0.933049i 0.116658 0.0312583i
\(892\) 0 0
\(893\) 26.7022 + 7.15483i 0.893555 + 0.239427i
\(894\) 0 0
\(895\) 71.1052 2.37678
\(896\) 0 0
\(897\) −2.98706 −0.0997350
\(898\) 0 0
\(899\) 1.60552 + 0.430199i 0.0535472 + 0.0143479i
\(900\) 0 0
\(901\) 18.0656 4.84066i 0.601852 0.161266i
\(902\) 0 0
\(903\) −13.3975 11.6915i −0.445842 0.389069i
\(904\) 0 0
\(905\) −83.2470 48.0627i −2.76723 1.59766i
\(906\) 0 0
\(907\) −14.4466 + 53.9154i −0.479691 + 1.79023i 0.123172 + 0.992385i \(0.460693\pi\)
−0.602863 + 0.797845i \(0.705973\pi\)
\(908\) 0 0
\(909\) −3.91688 + 3.91688i −0.129915 + 0.129915i
\(910\) 0 0
\(911\) 44.7554 1.48281 0.741406 0.671057i \(-0.234159\pi\)
0.741406 + 0.671057i \(0.234159\pi\)
\(912\) 0 0
\(913\) −2.67138 4.62696i −0.0884097 0.153130i
\(914\) 0 0
\(915\) −8.80768 32.8707i −0.291173 1.08667i
\(916\) 0 0
\(917\) 4.61423 + 6.86925i 0.152375 + 0.226843i
\(918\) 0 0
\(919\) −19.8098 11.4372i −0.653464 0.377277i 0.136318 0.990665i \(-0.456473\pi\)
−0.789782 + 0.613388i \(0.789806\pi\)
\(920\) 0 0
\(921\) −8.69148 + 5.01803i −0.286394 + 0.165350i
\(922\) 0 0
\(923\) −19.5442 19.5442i −0.643304 0.643304i
\(924\) 0 0
\(925\) 2.28137 2.28137i 0.0750111 0.0750111i
\(926\) 0 0
\(927\) 16.5233 + 28.6192i 0.542697 + 0.939979i
\(928\) 0 0
\(929\) 13.2871 23.0139i 0.435935 0.755062i −0.561436 0.827520i \(-0.689751\pi\)
0.997371 + 0.0724577i \(0.0230842\pi\)
\(930\) 0 0
\(931\) 21.3177 + 16.1926i 0.698658 + 0.530690i
\(932\) 0 0
\(933\) −7.04026 + 1.88643i −0.230488 + 0.0617590i
\(934\) 0 0
\(935\) −8.45127 + 4.87934i −0.276386 + 0.159572i
\(936\) 0 0
\(937\) 11.8582i 0.387391i −0.981062 0.193696i \(-0.937953\pi\)
0.981062 0.193696i \(-0.0620474\pi\)
\(938\) 0 0
\(939\) 9.86686 + 9.86686i 0.321993 + 0.321993i
\(940\) 0 0
\(941\) −2.04535 0.548049i −0.0666764 0.0178659i 0.225327 0.974283i \(-0.427655\pi\)
−0.292003 + 0.956417i \(0.594322\pi\)
\(942\) 0 0
\(943\) 0.313366 0.542765i 0.0102046 0.0176749i
\(944\) 0 0
\(945\) 49.8360 + 9.78636i 1.62116 + 0.318350i
\(946\) 0 0
\(947\) −1.38876 5.18291i −0.0451285 0.168422i 0.939684 0.342045i \(-0.111119\pi\)
−0.984812 + 0.173623i \(0.944453\pi\)
\(948\) 0 0
\(949\) 5.94835 22.1995i 0.193092 0.720628i
\(950\) 0 0
\(951\) 19.3935i 0.628878i
\(952\) 0 0
\(953\) 3.43130i 0.111151i 0.998454 + 0.0555753i \(0.0176993\pi\)
−0.998454 + 0.0555753i \(0.982301\pi\)
\(954\) 0 0
\(955\) −10.9646 + 40.9205i −0.354806 + 1.32415i
\(956\) 0 0
\(957\) −0.0702080 0.262020i −0.00226950 0.00846989i
\(958\) 0 0
\(959\) 0.575210 0.659145i 0.0185745 0.0212849i
\(960\) 0 0
\(961\) −5.39169 + 9.33869i −0.173926 + 0.301248i
\(962\) 0 0
\(963\) −10.8801 2.91531i −0.350606 0.0939446i
\(964\) 0 0
\(965\) −24.2018 24.2018i −0.779083 0.779083i
\(966\) 0 0
\(967\) 19.4110i 0.624217i −0.950046 0.312108i \(-0.898965\pi\)
0.950046 0.312108i \(-0.101035\pi\)
\(968\) 0 0
\(969\) −5.29044 + 3.05444i −0.169954 + 0.0981227i
\(970\) 0 0
\(971\) −19.4567 + 5.21341i −0.624396 + 0.167306i −0.557125 0.830428i \(-0.688096\pi\)
−0.0672705 + 0.997735i \(0.521429\pi\)
\(972\) 0 0
\(973\) 8.10708 + 3.97335i 0.259901 + 0.127380i
\(974\) 0 0
\(975\) 13.7354 23.7905i 0.439886 0.761905i
\(976\) 0 0
\(977\) −8.78731 15.2201i −0.281131 0.486933i 0.690533 0.723301i \(-0.257376\pi\)
−0.971664 + 0.236368i \(0.924043\pi\)
\(978\) 0 0
\(979\) −5.68920 + 5.68920i −0.181828 + 0.181828i
\(980\) 0 0
\(981\) 16.1966 + 16.1966i 0.517117 + 0.517117i
\(982\) 0 0
\(983\) −47.7497 + 27.5683i −1.52298 + 0.879292i −0.523347 + 0.852119i \(0.675317\pi\)
−0.999631 + 0.0271723i \(0.991350\pi\)
\(984\) 0 0
\(985\) 31.3600 + 18.1057i 0.999214 + 0.576896i
\(986\) 0 0
\(987\) −7.21352 + 14.7182i −0.229609 + 0.468486i
\(988\) 0 0
\(989\) −2.88978 10.7848i −0.0918896 0.342937i
\(990\) 0 0
\(991\) −18.4719 31.9943i −0.586781 1.01633i −0.994651 0.103294i \(-0.967062\pi\)
0.407870 0.913040i \(-0.366272\pi\)
\(992\) 0 0
\(993\) 9.96536 0.316241
\(994\) 0 0
\(995\) −44.3910 + 44.3910i −1.40729 + 1.40729i
\(996\) 0 0
\(997\) −0.959891 + 3.58236i −0.0304001 + 0.113455i −0.979459 0.201645i \(-0.935371\pi\)
0.949059 + 0.315100i \(0.102038\pi\)
\(998\) 0 0
\(999\) 0.962950 + 0.555960i 0.0304664 + 0.0175898i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 448.2.ba.c.177.6 48
4.3 odd 2 112.2.w.c.37.7 48
7.4 even 3 inner 448.2.ba.c.305.7 48
8.3 odd 2 896.2.ba.f.737.6 48
8.5 even 2 896.2.ba.e.737.7 48
16.3 odd 4 112.2.w.c.93.2 yes 48
16.5 even 4 896.2.ba.e.289.6 48
16.11 odd 4 896.2.ba.f.289.7 48
16.13 even 4 inner 448.2.ba.c.401.7 48
28.3 even 6 784.2.x.o.165.2 48
28.11 odd 6 112.2.w.c.53.2 yes 48
28.19 even 6 784.2.m.k.197.9 24
28.23 odd 6 784.2.m.j.197.9 24
28.27 even 2 784.2.x.o.373.7 48
56.11 odd 6 896.2.ba.f.865.7 48
56.53 even 6 896.2.ba.e.865.6 48
112.3 even 12 784.2.x.o.557.7 48
112.11 odd 12 896.2.ba.f.417.6 48
112.19 even 12 784.2.m.k.589.9 24
112.51 odd 12 784.2.m.j.589.9 24
112.53 even 12 896.2.ba.e.417.7 48
112.67 odd 12 112.2.w.c.109.7 yes 48
112.83 even 4 784.2.x.o.765.2 48
112.109 even 12 inner 448.2.ba.c.81.6 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.2.w.c.37.7 48 4.3 odd 2
112.2.w.c.53.2 yes 48 28.11 odd 6
112.2.w.c.93.2 yes 48 16.3 odd 4
112.2.w.c.109.7 yes 48 112.67 odd 12
448.2.ba.c.81.6 48 112.109 even 12 inner
448.2.ba.c.177.6 48 1.1 even 1 trivial
448.2.ba.c.305.7 48 7.4 even 3 inner
448.2.ba.c.401.7 48 16.13 even 4 inner
784.2.m.j.197.9 24 28.23 odd 6
784.2.m.j.589.9 24 112.51 odd 12
784.2.m.k.197.9 24 28.19 even 6
784.2.m.k.589.9 24 112.19 even 12
784.2.x.o.165.2 48 28.3 even 6
784.2.x.o.373.7 48 28.27 even 2
784.2.x.o.557.7 48 112.3 even 12
784.2.x.o.765.2 48 112.83 even 4
896.2.ba.e.289.6 48 16.5 even 4
896.2.ba.e.417.7 48 112.53 even 12
896.2.ba.e.737.7 48 8.5 even 2
896.2.ba.e.865.6 48 56.53 even 6
896.2.ba.f.289.7 48 16.11 odd 4
896.2.ba.f.417.6 48 112.11 odd 12
896.2.ba.f.737.6 48 8.3 odd 2
896.2.ba.f.865.7 48 56.11 odd 6