Defining parameters
| Level: | \( N \) | \(=\) | \( 448 = 2^{6} \cdot 7 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 448.ba (of order \(12\) and degree \(4\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 112 \) |
| Character field: | \(\Q(\zeta_{12})\) | ||
| Newform subspaces: | \( 3 \) | ||
| Sturm bound: | \(128\) | ||
| Trace bound: | \(3\) | ||
| Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(448, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 288 | 72 | 216 |
| Cusp forms | 224 | 56 | 168 |
| Eisenstein series | 64 | 16 | 48 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(448, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 448.2.ba.a | $4$ | $3.577$ | \(\Q(\zeta_{12})\) | None | \(0\) | \(-2\) | \(0\) | \(0\) | \(q+(-1+\zeta_{12}^{2}-\zeta_{12}^{3})q^{3}+(-1-\zeta_{12}+\cdots)q^{5}+\cdots\) |
| 448.2.ba.b | $4$ | $3.577$ | \(\Q(\zeta_{12})\) | None | \(0\) | \(4\) | \(-6\) | \(0\) | \(q+(1+\zeta_{12})q^{3}+(-2-2\zeta_{12}+\zeta_{12}^{2}+\cdots)q^{5}+\cdots\) |
| 448.2.ba.c | $48$ | $3.577$ | None | \(0\) | \(0\) | \(4\) | \(0\) | ||
Decomposition of \(S_{2}^{\mathrm{old}}(448, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(448, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(112, [\chi])\)\(^{\oplus 3}\)