Properties

Label 448.2.ba
Level $448$
Weight $2$
Character orbit 448.ba
Rep. character $\chi_{448}(81,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $56$
Newform subspaces $3$
Sturm bound $128$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 448 = 2^{6} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 448.ba (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 112 \)
Character field: \(\Q(\zeta_{12})\)
Newform subspaces: \( 3 \)
Sturm bound: \(128\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(448, [\chi])\).

Total New Old
Modular forms 288 72 216
Cusp forms 224 56 168
Eisenstein series 64 16 48

Trace form

\( 56 q + 2 q^{3} - 2 q^{5} + 6 q^{11} - 8 q^{13} + 16 q^{15} - 4 q^{17} + 2 q^{19} - 10 q^{21} + 20 q^{27} + 8 q^{29} - 20 q^{31} - 4 q^{33} + 2 q^{35} - 10 q^{37} + 16 q^{43} - 28 q^{45} + 44 q^{47} - 8 q^{49}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(448, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
448.2.ba.a 448.ba 112.w $4$ $3.577$ \(\Q(\zeta_{12})\) None 112.2.w.a \(0\) \(-2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{12}]$ \(q+(-1+\zeta_{12}^{2}-\zeta_{12}^{3})q^{3}+(-1-\zeta_{12}+\cdots)q^{5}+\cdots\)
448.2.ba.b 448.ba 112.w $4$ $3.577$ \(\Q(\zeta_{12})\) None 112.2.w.a \(0\) \(4\) \(-6\) \(0\) $\mathrm{SU}(2)[C_{12}]$ \(q+(1+\zeta_{12})q^{3}+(-2-2\zeta_{12}+\zeta_{12}^{2}+\cdots)q^{5}+\cdots\)
448.2.ba.c 448.ba 112.w $48$ $3.577$ None 112.2.w.c \(0\) \(0\) \(4\) \(0\) $\mathrm{SU}(2)[C_{12}]$

Decomposition of \(S_{2}^{\mathrm{old}}(448, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(448, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(112, [\chi])\)\(^{\oplus 3}\)