Properties

Label 896.2.ba.f.417.6
Level $896$
Weight $2$
Character 896.417
Analytic conductor $7.155$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [896,2,Mod(289,896)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(896, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 9, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("896.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 896 = 2^{7} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 896.ba (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,0,-4,0,0,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.15459602111\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(12\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 112)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 417.6
Character \(\chi\) \(=\) 896.417
Dual form 896.2.ba.f.737.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.827840 + 0.221819i) q^{3} +(-4.10878 - 1.10095i) q^{5} +(-2.50325 - 0.856573i) q^{7} +(-1.96196 + 1.13274i) q^{9} +(0.318576 + 1.18894i) q^{11} +(1.73092 + 1.73092i) q^{13} +3.64563 q^{15} +(-0.931914 + 1.61412i) q^{17} +(0.989804 - 3.69400i) q^{19} +(2.26230 + 0.153836i) q^{21} +(1.23305 - 0.711901i) q^{23} +(11.3399 + 6.54709i) q^{25} +(3.19099 - 3.19099i) q^{27} +(0.181826 + 0.181826i) q^{29} +(3.23200 - 5.59799i) q^{31} +(-0.527459 - 0.913587i) q^{33} +(9.34229 + 6.27542i) q^{35} +(-0.238000 - 0.0637719i) q^{37} +(-1.81687 - 1.04897i) q^{39} -0.440182i q^{41} +(5.54503 - 5.54503i) q^{43} +(9.30835 - 2.49417i) q^{45} +(-3.61427 - 6.26009i) q^{47} +(5.53257 + 4.28844i) q^{49} +(0.413433 - 1.54295i) q^{51} +(2.59716 + 9.69274i) q^{53} -5.23583i q^{55} +3.27760i q^{57} +(0.438601 + 1.63688i) q^{59} +(-2.41596 + 9.01647i) q^{61} +(5.88156 - 1.15497i) q^{63} +(-5.20632 - 9.01761i) q^{65} +(-9.59422 + 2.57076i) q^{67} +(-0.862854 + 0.862854i) q^{69} +11.2912i q^{71} +(-8.13092 - 4.69439i) q^{73} +(-10.8399 - 2.90454i) q^{75} +(0.220938 - 3.24910i) q^{77} +(6.52948 + 11.3094i) q^{79} +(1.46441 - 2.53643i) q^{81} +(3.06926 + 3.06926i) q^{83} +(5.60609 - 5.60609i) q^{85} +(-0.190855 - 0.110190i) q^{87} +(-5.66084 + 3.26829i) q^{89} +(-2.85027 - 5.81558i) q^{91} +(-1.43384 + 5.35117i) q^{93} +(-8.13378 + 14.0881i) q^{95} +1.70409 q^{97} +(-1.97179 - 1.97179i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 4 q^{5} + 4 q^{11} + 24 q^{13} - 40 q^{15} + 8 q^{17} + 4 q^{19} + 8 q^{21} + 24 q^{27} - 24 q^{29} + 28 q^{31} + 16 q^{33} - 28 q^{35} + 24 q^{37} + 40 q^{43} + 28 q^{45} - 20 q^{47} - 24 q^{51}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/896\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(645\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.827840 + 0.221819i −0.477954 + 0.128067i −0.489750 0.871863i \(-0.662912\pi\)
0.0117959 + 0.999930i \(0.496245\pi\)
\(4\) 0 0
\(5\) −4.10878 1.10095i −1.83750 0.492358i −0.838857 0.544352i \(-0.816775\pi\)
−0.998647 + 0.0519945i \(0.983442\pi\)
\(6\) 0 0
\(7\) −2.50325 0.856573i −0.946141 0.323754i
\(8\) 0 0
\(9\) −1.96196 + 1.13274i −0.653987 + 0.377579i
\(10\) 0 0
\(11\) 0.318576 + 1.18894i 0.0960542 + 0.358479i 0.997177 0.0750845i \(-0.0239226\pi\)
−0.901123 + 0.433564i \(0.857256\pi\)
\(12\) 0 0
\(13\) 1.73092 + 1.73092i 0.480070 + 0.480070i 0.905154 0.425084i \(-0.139755\pi\)
−0.425084 + 0.905154i \(0.639755\pi\)
\(14\) 0 0
\(15\) 3.64563 0.941297
\(16\) 0 0
\(17\) −0.931914 + 1.61412i −0.226022 + 0.391482i −0.956626 0.291320i \(-0.905906\pi\)
0.730603 + 0.682802i \(0.239239\pi\)
\(18\) 0 0
\(19\) 0.989804 3.69400i 0.227077 0.847462i −0.754485 0.656317i \(-0.772113\pi\)
0.981562 0.191145i \(-0.0612199\pi\)
\(20\) 0 0
\(21\) 2.26230 + 0.153836i 0.493674 + 0.0335697i
\(22\) 0 0
\(23\) 1.23305 0.711901i 0.257108 0.148442i −0.365906 0.930652i \(-0.619241\pi\)
0.623015 + 0.782210i \(0.285908\pi\)
\(24\) 0 0
\(25\) 11.3399 + 6.54709i 2.26798 + 1.30942i
\(26\) 0 0
\(27\) 3.19099 3.19099i 0.614106 0.614106i
\(28\) 0 0
\(29\) 0.181826 + 0.181826i 0.0337642 + 0.0337642i 0.723787 0.690023i \(-0.242400\pi\)
−0.690023 + 0.723787i \(0.742400\pi\)
\(30\) 0 0
\(31\) 3.23200 5.59799i 0.580485 1.00543i −0.414937 0.909850i \(-0.636196\pi\)
0.995422 0.0955792i \(-0.0304703\pi\)
\(32\) 0 0
\(33\) −0.527459 0.913587i −0.0918189 0.159035i
\(34\) 0 0
\(35\) 9.34229 + 6.27542i 1.57914 + 1.06074i
\(36\) 0 0
\(37\) −0.238000 0.0637719i −0.0391269 0.0104840i 0.239202 0.970970i \(-0.423114\pi\)
−0.278329 + 0.960486i \(0.589781\pi\)
\(38\) 0 0
\(39\) −1.81687 1.04897i −0.290933 0.167970i
\(40\) 0 0
\(41\) 0.440182i 0.0687448i −0.999409 0.0343724i \(-0.989057\pi\)
0.999409 0.0343724i \(-0.0109432\pi\)
\(42\) 0 0
\(43\) 5.54503 5.54503i 0.845609 0.845609i −0.143972 0.989582i \(-0.545988\pi\)
0.989582 + 0.143972i \(0.0459877\pi\)
\(44\) 0 0
\(45\) 9.30835 2.49417i 1.38761 0.371808i
\(46\) 0 0
\(47\) −3.61427 6.26009i −0.527195 0.913128i −0.999498 0.0316918i \(-0.989910\pi\)
0.472303 0.881436i \(-0.343423\pi\)
\(48\) 0 0
\(49\) 5.53257 + 4.28844i 0.790366 + 0.612634i
\(50\) 0 0
\(51\) 0.413433 1.54295i 0.0578921 0.216056i
\(52\) 0 0
\(53\) 2.59716 + 9.69274i 0.356747 + 1.33140i 0.878271 + 0.478163i \(0.158697\pi\)
−0.521524 + 0.853237i \(0.674636\pi\)
\(54\) 0 0
\(55\) 5.23583i 0.706000i
\(56\) 0 0
\(57\) 3.27760i 0.434129i
\(58\) 0 0
\(59\) 0.438601 + 1.63688i 0.0571010 + 0.213104i 0.988581 0.150688i \(-0.0481488\pi\)
−0.931480 + 0.363791i \(0.881482\pi\)
\(60\) 0 0
\(61\) −2.41596 + 9.01647i −0.309331 + 1.15444i 0.619821 + 0.784743i \(0.287205\pi\)
−0.929152 + 0.369697i \(0.879461\pi\)
\(62\) 0 0
\(63\) 5.88156 1.15497i 0.741007 0.145513i
\(64\) 0 0
\(65\) −5.20632 9.01761i −0.645765 1.11850i
\(66\) 0 0
\(67\) −9.59422 + 2.57076i −1.17212 + 0.314069i −0.791797 0.610785i \(-0.790854\pi\)
−0.380324 + 0.924853i \(0.624187\pi\)
\(68\) 0 0
\(69\) −0.862854 + 0.862854i −0.103875 + 0.103875i
\(70\) 0 0
\(71\) 11.2912i 1.34002i 0.742352 + 0.670010i \(0.233710\pi\)
−0.742352 + 0.670010i \(0.766290\pi\)
\(72\) 0 0
\(73\) −8.13092 4.69439i −0.951652 0.549437i −0.0580583 0.998313i \(-0.518491\pi\)
−0.893594 + 0.448877i \(0.851824\pi\)
\(74\) 0 0
\(75\) −10.8399 2.90454i −1.25168 0.335388i
\(76\) 0 0
\(77\) 0.220938 3.24910i 0.0251783 0.370270i
\(78\) 0 0
\(79\) 6.52948 + 11.3094i 0.734624 + 1.27241i 0.954888 + 0.296966i \(0.0959747\pi\)
−0.220264 + 0.975440i \(0.570692\pi\)
\(80\) 0 0
\(81\) 1.46441 2.53643i 0.162712 0.281825i
\(82\) 0 0
\(83\) 3.06926 + 3.06926i 0.336895 + 0.336895i 0.855198 0.518302i \(-0.173436\pi\)
−0.518302 + 0.855198i \(0.673436\pi\)
\(84\) 0 0
\(85\) 5.60609 5.60609i 0.608066 0.608066i
\(86\) 0 0
\(87\) −0.190855 0.110190i −0.0204618 0.0118137i
\(88\) 0 0
\(89\) −5.66084 + 3.26829i −0.600047 + 0.346438i −0.769060 0.639176i \(-0.779275\pi\)
0.169013 + 0.985614i \(0.445942\pi\)
\(90\) 0 0
\(91\) −2.85027 5.81558i −0.298789 0.609639i
\(92\) 0 0
\(93\) −1.43384 + 5.35117i −0.148682 + 0.554890i
\(94\) 0 0
\(95\) −8.13378 + 14.0881i −0.834508 + 1.44541i
\(96\) 0 0
\(97\) 1.70409 0.173024 0.0865122 0.996251i \(-0.472428\pi\)
0.0865122 + 0.996251i \(0.472428\pi\)
\(98\) 0 0
\(99\) −1.97179 1.97179i −0.198172 0.198172i
\(100\) 0 0
\(101\) −0.632838 2.36178i −0.0629697 0.235006i 0.927267 0.374400i \(-0.122151\pi\)
−0.990237 + 0.139394i \(0.955485\pi\)
\(102\) 0 0
\(103\) 12.6328 7.29353i 1.24474 0.718653i 0.274687 0.961534i \(-0.411426\pi\)
0.970056 + 0.242881i \(0.0780923\pi\)
\(104\) 0 0
\(105\) −9.12593 3.12275i −0.890600 0.304749i
\(106\) 0 0
\(107\) 4.80256 + 1.28684i 0.464281 + 0.124404i 0.483374 0.875414i \(-0.339411\pi\)
−0.0190927 + 0.999818i \(0.506078\pi\)
\(108\) 0 0
\(109\) 9.76613 2.61683i 0.935426 0.250647i 0.241259 0.970461i \(-0.422440\pi\)
0.694167 + 0.719814i \(0.255773\pi\)
\(110\) 0 0
\(111\) 0.211172 0.0200435
\(112\) 0 0
\(113\) 5.22780 0.491791 0.245895 0.969296i \(-0.420918\pi\)
0.245895 + 0.969296i \(0.420918\pi\)
\(114\) 0 0
\(115\) −5.85009 + 1.56753i −0.545524 + 0.146173i
\(116\) 0 0
\(117\) −5.35667 1.43532i −0.495224 0.132695i
\(118\) 0 0
\(119\) 3.71543 3.24230i 0.340593 0.297222i
\(120\) 0 0
\(121\) 8.21419 4.74247i 0.746745 0.431133i
\(122\) 0 0
\(123\) 0.0976407 + 0.364400i 0.00880396 + 0.0328568i
\(124\) 0 0
\(125\) −24.3460 24.3460i −2.17757 2.17757i
\(126\) 0 0
\(127\) −1.20463 −0.106893 −0.0534467 0.998571i \(-0.517021\pi\)
−0.0534467 + 0.998571i \(0.517021\pi\)
\(128\) 0 0
\(129\) −3.36041 + 5.82039i −0.295867 + 0.512457i
\(130\) 0 0
\(131\) 0.809509 3.02113i 0.0707272 0.263957i −0.921503 0.388370i \(-0.873038\pi\)
0.992231 + 0.124413i \(0.0397048\pi\)
\(132\) 0 0
\(133\) −5.64191 + 8.39918i −0.489216 + 0.728301i
\(134\) 0 0
\(135\) −16.6242 + 9.59798i −1.43078 + 0.826063i
\(136\) 0 0
\(137\) 0.286357 + 0.165329i 0.0244652 + 0.0141250i 0.512183 0.858877i \(-0.328837\pi\)
−0.487718 + 0.873001i \(0.662170\pi\)
\(138\) 0 0
\(139\) 2.41295 2.41295i 0.204663 0.204663i −0.597331 0.801995i \(-0.703772\pi\)
0.801995 + 0.597331i \(0.203772\pi\)
\(140\) 0 0
\(141\) 4.38064 + 4.38064i 0.368917 + 0.368917i
\(142\) 0 0
\(143\) −1.50653 + 2.60939i −0.125982 + 0.218208i
\(144\) 0 0
\(145\) −0.546903 0.947264i −0.0454179 0.0786660i
\(146\) 0 0
\(147\) −5.53134 2.32291i −0.456217 0.191591i
\(148\) 0 0
\(149\) 2.36381 + 0.633381i 0.193651 + 0.0518886i 0.354341 0.935116i \(-0.384705\pi\)
−0.160690 + 0.987005i \(0.551372\pi\)
\(150\) 0 0
\(151\) 11.4320 + 6.60029i 0.930326 + 0.537124i 0.886915 0.461934i \(-0.152844\pi\)
0.0434110 + 0.999057i \(0.486177\pi\)
\(152\) 0 0
\(153\) 4.22246i 0.341365i
\(154\) 0 0
\(155\) −19.4427 + 19.4427i −1.56167 + 1.56167i
\(156\) 0 0
\(157\) 3.45433 0.925585i 0.275685 0.0738697i −0.118327 0.992975i \(-0.537753\pi\)
0.394013 + 0.919105i \(0.371087\pi\)
\(158\) 0 0
\(159\) −4.30007 7.44794i −0.341018 0.590660i
\(160\) 0 0
\(161\) −3.69643 + 0.725873i −0.291319 + 0.0572068i
\(162\) 0 0
\(163\) 2.90781 10.8521i 0.227757 0.850001i −0.753524 0.657420i \(-0.771648\pi\)
0.981281 0.192581i \(-0.0616857\pi\)
\(164\) 0 0
\(165\) 1.16141 + 4.33443i 0.0904155 + 0.337435i
\(166\) 0 0
\(167\) 11.7171i 0.906693i −0.891334 0.453346i \(-0.850230\pi\)
0.891334 0.453346i \(-0.149770\pi\)
\(168\) 0 0
\(169\) 7.00785i 0.539065i
\(170\) 0 0
\(171\) 2.24238 + 8.36867i 0.171479 + 0.639968i
\(172\) 0 0
\(173\) −2.83415 + 10.5772i −0.215476 + 0.804169i 0.770522 + 0.637413i \(0.219996\pi\)
−0.985998 + 0.166755i \(0.946671\pi\)
\(174\) 0 0
\(175\) −22.7786 26.1025i −1.72190 1.97316i
\(176\) 0 0
\(177\) −0.726183 1.25779i −0.0545833 0.0945410i
\(178\) 0 0
\(179\) 16.1464 4.32641i 1.20684 0.323371i 0.401317 0.915939i \(-0.368553\pi\)
0.805520 + 0.592568i \(0.201886\pi\)
\(180\) 0 0
\(181\) 15.9791 15.9791i 1.18772 1.18772i 0.210025 0.977696i \(-0.432646\pi\)
0.977696 0.210025i \(-0.0673544\pi\)
\(182\) 0 0
\(183\) 8.00010i 0.591385i
\(184\) 0 0
\(185\) 0.907680 + 0.524050i 0.0667340 + 0.0385289i
\(186\) 0 0
\(187\) −2.21598 0.593770i −0.162048 0.0434208i
\(188\) 0 0
\(189\) −10.7212 + 5.25454i −0.779851 + 0.382212i
\(190\) 0 0
\(191\) 4.97963 + 8.62497i 0.360313 + 0.624081i 0.988012 0.154375i \(-0.0493364\pi\)
−0.627699 + 0.778456i \(0.716003\pi\)
\(192\) 0 0
\(193\) −4.02312 + 6.96824i −0.289590 + 0.501585i −0.973712 0.227783i \(-0.926852\pi\)
0.684122 + 0.729368i \(0.260186\pi\)
\(194\) 0 0
\(195\) 6.31028 + 6.31028i 0.451889 + 0.451889i
\(196\) 0 0
\(197\) −6.01951 + 6.01951i −0.428873 + 0.428873i −0.888244 0.459372i \(-0.848075\pi\)
0.459372 + 0.888244i \(0.348075\pi\)
\(198\) 0 0
\(199\) 12.7812 + 7.37922i 0.906035 + 0.523099i 0.879153 0.476539i \(-0.158109\pi\)
0.0268814 + 0.999639i \(0.491442\pi\)
\(200\) 0 0
\(201\) 7.37224 4.25636i 0.519998 0.300221i
\(202\) 0 0
\(203\) −0.299410 0.610904i −0.0210144 0.0428771i
\(204\) 0 0
\(205\) −0.484616 + 1.80861i −0.0338470 + 0.126319i
\(206\) 0 0
\(207\) −1.61279 + 2.79344i −0.112097 + 0.194158i
\(208\) 0 0
\(209\) 4.70727 0.325609
\(210\) 0 0
\(211\) −14.5016 14.5016i −0.998329 0.998329i 0.00166940 0.999999i \(-0.499469\pi\)
−0.999999 + 0.00166940i \(0.999469\pi\)
\(212\) 0 0
\(213\) −2.50461 9.34732i −0.171613 0.640468i
\(214\) 0 0
\(215\) −28.8881 + 16.6786i −1.97015 + 1.13747i
\(216\) 0 0
\(217\) −12.8856 + 11.2448i −0.874733 + 0.763344i
\(218\) 0 0
\(219\) 7.77241 + 2.08261i 0.525211 + 0.140730i
\(220\) 0 0
\(221\) −4.40698 + 1.18085i −0.296445 + 0.0794323i
\(222\) 0 0
\(223\) 4.72461 0.316383 0.158192 0.987408i \(-0.449434\pi\)
0.158192 + 0.987408i \(0.449434\pi\)
\(224\) 0 0
\(225\) −29.6646 −1.97764
\(226\) 0 0
\(227\) −15.9081 + 4.26257i −1.05586 + 0.282917i −0.744671 0.667431i \(-0.767394\pi\)
−0.311189 + 0.950348i \(0.600727\pi\)
\(228\) 0 0
\(229\) 13.3085 + 3.56601i 0.879453 + 0.235649i 0.670171 0.742207i \(-0.266221\pi\)
0.209282 + 0.977855i \(0.432887\pi\)
\(230\) 0 0
\(231\) 0.537812 + 2.73875i 0.0353854 + 0.180196i
\(232\) 0 0
\(233\) 12.0806 6.97475i 0.791428 0.456931i −0.0490370 0.998797i \(-0.515615\pi\)
0.840465 + 0.541866i \(0.182282\pi\)
\(234\) 0 0
\(235\) 7.95822 + 29.7005i 0.519137 + 1.93745i
\(236\) 0 0
\(237\) −7.91401 7.91401i −0.514070 0.514070i
\(238\) 0 0
\(239\) −23.1794 −1.49935 −0.749674 0.661807i \(-0.769790\pi\)
−0.749674 + 0.661807i \(0.769790\pi\)
\(240\) 0 0
\(241\) 2.09690 3.63195i 0.135073 0.233954i −0.790552 0.612395i \(-0.790206\pi\)
0.925626 + 0.378441i \(0.123540\pi\)
\(242\) 0 0
\(243\) −4.15362 + 15.5015i −0.266455 + 0.994422i
\(244\) 0 0
\(245\) −18.0108 23.7113i −1.15067 1.51486i
\(246\) 0 0
\(247\) 8.10728 4.68074i 0.515854 0.297828i
\(248\) 0 0
\(249\) −3.22168 1.86004i −0.204166 0.117875i
\(250\) 0 0
\(251\) 16.5937 16.5937i 1.04739 1.04739i 0.0485679 0.998820i \(-0.484534\pi\)
0.998820 0.0485679i \(-0.0154657\pi\)
\(252\) 0 0
\(253\) 1.23923 + 1.23923i 0.0779095 + 0.0779095i
\(254\) 0 0
\(255\) −3.39741 + 5.88449i −0.212754 + 0.368501i
\(256\) 0 0
\(257\) 5.52727 + 9.57351i 0.344782 + 0.597179i 0.985314 0.170752i \(-0.0546196\pi\)
−0.640532 + 0.767931i \(0.721286\pi\)
\(258\) 0 0
\(259\) 0.541149 + 0.363501i 0.0336254 + 0.0225869i
\(260\) 0 0
\(261\) −0.562697 0.150774i −0.0348301 0.00933269i
\(262\) 0 0
\(263\) −14.1936 8.19466i −0.875213 0.505304i −0.00613562 0.999981i \(-0.501953\pi\)
−0.869077 + 0.494677i \(0.835286\pi\)
\(264\) 0 0
\(265\) 42.6847i 2.62210i
\(266\) 0 0
\(267\) 3.96130 3.96130i 0.242428 0.242428i
\(268\) 0 0
\(269\) 1.24494 0.333581i 0.0759055 0.0203388i −0.220666 0.975349i \(-0.570823\pi\)
0.296572 + 0.955011i \(0.404157\pi\)
\(270\) 0 0
\(271\) 10.0688 + 17.4397i 0.611639 + 1.05939i 0.990964 + 0.134126i \(0.0428227\pi\)
−0.379326 + 0.925263i \(0.623844\pi\)
\(272\) 0 0
\(273\) 3.64958 + 4.18213i 0.220882 + 0.253114i
\(274\) 0 0
\(275\) −4.17149 + 15.5682i −0.251550 + 0.938798i
\(276\) 0 0
\(277\) −8.35382 31.1769i −0.501932 1.87324i −0.487100 0.873346i \(-0.661945\pi\)
−0.0148319 0.999890i \(-0.504721\pi\)
\(278\) 0 0
\(279\) 14.6441i 0.876717i
\(280\) 0 0
\(281\) 13.6466i 0.814089i 0.913408 + 0.407044i \(0.133441\pi\)
−0.913408 + 0.407044i \(0.866559\pi\)
\(282\) 0 0
\(283\) 4.86306 + 18.1492i 0.289079 + 1.07886i 0.945807 + 0.324730i \(0.105273\pi\)
−0.656728 + 0.754128i \(0.728060\pi\)
\(284\) 0 0
\(285\) 3.60846 13.4669i 0.213747 0.797713i
\(286\) 0 0
\(287\) −0.377048 + 1.10189i −0.0222564 + 0.0650423i
\(288\) 0 0
\(289\) 6.76307 + 11.7140i 0.397828 + 0.689058i
\(290\) 0 0
\(291\) −1.41072 + 0.378000i −0.0826977 + 0.0221588i
\(292\) 0 0
\(293\) −2.19433 + 2.19433i −0.128194 + 0.128194i −0.768293 0.640099i \(-0.778893\pi\)
0.640099 + 0.768293i \(0.278893\pi\)
\(294\) 0 0
\(295\) 7.20847i 0.419693i
\(296\) 0 0
\(297\) 4.81047 + 2.77733i 0.279132 + 0.161157i
\(298\) 0 0
\(299\) 3.36655 + 0.902063i 0.194692 + 0.0521677i
\(300\) 0 0
\(301\) −18.6303 + 9.13090i −1.07384 + 0.526296i
\(302\) 0 0
\(303\) 1.04778 + 1.81480i 0.0601932 + 0.104258i
\(304\) 0 0
\(305\) 19.8533 34.3869i 1.13680 1.96899i
\(306\) 0 0
\(307\) 8.28029 + 8.28029i 0.472581 + 0.472581i 0.902749 0.430168i \(-0.141546\pi\)
−0.430168 + 0.902749i \(0.641546\pi\)
\(308\) 0 0
\(309\) −8.84007 + 8.84007i −0.502894 + 0.502894i
\(310\) 0 0
\(311\) −7.36500 4.25218i −0.417631 0.241119i 0.276432 0.961033i \(-0.410848\pi\)
−0.694063 + 0.719914i \(0.744181\pi\)
\(312\) 0 0
\(313\) −14.1001 + 8.14069i −0.796984 + 0.460139i −0.842415 0.538829i \(-0.818867\pi\)
0.0454317 + 0.998967i \(0.485534\pi\)
\(314\) 0 0
\(315\) −25.4376 1.72975i −1.43325 0.0974605i
\(316\) 0 0
\(317\) 5.85666 21.8574i 0.328943 1.22763i −0.581345 0.813657i \(-0.697474\pi\)
0.910288 0.413975i \(-0.135860\pi\)
\(318\) 0 0
\(319\) −0.158255 + 0.274106i −0.00886058 + 0.0153470i
\(320\) 0 0
\(321\) −4.26120 −0.237837
\(322\) 0 0
\(323\) 5.04015 + 5.04015i 0.280442 + 0.280442i
\(324\) 0 0
\(325\) 8.29595 + 30.9609i 0.460177 + 1.71740i
\(326\) 0 0
\(327\) −7.50434 + 4.33263i −0.414991 + 0.239595i
\(328\) 0 0
\(329\) 3.68520 + 18.7665i 0.203172 + 1.03463i
\(330\) 0 0
\(331\) −11.2314 3.00945i −0.617334 0.165414i −0.0634183 0.997987i \(-0.520200\pi\)
−0.553915 + 0.832573i \(0.686867\pi\)
\(332\) 0 0
\(333\) 0.539183 0.144474i 0.0295470 0.00791711i
\(334\) 0 0
\(335\) 42.2509 2.30841
\(336\) 0 0
\(337\) 15.7590 0.858445 0.429223 0.903199i \(-0.358788\pi\)
0.429223 + 0.903199i \(0.358788\pi\)
\(338\) 0 0
\(339\) −4.32779 + 1.15963i −0.235053 + 0.0629823i
\(340\) 0 0
\(341\) 7.68532 + 2.05928i 0.416183 + 0.111516i
\(342\) 0 0
\(343\) −10.1761 15.4741i −0.549455 0.835523i
\(344\) 0 0
\(345\) 4.49523 2.59533i 0.242015 0.139728i
\(346\) 0 0
\(347\) −3.95167 14.7478i −0.212137 0.791706i −0.987155 0.159766i \(-0.948926\pi\)
0.775018 0.631939i \(-0.217741\pi\)
\(348\) 0 0
\(349\) 6.62124 + 6.62124i 0.354427 + 0.354427i 0.861754 0.507327i \(-0.169366\pi\)
−0.507327 + 0.861754i \(0.669366\pi\)
\(350\) 0 0
\(351\) 11.0467 0.589628
\(352\) 0 0
\(353\) −10.9032 + 18.8849i −0.580319 + 1.00514i 0.415123 + 0.909765i \(0.363739\pi\)
−0.995441 + 0.0953759i \(0.969595\pi\)
\(354\) 0 0
\(355\) 12.4310 46.3931i 0.659769 2.46229i
\(356\) 0 0
\(357\) −2.35658 + 3.50826i −0.124723 + 0.185677i
\(358\) 0 0
\(359\) 29.8216 17.2175i 1.57392 0.908704i 0.578241 0.815866i \(-0.303739\pi\)
0.995681 0.0928386i \(-0.0295941\pi\)
\(360\) 0 0
\(361\) 3.78856 + 2.18733i 0.199398 + 0.115123i
\(362\) 0 0
\(363\) −5.74807 + 5.74807i −0.301695 + 0.301695i
\(364\) 0 0
\(365\) 28.2399 + 28.2399i 1.47815 + 1.47815i
\(366\) 0 0
\(367\) −1.65812 + 2.87195i −0.0865533 + 0.149915i −0.906052 0.423166i \(-0.860919\pi\)
0.819499 + 0.573081i \(0.194252\pi\)
\(368\) 0 0
\(369\) 0.498611 + 0.863619i 0.0259566 + 0.0449582i
\(370\) 0 0
\(371\) 1.80118 26.4880i 0.0935127 1.37519i
\(372\) 0 0
\(373\) 22.4918 + 6.02667i 1.16458 + 0.312049i 0.788795 0.614656i \(-0.210705\pi\)
0.375789 + 0.926705i \(0.377372\pi\)
\(374\) 0 0
\(375\) 25.5550 + 14.7542i 1.31966 + 0.761903i
\(376\) 0 0
\(377\) 0.629452i 0.0324184i
\(378\) 0 0
\(379\) −2.77271 + 2.77271i −0.142425 + 0.142425i −0.774724 0.632299i \(-0.782111\pi\)
0.632299 + 0.774724i \(0.282111\pi\)
\(380\) 0 0
\(381\) 0.997239 0.267209i 0.0510901 0.0136895i
\(382\) 0 0
\(383\) −10.6953 18.5248i −0.546504 0.946572i −0.998511 0.0545578i \(-0.982625\pi\)
0.452007 0.892014i \(-0.350708\pi\)
\(384\) 0 0
\(385\) −4.48487 + 13.1066i −0.228570 + 0.667975i
\(386\) 0 0
\(387\) −4.59806 + 17.1602i −0.233733 + 0.872302i
\(388\) 0 0
\(389\) 6.51295 + 24.3067i 0.330220 + 1.23240i 0.908959 + 0.416885i \(0.136878\pi\)
−0.578740 + 0.815512i \(0.696455\pi\)
\(390\) 0 0
\(391\) 2.65372i 0.134204i
\(392\) 0 0
\(393\) 2.68058i 0.135217i
\(394\) 0 0
\(395\) −14.3772 53.6564i −0.723395 2.69975i
\(396\) 0 0
\(397\) −0.101204 + 0.377699i −0.00507929 + 0.0189562i −0.968419 0.249328i \(-0.919790\pi\)
0.963340 + 0.268285i \(0.0864568\pi\)
\(398\) 0 0
\(399\) 2.80750 8.20466i 0.140551 0.410747i
\(400\) 0 0
\(401\) −9.92701 17.1941i −0.495731 0.858631i 0.504257 0.863554i \(-0.331766\pi\)
−0.999988 + 0.00492242i \(0.998433\pi\)
\(402\) 0 0
\(403\) 15.2840 4.09534i 0.761350 0.204003i
\(404\) 0 0
\(405\) −8.80940 + 8.80940i −0.437743 + 0.437743i
\(406\) 0 0
\(407\) 0.303284i 0.0150332i
\(408\) 0 0
\(409\) 30.4501 + 17.5804i 1.50566 + 0.869295i 0.999978 + 0.00657643i \(0.00209336\pi\)
0.505685 + 0.862718i \(0.331240\pi\)
\(410\) 0 0
\(411\) −0.273731 0.0733461i −0.0135022 0.00361789i
\(412\) 0 0
\(413\) 0.304178 4.47322i 0.0149676 0.220113i
\(414\) 0 0
\(415\) −9.23185 15.9900i −0.453174 0.784920i
\(416\) 0 0
\(417\) −1.46230 + 2.53277i −0.0716089 + 0.124030i
\(418\) 0 0
\(419\) 17.1877 + 17.1877i 0.839673 + 0.839673i 0.988816 0.149142i \(-0.0476513\pi\)
−0.149142 + 0.988816i \(0.547651\pi\)
\(420\) 0 0
\(421\) −12.9543 + 12.9543i −0.631352 + 0.631352i −0.948407 0.317055i \(-0.897306\pi\)
0.317055 + 0.948407i \(0.397306\pi\)
\(422\) 0 0
\(423\) 14.1821 + 8.18803i 0.689557 + 0.398116i
\(424\) 0 0
\(425\) −21.1356 + 12.2026i −1.02523 + 0.591915i
\(426\) 0 0
\(427\) 13.7710 20.5011i 0.666426 0.992117i
\(428\) 0 0
\(429\) 0.668354 2.49433i 0.0322685 0.120427i
\(430\) 0 0
\(431\) 2.85225 4.94025i 0.137388 0.237963i −0.789119 0.614240i \(-0.789463\pi\)
0.926507 + 0.376277i \(0.122796\pi\)
\(432\) 0 0
\(433\) −8.09187 −0.388870 −0.194435 0.980915i \(-0.562287\pi\)
−0.194435 + 0.980915i \(0.562287\pi\)
\(434\) 0 0
\(435\) 0.662870 + 0.662870i 0.0317822 + 0.0317822i
\(436\) 0 0
\(437\) −1.40928 5.25952i −0.0674152 0.251597i
\(438\) 0 0
\(439\) 6.11379 3.52980i 0.291795 0.168468i −0.346956 0.937881i \(-0.612785\pi\)
0.638751 + 0.769413i \(0.279451\pi\)
\(440\) 0 0
\(441\) −15.7124 2.14680i −0.748207 0.102229i
\(442\) 0 0
\(443\) 14.7590 + 3.95466i 0.701221 + 0.187891i 0.591777 0.806102i \(-0.298427\pi\)
0.109443 + 0.993993i \(0.465093\pi\)
\(444\) 0 0
\(445\) 26.8574 7.19641i 1.27316 0.341142i
\(446\) 0 0
\(447\) −2.09735 −0.0992014
\(448\) 0 0
\(449\) 19.5020 0.920356 0.460178 0.887827i \(-0.347786\pi\)
0.460178 + 0.887827i \(0.347786\pi\)
\(450\) 0 0
\(451\) 0.523350 0.140231i 0.0246436 0.00660322i
\(452\) 0 0
\(453\) −10.9280 2.92814i −0.513441 0.137576i
\(454\) 0 0
\(455\) 5.30850 + 27.0330i 0.248866 + 1.26733i
\(456\) 0 0
\(457\) −8.72578 + 5.03783i −0.408175 + 0.235660i −0.690005 0.723804i \(-0.742392\pi\)
0.281830 + 0.959464i \(0.409058\pi\)
\(458\) 0 0
\(459\) 2.17692 + 8.12437i 0.101610 + 0.379213i
\(460\) 0 0
\(461\) 15.9419 + 15.9419i 0.742487 + 0.742487i 0.973056 0.230569i \(-0.0740587\pi\)
−0.230569 + 0.973056i \(0.574059\pi\)
\(462\) 0 0
\(463\) −8.23452 −0.382690 −0.191345 0.981523i \(-0.561285\pi\)
−0.191345 + 0.981523i \(0.561285\pi\)
\(464\) 0 0
\(465\) 11.7827 20.4082i 0.546409 0.946408i
\(466\) 0 0
\(467\) −8.94417 + 33.3801i −0.413887 + 1.54465i 0.373169 + 0.927764i \(0.378271\pi\)
−0.787055 + 0.616882i \(0.788395\pi\)
\(468\) 0 0
\(469\) 26.2188 + 1.78288i 1.21067 + 0.0823255i
\(470\) 0 0
\(471\) −2.65432 + 1.53247i −0.122305 + 0.0706126i
\(472\) 0 0
\(473\) 8.35922 + 4.82620i 0.384357 + 0.221909i
\(474\) 0 0
\(475\) 35.4092 35.4092i 1.62469 1.62469i
\(476\) 0 0
\(477\) −16.0749 16.0749i −0.736017 0.736017i
\(478\) 0 0
\(479\) 3.70229 6.41255i 0.169162 0.292997i −0.768964 0.639293i \(-0.779227\pi\)
0.938125 + 0.346296i \(0.112561\pi\)
\(480\) 0 0
\(481\) −0.301574 0.522342i −0.0137506 0.0238167i
\(482\) 0 0
\(483\) 2.89904 1.42085i 0.131911 0.0646507i
\(484\) 0 0
\(485\) −7.00175 1.87611i −0.317933 0.0851899i
\(486\) 0 0
\(487\) −29.4458 17.0005i −1.33432 0.770368i −0.348359 0.937361i \(-0.613261\pi\)
−0.985958 + 0.166993i \(0.946594\pi\)
\(488\) 0 0
\(489\) 9.62880i 0.435429i
\(490\) 0 0
\(491\) −2.03871 + 2.03871i −0.0920055 + 0.0920055i −0.751612 0.659606i \(-0.770723\pi\)
0.659606 + 0.751612i \(0.270723\pi\)
\(492\) 0 0
\(493\) −0.462935 + 0.124043i −0.0208496 + 0.00558662i
\(494\) 0 0
\(495\) 5.93083 + 10.2725i 0.266571 + 0.461714i
\(496\) 0 0
\(497\) 9.67175 28.2648i 0.433837 1.26785i
\(498\) 0 0
\(499\) 3.72332 13.8956i 0.166679 0.622053i −0.831141 0.556061i \(-0.812312\pi\)
0.997820 0.0659922i \(-0.0210212\pi\)
\(500\) 0 0
\(501\) 2.59907 + 9.69985i 0.116118 + 0.433357i
\(502\) 0 0
\(503\) 27.2980i 1.21716i −0.793494 0.608579i \(-0.791740\pi\)
0.793494 0.608579i \(-0.208260\pi\)
\(504\) 0 0
\(505\) 10.4008i 0.462828i
\(506\) 0 0
\(507\) 1.55447 + 5.80138i 0.0690366 + 0.257648i
\(508\) 0 0
\(509\) −5.34620 + 19.9523i −0.236966 + 0.884370i 0.740286 + 0.672292i \(0.234690\pi\)
−0.977253 + 0.212078i \(0.931977\pi\)
\(510\) 0 0
\(511\) 16.3327 + 18.7160i 0.722515 + 0.827946i
\(512\) 0 0
\(513\) −8.62906 14.9460i −0.380982 0.659881i
\(514\) 0 0
\(515\) −59.9351 + 16.0596i −2.64106 + 0.707669i
\(516\) 0 0
\(517\) 6.29146 6.29146i 0.276698 0.276698i
\(518\) 0 0
\(519\) 9.38489i 0.411951i
\(520\) 0 0
\(521\) −9.46400 5.46404i −0.414625 0.239384i 0.278150 0.960538i \(-0.410279\pi\)
−0.692775 + 0.721154i \(0.743612\pi\)
\(522\) 0 0
\(523\) −11.8976 3.18796i −0.520247 0.139400i −0.0108660 0.999941i \(-0.503459\pi\)
−0.509381 + 0.860541i \(0.670125\pi\)
\(524\) 0 0
\(525\) 24.6471 + 16.5560i 1.07569 + 0.722562i
\(526\) 0 0
\(527\) 6.02390 + 10.4337i 0.262405 + 0.454499i
\(528\) 0 0
\(529\) −10.4864 + 18.1630i −0.455930 + 0.789694i
\(530\) 0 0
\(531\) −2.71468 2.71468i −0.117807 0.117807i
\(532\) 0 0
\(533\) 0.761918 0.761918i 0.0330023 0.0330023i
\(534\) 0 0
\(535\) −18.3160 10.5747i −0.791868 0.457185i
\(536\) 0 0
\(537\) −12.4069 + 7.16316i −0.535399 + 0.309113i
\(538\) 0 0
\(539\) −3.33616 + 7.94408i −0.143699 + 0.342176i
\(540\) 0 0
\(541\) −4.34231 + 16.2057i −0.186691 + 0.696739i 0.807572 + 0.589769i \(0.200781\pi\)
−0.994262 + 0.106969i \(0.965885\pi\)
\(542\) 0 0
\(543\) −9.68370 + 16.7727i −0.415567 + 0.719784i
\(544\) 0 0
\(545\) −43.0079 −1.84226
\(546\) 0 0
\(547\) 23.2429 + 23.2429i 0.993797 + 0.993797i 0.999981 0.00618416i \(-0.00196849\pi\)
−0.00618416 + 0.999981i \(0.501968\pi\)
\(548\) 0 0
\(549\) −5.47329 20.4266i −0.233594 0.871786i
\(550\) 0 0
\(551\) 0.851637 0.491693i 0.0362810 0.0209468i
\(552\) 0 0
\(553\) −6.65763 33.9033i −0.283111 1.44171i
\(554\) 0 0
\(555\) −0.867659 0.232488i −0.0368301 0.00986858i
\(556\) 0 0
\(557\) 22.7871 6.10578i 0.965519 0.258710i 0.258584 0.965989i \(-0.416744\pi\)
0.706935 + 0.707279i \(0.250077\pi\)
\(558\) 0 0
\(559\) 19.1960 0.811904
\(560\) 0 0
\(561\) 1.96619 0.0830125
\(562\) 0 0
\(563\) 37.6366 10.0847i 1.58620 0.425020i 0.645358 0.763880i \(-0.276708\pi\)
0.940837 + 0.338860i \(0.110041\pi\)
\(564\) 0 0
\(565\) −21.4799 5.75553i −0.903667 0.242137i
\(566\) 0 0
\(567\) −5.83842 + 5.09495i −0.245191 + 0.213968i
\(568\) 0 0
\(569\) 10.2086 5.89395i 0.427968 0.247087i −0.270513 0.962716i \(-0.587193\pi\)
0.698481 + 0.715629i \(0.253860\pi\)
\(570\) 0 0
\(571\) 0.732074 + 2.73214i 0.0306363 + 0.114336i 0.979551 0.201197i \(-0.0644832\pi\)
−0.948914 + 0.315534i \(0.897817\pi\)
\(572\) 0 0
\(573\) −6.03552 6.03552i −0.252138 0.252138i
\(574\) 0 0
\(575\) 18.6435 0.777489
\(576\) 0 0
\(577\) 21.6020 37.4157i 0.899302 1.55764i 0.0709133 0.997482i \(-0.477409\pi\)
0.828389 0.560154i \(-0.189258\pi\)
\(578\) 0 0
\(579\) 1.78481 6.66100i 0.0741741 0.276822i
\(580\) 0 0
\(581\) −5.05410 10.3122i −0.209679 0.427822i
\(582\) 0 0
\(583\) −10.6967 + 6.17574i −0.443012 + 0.255773i
\(584\) 0 0
\(585\) 20.4292 + 11.7948i 0.844643 + 0.487655i
\(586\) 0 0
\(587\) −28.1127 + 28.1127i −1.16034 + 1.16034i −0.175935 + 0.984402i \(0.556295\pi\)
−0.984402 + 0.175935i \(0.943705\pi\)
\(588\) 0 0
\(589\) −17.4799 17.4799i −0.720248 0.720248i
\(590\) 0 0
\(591\) 3.64795 6.31844i 0.150057 0.259906i
\(592\) 0 0
\(593\) 8.44544 + 14.6279i 0.346812 + 0.600697i 0.985681 0.168619i \(-0.0539307\pi\)
−0.638869 + 0.769316i \(0.720597\pi\)
\(594\) 0 0
\(595\) −18.8355 + 9.23145i −0.772180 + 0.378452i
\(596\) 0 0
\(597\) −12.2176 3.27371i −0.500035 0.133984i
\(598\) 0 0
\(599\) 25.7194 + 14.8491i 1.05087 + 0.606718i 0.922892 0.385059i \(-0.125819\pi\)
0.127975 + 0.991777i \(0.459152\pi\)
\(600\) 0 0
\(601\) 30.4663i 1.24275i 0.783515 + 0.621373i \(0.213425\pi\)
−0.783515 + 0.621373i \(0.786575\pi\)
\(602\) 0 0
\(603\) 15.9115 15.9115i 0.647966 0.647966i
\(604\) 0 0
\(605\) −38.9715 + 10.4424i −1.58442 + 0.424544i
\(606\) 0 0
\(607\) −16.6272 28.7992i −0.674879 1.16892i −0.976504 0.215498i \(-0.930863\pi\)
0.301626 0.953426i \(-0.402471\pi\)
\(608\) 0 0
\(609\) 0.383374 + 0.439316i 0.0155351 + 0.0178020i
\(610\) 0 0
\(611\) 4.57971 17.0917i 0.185275 0.691456i
\(612\) 0 0
\(613\) 5.29950 + 19.7780i 0.214045 + 0.798827i 0.986501 + 0.163758i \(0.0523616\pi\)
−0.772456 + 0.635069i \(0.780972\pi\)
\(614\) 0 0
\(615\) 1.60474i 0.0647093i
\(616\) 0 0
\(617\) 2.64884i 0.106638i −0.998578 0.0533192i \(-0.983020\pi\)
0.998578 0.0533192i \(-0.0169801\pi\)
\(618\) 0 0
\(619\) 9.69816 + 36.1940i 0.389802 + 1.45476i 0.830456 + 0.557084i \(0.188080\pi\)
−0.440654 + 0.897677i \(0.645253\pi\)
\(620\) 0 0
\(621\) 1.66298 6.20631i 0.0667330 0.249051i
\(622\) 0 0
\(623\) 16.9700 3.33243i 0.679890 0.133511i
\(624\) 0 0
\(625\) 40.4934 + 70.1366i 1.61974 + 2.80546i
\(626\) 0 0
\(627\) −3.89687 + 1.04416i −0.155626 + 0.0416999i
\(628\) 0 0
\(629\) 0.324731 0.324731i 0.0129479 0.0129479i
\(630\) 0 0
\(631\) 10.0919i 0.401753i 0.979617 + 0.200877i \(0.0643791\pi\)
−0.979617 + 0.200877i \(0.935621\pi\)
\(632\) 0 0
\(633\) 15.2217 + 8.78826i 0.605009 + 0.349302i
\(634\) 0 0
\(635\) 4.94955 + 1.32623i 0.196417 + 0.0526298i
\(636\) 0 0
\(637\) 2.15348 + 16.9994i 0.0853239 + 0.673539i
\(638\) 0 0
\(639\) −12.7900 22.1529i −0.505964 0.876355i
\(640\) 0 0
\(641\) −15.3814 + 26.6413i −0.607528 + 1.05227i 0.384118 + 0.923284i \(0.374505\pi\)
−0.991646 + 0.128986i \(0.958828\pi\)
\(642\) 0 0
\(643\) −22.2297 22.2297i −0.876653 0.876653i 0.116533 0.993187i \(-0.462822\pi\)
−0.993187 + 0.116533i \(0.962822\pi\)
\(644\) 0 0
\(645\) 20.2151 20.2151i 0.795970 0.795970i
\(646\) 0 0
\(647\) −14.3410 8.27978i −0.563803 0.325512i 0.190867 0.981616i \(-0.438870\pi\)
−0.754670 + 0.656104i \(0.772203\pi\)
\(648\) 0 0
\(649\) −1.80643 + 1.04294i −0.0709085 + 0.0409390i
\(650\) 0 0
\(651\) 8.17293 12.1671i 0.320322 0.476868i
\(652\) 0 0
\(653\) 9.67497 36.1075i 0.378611 1.41300i −0.469385 0.882993i \(-0.655524\pi\)
0.847996 0.530002i \(-0.177809\pi\)
\(654\) 0 0
\(655\) −6.65220 + 11.5219i −0.259923 + 0.450200i
\(656\) 0 0
\(657\) 21.2701 0.829824
\(658\) 0 0
\(659\) 14.8808 + 14.8808i 0.579674 + 0.579674i 0.934813 0.355139i \(-0.115567\pi\)
−0.355139 + 0.934813i \(0.615567\pi\)
\(660\) 0 0
\(661\) 2.96488 + 11.0651i 0.115321 + 0.430382i 0.999311 0.0371232i \(-0.0118194\pi\)
−0.883990 + 0.467506i \(0.845153\pi\)
\(662\) 0 0
\(663\) 3.38634 1.95510i 0.131515 0.0759299i
\(664\) 0 0
\(665\) 32.4284 28.2990i 1.25752 1.09739i
\(666\) 0 0
\(667\) 0.353642 + 0.0947582i 0.0136931 + 0.00366905i
\(668\) 0 0
\(669\) −3.91122 + 1.04801i −0.151217 + 0.0405183i
\(670\) 0 0
\(671\) −11.4897 −0.443555
\(672\) 0 0
\(673\) 20.7704 0.800639 0.400319 0.916376i \(-0.368899\pi\)
0.400319 + 0.916376i \(0.368899\pi\)
\(674\) 0 0
\(675\) 57.0772 15.2938i 2.19690 0.588658i
\(676\) 0 0
\(677\) −26.5605 7.11687i −1.02080 0.273524i −0.290667 0.956824i \(-0.593877\pi\)
−0.730137 + 0.683301i \(0.760544\pi\)
\(678\) 0 0
\(679\) −4.26578 1.45968i −0.163706 0.0560174i
\(680\) 0 0
\(681\) 12.2239 7.05746i 0.468420 0.270442i
\(682\) 0 0
\(683\) 0.558762 + 2.08533i 0.0213804 + 0.0797928i 0.975792 0.218702i \(-0.0701822\pi\)
−0.954411 + 0.298495i \(0.903516\pi\)
\(684\) 0 0
\(685\) −0.994563 0.994563i −0.0380003 0.0380003i
\(686\) 0 0
\(687\) −11.8083 −0.450517
\(688\) 0 0
\(689\) −12.2819 + 21.2728i −0.467902 + 0.810429i
\(690\) 0 0
\(691\) 0.631272 2.35594i 0.0240147 0.0896242i −0.952878 0.303352i \(-0.901894\pi\)
0.976893 + 0.213728i \(0.0685607\pi\)
\(692\) 0 0
\(693\) 3.24691 + 6.62488i 0.123340 + 0.251658i
\(694\) 0 0
\(695\) −12.5708 + 7.25775i −0.476837 + 0.275302i
\(696\) 0 0
\(697\) 0.710506 + 0.410211i 0.0269124 + 0.0155379i
\(698\) 0 0
\(699\) −8.45369 + 8.45369i −0.319748 + 0.319748i
\(700\) 0 0
\(701\) −6.81795 6.81795i −0.257510 0.257510i 0.566530 0.824041i \(-0.308285\pi\)
−0.824041 + 0.566530i \(0.808285\pi\)
\(702\) 0 0
\(703\) −0.471146 + 0.816049i −0.0177696 + 0.0307779i
\(704\) 0 0
\(705\) −13.1763 22.8220i −0.496247 0.859525i
\(706\) 0 0
\(707\) −0.438885 + 6.45421i −0.0165060 + 0.242736i
\(708\) 0 0
\(709\) −11.3630 3.04470i −0.426745 0.114346i 0.0390527 0.999237i \(-0.487566\pi\)
−0.465798 + 0.884891i \(0.654233\pi\)
\(710\) 0 0
\(711\) −25.6212 14.7924i −0.960869 0.554758i
\(712\) 0 0
\(713\) 9.20346i 0.344672i
\(714\) 0 0
\(715\) 9.06280 9.06280i 0.338929 0.338929i
\(716\) 0 0
\(717\) 19.1888 5.14163i 0.716619 0.192018i
\(718\) 0 0
\(719\) −16.4827 28.5490i −0.614703 1.06470i −0.990437 0.137969i \(-0.955943\pi\)
0.375734 0.926728i \(-0.377391\pi\)
\(720\) 0 0
\(721\) −37.8705 + 7.43668i −1.41037 + 0.276956i
\(722\) 0 0
\(723\) −0.930267 + 3.47180i −0.0345970 + 0.129118i
\(724\) 0 0
\(725\) 0.871457 + 3.25232i 0.0323651 + 0.120788i
\(726\) 0 0
\(727\) 13.8871i 0.515045i 0.966272 + 0.257523i \(0.0829062\pi\)
−0.966272 + 0.257523i \(0.917094\pi\)
\(728\) 0 0
\(729\) 4.96768i 0.183988i
\(730\) 0 0
\(731\) 3.78286 + 14.1178i 0.139914 + 0.522167i
\(732\) 0 0
\(733\) 2.86505 10.6925i 0.105823 0.394936i −0.892614 0.450821i \(-0.851131\pi\)
0.998437 + 0.0558846i \(0.0177979\pi\)
\(734\) 0 0
\(735\) 20.1697 + 15.6341i 0.743970 + 0.576671i
\(736\) 0 0
\(737\) −6.11297 10.5880i −0.225174 0.390013i
\(738\) 0 0
\(739\) −10.7856 + 2.88999i −0.396754 + 0.106310i −0.451679 0.892181i \(-0.649175\pi\)
0.0549249 + 0.998490i \(0.482508\pi\)
\(740\) 0 0
\(741\) −5.67325 + 5.67325i −0.208412 + 0.208412i
\(742\) 0 0
\(743\) 49.5292i 1.81705i 0.417832 + 0.908524i \(0.362790\pi\)
−0.417832 + 0.908524i \(0.637210\pi\)
\(744\) 0 0
\(745\) −9.01507 5.20485i −0.330287 0.190691i
\(746\) 0 0
\(747\) −9.49845 2.54510i −0.347530 0.0931204i
\(748\) 0 0
\(749\) −10.9198 7.33504i −0.398999 0.268017i
\(750\) 0 0
\(751\) 0.523146 + 0.906116i 0.0190899 + 0.0330646i 0.875413 0.483377i \(-0.160590\pi\)
−0.856323 + 0.516441i \(0.827256\pi\)
\(752\) 0 0
\(753\) −10.0562 + 17.4178i −0.366467 + 0.634739i
\(754\) 0 0
\(755\) −39.7052 39.7052i −1.44502 1.44502i
\(756\) 0 0
\(757\) 29.5274 29.5274i 1.07319 1.07319i 0.0760892 0.997101i \(-0.475757\pi\)
0.997101 0.0760892i \(-0.0242434\pi\)
\(758\) 0 0
\(759\) −1.30077 0.750998i −0.0472148 0.0272595i
\(760\) 0 0
\(761\) 33.9144 19.5805i 1.22940 0.709793i 0.262493 0.964934i \(-0.415455\pi\)
0.966904 + 0.255141i \(0.0821220\pi\)
\(762\) 0 0
\(763\) −26.6886 1.81482i −0.966193 0.0657009i
\(764\) 0 0
\(765\) −4.64869 + 17.3492i −0.168074 + 0.627260i
\(766\) 0 0
\(767\) −2.07412 + 3.59249i −0.0748923 + 0.129717i
\(768\) 0 0
\(769\) 28.7025 1.03504 0.517519 0.855672i \(-0.326856\pi\)
0.517519 + 0.855672i \(0.326856\pi\)
\(770\) 0 0
\(771\) −6.69929 6.69929i −0.241269 0.241269i
\(772\) 0 0
\(773\) −3.90180 14.5617i −0.140338 0.523748i −0.999919 0.0127485i \(-0.995942\pi\)
0.859581 0.511000i \(-0.170725\pi\)
\(774\) 0 0
\(775\) 73.3012 42.3205i 2.63306 1.52020i
\(776\) 0 0
\(777\) −0.528616 0.180884i −0.0189640 0.00648917i
\(778\) 0 0
\(779\) −1.62603 0.435693i −0.0582586 0.0156103i
\(780\) 0 0
\(781\) −13.4246 + 3.59710i −0.480369 + 0.128715i
\(782\) 0 0
\(783\) 1.16041 0.0414697
\(784\) 0 0
\(785\) −15.2121 −0.542944
\(786\) 0 0
\(787\) −22.6434 + 6.06728i −0.807150 + 0.216275i −0.638721 0.769438i \(-0.720536\pi\)
−0.168429 + 0.985714i \(0.553869\pi\)
\(788\) 0 0
\(789\) 13.5677 + 3.63546i 0.483024 + 0.129426i
\(790\) 0 0
\(791\) −13.0865 4.47800i −0.465303 0.159219i
\(792\) 0 0
\(793\) −19.7886 + 11.4249i −0.702713 + 0.405712i
\(794\) 0 0
\(795\) 9.46828 + 35.3361i 0.335805 + 1.25324i
\(796\) 0 0
\(797\) −3.81531 3.81531i −0.135145 0.135145i 0.636298 0.771443i \(-0.280465\pi\)
−0.771443 + 0.636298i \(0.780465\pi\)
\(798\) 0 0
\(799\) 13.4727 0.476631
\(800\) 0 0
\(801\) 7.40422 12.8245i 0.261615 0.453131i
\(802\) 0 0
\(803\) 2.99104 11.1627i 0.105551 0.393923i
\(804\) 0 0
\(805\) 15.9870 + 1.08711i 0.563467 + 0.0383156i
\(806\) 0 0
\(807\) −0.956619 + 0.552304i −0.0336746 + 0.0194420i
\(808\) 0 0
\(809\) −24.7881 14.3114i −0.871505 0.503164i −0.00365682 0.999993i \(-0.501164\pi\)
−0.867848 + 0.496830i \(0.834497\pi\)
\(810\) 0 0
\(811\) −9.30808 + 9.30808i −0.326851 + 0.326851i −0.851388 0.524537i \(-0.824238\pi\)
0.524537 + 0.851388i \(0.324238\pi\)
\(812\) 0 0
\(813\) −12.2039 12.2039i −0.428008 0.428008i
\(814\) 0 0
\(815\) −23.8951 + 41.3875i −0.837009 + 1.44974i
\(816\) 0 0
\(817\) −14.9948 25.9718i −0.524603 0.908639i
\(818\) 0 0
\(819\) 12.1797 + 8.18134i 0.425592 + 0.285879i
\(820\) 0 0
\(821\) 16.1169 + 4.31850i 0.562482 + 0.150717i 0.528846 0.848718i \(-0.322625\pi\)
0.0336357 + 0.999434i \(0.489291\pi\)
\(822\) 0 0
\(823\) 9.41497 + 5.43573i 0.328185 + 0.189478i 0.655035 0.755598i \(-0.272654\pi\)
−0.326850 + 0.945076i \(0.605987\pi\)
\(824\) 0 0
\(825\) 13.8133i 0.480918i
\(826\) 0 0
\(827\) −9.97483 + 9.97483i −0.346859 + 0.346859i −0.858938 0.512079i \(-0.828875\pi\)
0.512079 + 0.858938i \(0.328875\pi\)
\(828\) 0 0
\(829\) −24.9645 + 6.68921i −0.867052 + 0.232326i −0.664813 0.747010i \(-0.731489\pi\)
−0.202240 + 0.979336i \(0.564822\pi\)
\(830\) 0 0
\(831\) 13.8312 + 23.9564i 0.479801 + 0.831039i
\(832\) 0 0
\(833\) −12.0779 + 4.93378i −0.418476 + 0.170945i
\(834\) 0 0
\(835\) −12.8998 + 48.1428i −0.446417 + 1.66605i
\(836\) 0 0
\(837\) −7.54985 28.1764i −0.260961 0.973920i
\(838\) 0 0
\(839\) 35.9931i 1.24262i 0.783565 + 0.621310i \(0.213399\pi\)
−0.783565 + 0.621310i \(0.786601\pi\)
\(840\) 0 0
\(841\) 28.9339i 0.997720i
\(842\) 0 0
\(843\) −3.02708 11.2972i −0.104258 0.389097i
\(844\) 0 0
\(845\) −7.71526 + 28.7937i −0.265413 + 0.990535i
\(846\) 0 0
\(847\) −24.6245 + 4.83554i −0.846107 + 0.166151i
\(848\) 0 0
\(849\) −8.05167 13.9459i −0.276333 0.478622i
\(850\) 0 0
\(851\) −0.338864 + 0.0907985i −0.0116161 + 0.00311253i
\(852\) 0 0
\(853\) −11.5045 + 11.5045i −0.393906 + 0.393906i −0.876077 0.482171i \(-0.839848\pi\)
0.482171 + 0.876077i \(0.339848\pi\)
\(854\) 0 0
\(855\) 36.8538i 1.26037i
\(856\) 0 0
\(857\) −46.8795 27.0659i −1.60137 0.924554i −0.991213 0.132276i \(-0.957771\pi\)
−0.610161 0.792277i \(-0.708895\pi\)
\(858\) 0 0
\(859\) 6.87557 + 1.84230i 0.234591 + 0.0628586i 0.374199 0.927348i \(-0.377918\pi\)
−0.139608 + 0.990207i \(0.544584\pi\)
\(860\) 0 0
\(861\) 0.0677157 0.995822i 0.00230775 0.0339375i
\(862\) 0 0
\(863\) −8.29596 14.3690i −0.282398 0.489127i 0.689577 0.724212i \(-0.257796\pi\)
−0.971975 + 0.235085i \(0.924463\pi\)
\(864\) 0 0
\(865\) 23.2898 40.3391i 0.791877 1.37157i
\(866\) 0 0
\(867\) −8.19713 8.19713i −0.278389 0.278389i
\(868\) 0 0
\(869\) −11.3661 + 11.3661i −0.385567 + 0.385567i
\(870\) 0 0
\(871\) −21.0566 12.1570i −0.713475 0.411925i
\(872\) 0 0
\(873\) −3.34336 + 1.93029i −0.113156 + 0.0653305i
\(874\) 0 0
\(875\) 40.0901 + 81.7984i 1.35529 + 2.76529i
\(876\) 0 0
\(877\) 7.85634 29.3202i 0.265290 0.990074i −0.696783 0.717282i \(-0.745386\pi\)
0.962073 0.272793i \(-0.0879473\pi\)
\(878\) 0 0
\(879\) 1.32981 2.30330i 0.0448534 0.0776883i
\(880\) 0 0
\(881\) −48.7213 −1.64146 −0.820731 0.571314i \(-0.806434\pi\)
−0.820731 + 0.571314i \(0.806434\pi\)
\(882\) 0 0
\(883\) −2.32744 2.32744i −0.0783247 0.0783247i 0.666859 0.745184i \(-0.267638\pi\)
−0.745184 + 0.666859i \(0.767638\pi\)
\(884\) 0 0
\(885\) 1.59898 + 5.96746i 0.0537490 + 0.200594i
\(886\) 0 0
\(887\) −45.9577 + 26.5337i −1.54311 + 0.890914i −0.544467 + 0.838782i \(0.683268\pi\)
−0.998640 + 0.0521315i \(0.983399\pi\)
\(888\) 0 0
\(889\) 3.01549 + 1.03185i 0.101136 + 0.0346072i
\(890\) 0 0
\(891\) 3.48219 + 0.933049i 0.116658 + 0.0312583i
\(892\) 0 0
\(893\) −26.7022 + 7.15483i −0.893555 + 0.239427i
\(894\) 0 0
\(895\) −71.1052 −2.37678
\(896\) 0 0
\(897\) −2.98706 −0.0997350
\(898\) 0 0
\(899\) 1.60552 0.430199i 0.0535472 0.0143479i
\(900\) 0 0
\(901\) −18.0656 4.84066i −0.601852 0.161266i
\(902\) 0 0
\(903\) 13.3975 11.6915i 0.445842 0.389069i
\(904\) 0 0
\(905\) −83.2470 + 48.0627i −2.76723 + 1.59766i
\(906\) 0 0
\(907\) −14.4466 53.9154i −0.479691 1.79023i −0.602863 0.797845i \(-0.705973\pi\)
0.123172 0.992385i \(-0.460693\pi\)
\(908\) 0 0
\(909\) 3.91688 + 3.91688i 0.129915 + 0.129915i
\(910\) 0 0
\(911\) −44.7554 −1.48281 −0.741406 0.671057i \(-0.765841\pi\)
−0.741406 + 0.671057i \(0.765841\pi\)
\(912\) 0 0
\(913\) −2.67138 + 4.62696i −0.0884097 + 0.153130i
\(914\) 0 0
\(915\) −8.80768 + 32.8707i −0.291173 + 1.08667i
\(916\) 0 0
\(917\) −4.61423 + 6.86925i −0.152375 + 0.226843i
\(918\) 0 0
\(919\) 19.8098 11.4372i 0.653464 0.377277i −0.136318 0.990665i \(-0.543527\pi\)
0.789782 + 0.613388i \(0.210194\pi\)
\(920\) 0 0
\(921\) −8.69148 5.01803i −0.286394 0.165350i
\(922\) 0 0
\(923\) −19.5442 + 19.5442i −0.643304 + 0.643304i
\(924\) 0 0
\(925\) −2.28137 2.28137i −0.0750111 0.0750111i
\(926\) 0 0
\(927\) −16.5233 + 28.6192i −0.542697 + 0.939979i
\(928\) 0 0
\(929\) 13.2871 + 23.0139i 0.435935 + 0.755062i 0.997371 0.0724577i \(-0.0230842\pi\)
−0.561436 + 0.827520i \(0.689751\pi\)
\(930\) 0 0
\(931\) 21.3177 16.1926i 0.698658 0.530690i
\(932\) 0 0
\(933\) 7.04026 + 1.88643i 0.230488 + 0.0617590i
\(934\) 0 0
\(935\) 8.45127 + 4.87934i 0.276386 + 0.159572i
\(936\) 0 0
\(937\) 11.8582i 0.387391i 0.981062 + 0.193696i \(0.0620474\pi\)
−0.981062 + 0.193696i \(0.937953\pi\)
\(938\) 0 0
\(939\) 9.86686 9.86686i 0.321993 0.321993i
\(940\) 0 0
\(941\) 2.04535 0.548049i 0.0666764 0.0178659i −0.225327 0.974283i \(-0.572345\pi\)
0.292003 + 0.956417i \(0.405678\pi\)
\(942\) 0 0
\(943\) −0.313366 0.542765i −0.0102046 0.0176749i
\(944\) 0 0
\(945\) 49.8360 9.78636i 1.62116 0.318350i
\(946\) 0 0
\(947\) −1.38876 + 5.18291i −0.0451285 + 0.168422i −0.984812 0.173623i \(-0.944453\pi\)
0.939684 + 0.342045i \(0.111119\pi\)
\(948\) 0 0
\(949\) −5.94835 22.1995i −0.193092 0.720628i
\(950\) 0 0
\(951\) 19.3935i 0.628878i
\(952\) 0 0
\(953\) 3.43130i 0.111151i −0.998454 0.0555753i \(-0.982301\pi\)
0.998454 0.0555753i \(-0.0176993\pi\)
\(954\) 0 0
\(955\) −10.9646 40.9205i −0.354806 1.32415i
\(956\) 0 0
\(957\) 0.0702080 0.262020i 0.00226950 0.00846989i
\(958\) 0 0
\(959\) −0.575210 0.659145i −0.0185745 0.0212849i
\(960\) 0 0
\(961\) −5.39169 9.33869i −0.173926 0.301248i
\(962\) 0 0
\(963\) −10.8801 + 2.91531i −0.350606 + 0.0939446i
\(964\) 0 0
\(965\) 24.2018 24.2018i 0.779083 0.779083i
\(966\) 0 0
\(967\) 19.4110i 0.624217i −0.950046 0.312108i \(-0.898965\pi\)
0.950046 0.312108i \(-0.101035\pi\)
\(968\) 0 0
\(969\) −5.29044 3.05444i −0.169954 0.0981227i
\(970\) 0 0
\(971\) −19.4567 5.21341i −0.624396 0.167306i −0.0672705 0.997735i \(-0.521429\pi\)
−0.557125 + 0.830428i \(0.688096\pi\)
\(972\) 0 0
\(973\) −8.10708 + 3.97335i −0.259901 + 0.127380i
\(974\) 0 0
\(975\) −13.7354 23.7905i −0.439886 0.761905i
\(976\) 0 0
\(977\) −8.78731 + 15.2201i −0.281131 + 0.486933i −0.971664 0.236368i \(-0.924043\pi\)
0.690533 + 0.723301i \(0.257376\pi\)
\(978\) 0 0
\(979\) −5.68920 5.68920i −0.181828 0.181828i
\(980\) 0 0
\(981\) −16.1966 + 16.1966i −0.517117 + 0.517117i
\(982\) 0 0
\(983\) 47.7497 + 27.5683i 1.52298 + 0.879292i 0.999631 + 0.0271723i \(0.00865028\pi\)
0.523347 + 0.852119i \(0.324683\pi\)
\(984\) 0 0
\(985\) 31.3600 18.1057i 0.999214 0.576896i
\(986\) 0 0
\(987\) −7.21352 14.7182i −0.229609 0.468486i
\(988\) 0 0
\(989\) 2.88978 10.7848i 0.0918896 0.342937i
\(990\) 0 0
\(991\) 18.4719 31.9943i 0.586781 1.01633i −0.407870 0.913040i \(-0.633728\pi\)
0.994651 0.103294i \(-0.0329382\pi\)
\(992\) 0 0
\(993\) 9.96536 0.316241
\(994\) 0 0
\(995\) −44.3910 44.3910i −1.40729 1.40729i
\(996\) 0 0
\(997\) 0.959891 + 3.58236i 0.0304001 + 0.113455i 0.979459 0.201645i \(-0.0646287\pi\)
−0.949059 + 0.315100i \(0.897962\pi\)
\(998\) 0 0
\(999\) −0.962950 + 0.555960i −0.0304664 + 0.0175898i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 896.2.ba.f.417.6 48
4.3 odd 2 896.2.ba.e.417.7 48
7.2 even 3 inner 896.2.ba.f.289.7 48
8.3 odd 2 448.2.ba.c.81.6 48
8.5 even 2 112.2.w.c.109.7 yes 48
16.3 odd 4 448.2.ba.c.305.7 48
16.5 even 4 inner 896.2.ba.f.865.7 48
16.11 odd 4 896.2.ba.e.865.6 48
16.13 even 4 112.2.w.c.53.2 yes 48
28.23 odd 6 896.2.ba.e.289.6 48
56.5 odd 6 784.2.x.o.765.2 48
56.13 odd 2 784.2.x.o.557.7 48
56.37 even 6 112.2.w.c.93.2 yes 48
56.45 odd 6 784.2.m.k.589.9 24
56.51 odd 6 448.2.ba.c.401.7 48
56.53 even 6 784.2.m.j.589.9 24
112.13 odd 4 784.2.x.o.165.2 48
112.37 even 12 inner 896.2.ba.f.737.6 48
112.45 odd 12 784.2.m.k.197.9 24
112.51 odd 12 448.2.ba.c.177.6 48
112.61 odd 12 784.2.x.o.373.7 48
112.93 even 12 112.2.w.c.37.7 48
112.107 odd 12 896.2.ba.e.737.7 48
112.109 even 12 784.2.m.j.197.9 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.2.w.c.37.7 48 112.93 even 12
112.2.w.c.53.2 yes 48 16.13 even 4
112.2.w.c.93.2 yes 48 56.37 even 6
112.2.w.c.109.7 yes 48 8.5 even 2
448.2.ba.c.81.6 48 8.3 odd 2
448.2.ba.c.177.6 48 112.51 odd 12
448.2.ba.c.305.7 48 16.3 odd 4
448.2.ba.c.401.7 48 56.51 odd 6
784.2.m.j.197.9 24 112.109 even 12
784.2.m.j.589.9 24 56.53 even 6
784.2.m.k.197.9 24 112.45 odd 12
784.2.m.k.589.9 24 56.45 odd 6
784.2.x.o.165.2 48 112.13 odd 4
784.2.x.o.373.7 48 112.61 odd 12
784.2.x.o.557.7 48 56.13 odd 2
784.2.x.o.765.2 48 56.5 odd 6
896.2.ba.e.289.6 48 28.23 odd 6
896.2.ba.e.417.7 48 4.3 odd 2
896.2.ba.e.737.7 48 112.107 odd 12
896.2.ba.e.865.6 48 16.11 odd 4
896.2.ba.f.289.7 48 7.2 even 3 inner
896.2.ba.f.417.6 48 1.1 even 1 trivial
896.2.ba.f.737.6 48 112.37 even 12 inner
896.2.ba.f.865.7 48 16.5 even 4 inner