Properties

Label 446.2.c.d.39.7
Level $446$
Weight $2$
Character 446.39
Analytic conductor $3.561$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [446,2,Mod(39,446)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(446, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("446.39"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 446 = 2 \cdot 223 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 446.c (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,14,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.56132793015\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 16 x^{12} - 12 x^{11} + 175 x^{10} - 149 x^{9} + 1070 x^{8} - 1093 x^{7} + 4783 x^{6} + \cdots + 13689 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 39.7
Root \(1.18397 - 2.05069i\) of defining polynomial
Character \(\chi\) \(=\) 446.39
Dual form 446.2.c.d.183.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +(1.48752 - 2.57645i) q^{3} +1.00000 q^{4} +(0.877575 + 1.52000i) q^{5} +(1.48752 - 2.57645i) q^{6} -2.19386 q^{7} +1.00000 q^{8} +(-2.92540 - 5.06695i) q^{9} +(0.877575 + 1.52000i) q^{10} +(-1.63202 - 2.82675i) q^{11} +(1.48752 - 2.57645i) q^{12} +3.36793 q^{13} -2.19386 q^{14} +5.22162 q^{15} +1.00000 q^{16} +1.99023 q^{17} +(-2.92540 - 5.06695i) q^{18} +(-0.398184 + 0.689676i) q^{19} +(0.877575 + 1.52000i) q^{20} +(-3.26340 + 5.65238i) q^{21} +(-1.63202 - 2.82675i) q^{22} +(-1.46461 + 2.53678i) q^{23} +(1.48752 - 2.57645i) q^{24} +(0.959725 - 1.66229i) q^{25} +3.36793 q^{26} -8.48124 q^{27} -2.19386 q^{28} +(5.23651 + 9.06990i) q^{29} +5.22162 q^{30} +(-4.75889 + 8.24264i) q^{31} +1.00000 q^{32} -9.71064 q^{33} +1.99023 q^{34} +(-1.92528 - 3.33468i) q^{35} +(-2.92540 - 5.06695i) q^{36} +(-0.231543 - 0.401045i) q^{37} +(-0.398184 + 0.689676i) q^{38} +(5.00985 - 8.67731i) q^{39} +(0.877575 + 1.52000i) q^{40} -1.73875 q^{41} +(-3.26340 + 5.65238i) q^{42} +(-4.01628 + 6.95640i) q^{43} +(-1.63202 - 2.82675i) q^{44} +(5.13452 - 8.89325i) q^{45} +(-1.46461 + 2.53678i) q^{46} +(-4.74219 - 8.21371i) q^{47} +(1.48752 - 2.57645i) q^{48} -2.18697 q^{49} +(0.959725 - 1.66229i) q^{50} +(2.96050 - 5.12773i) q^{51} +3.36793 q^{52} +(4.33812 + 7.51385i) q^{53} -8.48124 q^{54} +(2.86445 - 4.96136i) q^{55} -2.19386 q^{56} +(1.18461 + 2.05181i) q^{57} +(5.23651 + 9.06990i) q^{58} -5.81887 q^{59} +5.22162 q^{60} +(5.10860 - 8.84835i) q^{61} +(-4.75889 + 8.24264i) q^{62} +(6.41793 + 11.1162i) q^{63} +1.00000 q^{64} +(2.95561 + 5.11927i) q^{65} -9.71064 q^{66} +(1.22354 - 2.11924i) q^{67} +1.99023 q^{68} +(4.35726 + 7.54700i) q^{69} +(-1.92528 - 3.33468i) q^{70} +(-4.30442 + 7.45548i) q^{71} +(-2.92540 - 5.06695i) q^{72} +(5.35953 + 9.28299i) q^{73} +(-0.231543 - 0.401045i) q^{74} +(-2.85521 - 4.94537i) q^{75} +(-0.398184 + 0.689676i) q^{76} +(3.58043 + 6.20149i) q^{77} +(5.00985 - 8.67731i) q^{78} +(-3.32743 - 5.76328i) q^{79} +(0.877575 + 1.52000i) q^{80} +(-3.83977 + 6.65067i) q^{81} -1.73875 q^{82} +(0.728309 + 1.26147i) q^{83} +(-3.26340 + 5.65238i) q^{84} +(1.74658 + 3.02516i) q^{85} +(-4.01628 + 6.95640i) q^{86} +31.1575 q^{87} +(-1.63202 - 2.82675i) q^{88} +(5.66550 - 9.81293i) q^{89} +(5.13452 - 8.89325i) q^{90} -7.38877 q^{91} +(-1.46461 + 2.53678i) q^{92} +(14.1578 + 24.5221i) q^{93} +(-4.74219 - 8.21371i) q^{94} -1.39775 q^{95} +(1.48752 - 2.57645i) q^{96} +(-4.71440 - 8.16558i) q^{97} -2.18697 q^{98} +(-9.54866 + 16.5388i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q + 14 q^{2} - 3 q^{3} + 14 q^{4} - 6 q^{5} - 3 q^{6} - 6 q^{7} + 14 q^{8} - 18 q^{9} - 6 q^{10} - 5 q^{11} - 3 q^{12} + 14 q^{13} - 6 q^{14} - 8 q^{15} + 14 q^{16} - 18 q^{18} - 4 q^{19} - 6 q^{20}+ \cdots - 43 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/446\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 1.48752 2.57645i 0.858817 1.48752i −0.0142404 0.999899i \(-0.504533\pi\)
0.873058 0.487617i \(-0.162134\pi\)
\(4\) 1.00000 0.500000
\(5\) 0.877575 + 1.52000i 0.392463 + 0.679767i 0.992774 0.120001i \(-0.0382896\pi\)
−0.600310 + 0.799767i \(0.704956\pi\)
\(6\) 1.48752 2.57645i 0.607276 1.05183i
\(7\) −2.19386 −0.829201 −0.414601 0.910003i \(-0.636079\pi\)
−0.414601 + 0.910003i \(0.636079\pi\)
\(8\) 1.00000 0.353553
\(9\) −2.92540 5.06695i −0.975135 1.68898i
\(10\) 0.877575 + 1.52000i 0.277514 + 0.480668i
\(11\) −1.63202 2.82675i −0.492074 0.852296i 0.507885 0.861425i \(-0.330428\pi\)
−0.999958 + 0.00912861i \(0.997094\pi\)
\(12\) 1.48752 2.57645i 0.429409 0.743758i
\(13\) 3.36793 0.934096 0.467048 0.884232i \(-0.345318\pi\)
0.467048 + 0.884232i \(0.345318\pi\)
\(14\) −2.19386 −0.586334
\(15\) 5.22162 1.34822
\(16\) 1.00000 0.250000
\(17\) 1.99023 0.482702 0.241351 0.970438i \(-0.422410\pi\)
0.241351 + 0.970438i \(0.422410\pi\)
\(18\) −2.92540 5.06695i −0.689524 1.19429i
\(19\) −0.398184 + 0.689676i −0.0913498 + 0.158222i −0.908079 0.418798i \(-0.862451\pi\)
0.816730 + 0.577021i \(0.195785\pi\)
\(20\) 0.877575 + 1.52000i 0.196232 + 0.339883i
\(21\) −3.26340 + 5.65238i −0.712133 + 1.23345i
\(22\) −1.63202 2.82675i −0.347949 0.602665i
\(23\) −1.46461 + 2.53678i −0.305392 + 0.528955i −0.977349 0.211636i \(-0.932121\pi\)
0.671956 + 0.740591i \(0.265454\pi\)
\(24\) 1.48752 2.57645i 0.303638 0.525916i
\(25\) 0.959725 1.66229i 0.191945 0.332458i
\(26\) 3.36793 0.660506
\(27\) −8.48124 −1.63222
\(28\) −2.19386 −0.414601
\(29\) 5.23651 + 9.06990i 0.972395 + 1.68424i 0.688276 + 0.725449i \(0.258368\pi\)
0.284119 + 0.958789i \(0.408299\pi\)
\(30\) 5.22162 0.953334
\(31\) −4.75889 + 8.24264i −0.854721 + 1.48042i 0.0221818 + 0.999754i \(0.492939\pi\)
−0.876903 + 0.480667i \(0.840395\pi\)
\(32\) 1.00000 0.176777
\(33\) −9.71064 −1.69041
\(34\) 1.99023 0.341322
\(35\) −1.92528 3.33468i −0.325431 0.563663i
\(36\) −2.92540 5.06695i −0.487567 0.844491i
\(37\) −0.231543 0.401045i −0.0380655 0.0659314i 0.846365 0.532603i \(-0.178786\pi\)
−0.884430 + 0.466672i \(0.845453\pi\)
\(38\) −0.398184 + 0.689676i −0.0645940 + 0.111880i
\(39\) 5.00985 8.67731i 0.802218 1.38948i
\(40\) 0.877575 + 1.52000i 0.138757 + 0.240334i
\(41\) −1.73875 −0.271547 −0.135773 0.990740i \(-0.543352\pi\)
−0.135773 + 0.990740i \(0.543352\pi\)
\(42\) −3.26340 + 5.65238i −0.503554 + 0.872181i
\(43\) −4.01628 + 6.95640i −0.612477 + 1.06084i 0.378344 + 0.925665i \(0.376493\pi\)
−0.990822 + 0.135177i \(0.956840\pi\)
\(44\) −1.63202 2.82675i −0.246037 0.426148i
\(45\) 5.13452 8.89325i 0.765409 1.32573i
\(46\) −1.46461 + 2.53678i −0.215945 + 0.374028i
\(47\) −4.74219 8.21371i −0.691720 1.19809i −0.971274 0.237964i \(-0.923520\pi\)
0.279555 0.960130i \(-0.409813\pi\)
\(48\) 1.48752 2.57645i 0.214704 0.371879i
\(49\) −2.18697 −0.312425
\(50\) 0.959725 1.66229i 0.135726 0.235084i
\(51\) 2.96050 5.12773i 0.414553 0.718026i
\(52\) 3.36793 0.467048
\(53\) 4.33812 + 7.51385i 0.595887 + 1.03211i 0.993421 + 0.114519i \(0.0365327\pi\)
−0.397534 + 0.917587i \(0.630134\pi\)
\(54\) −8.48124 −1.15415
\(55\) 2.86445 4.96136i 0.386242 0.668990i
\(56\) −2.19386 −0.293167
\(57\) 1.18461 + 2.05181i 0.156906 + 0.271768i
\(58\) 5.23651 + 9.06990i 0.687587 + 1.19094i
\(59\) −5.81887 −0.757552 −0.378776 0.925488i \(-0.623655\pi\)
−0.378776 + 0.925488i \(0.623655\pi\)
\(60\) 5.22162 0.674109
\(61\) 5.10860 8.84835i 0.654089 1.13292i −0.328032 0.944666i \(-0.606386\pi\)
0.982121 0.188249i \(-0.0602811\pi\)
\(62\) −4.75889 + 8.24264i −0.604379 + 1.04682i
\(63\) 6.41793 + 11.1162i 0.808583 + 1.40051i
\(64\) 1.00000 0.125000
\(65\) 2.95561 + 5.11927i 0.366599 + 0.634967i
\(66\) −9.71064 −1.19530
\(67\) 1.22354 2.11924i 0.149480 0.258906i −0.781556 0.623836i \(-0.785574\pi\)
0.931035 + 0.364929i \(0.118907\pi\)
\(68\) 1.99023 0.241351
\(69\) 4.35726 + 7.54700i 0.524552 + 0.908552i
\(70\) −1.92528 3.33468i −0.230115 0.398570i
\(71\) −4.30442 + 7.45548i −0.510841 + 0.884802i 0.489080 + 0.872239i \(0.337333\pi\)
−0.999921 + 0.0125635i \(0.996001\pi\)
\(72\) −2.92540 5.06695i −0.344762 0.597146i
\(73\) 5.35953 + 9.28299i 0.627286 + 1.08649i 0.988094 + 0.153851i \(0.0491677\pi\)
−0.360808 + 0.932640i \(0.617499\pi\)
\(74\) −0.231543 0.401045i −0.0269164 0.0466205i
\(75\) −2.85521 4.94537i −0.329691 0.571042i
\(76\) −0.398184 + 0.689676i −0.0456749 + 0.0791112i
\(77\) 3.58043 + 6.20149i 0.408028 + 0.706725i
\(78\) 5.00985 8.67731i 0.567254 0.982512i
\(79\) −3.32743 5.76328i −0.374365 0.648419i 0.615867 0.787850i \(-0.288806\pi\)
−0.990232 + 0.139431i \(0.955473\pi\)
\(80\) 0.877575 + 1.52000i 0.0981158 + 0.169942i
\(81\) −3.83977 + 6.65067i −0.426641 + 0.738963i
\(82\) −1.73875 −0.192013
\(83\) 0.728309 + 1.26147i 0.0799423 + 0.138464i 0.903225 0.429168i \(-0.141193\pi\)
−0.823283 + 0.567632i \(0.807860\pi\)
\(84\) −3.26340 + 5.65238i −0.356066 + 0.616725i
\(85\) 1.74658 + 3.02516i 0.189443 + 0.328124i
\(86\) −4.01628 + 6.95640i −0.433087 + 0.750128i
\(87\) 31.1575 3.34044
\(88\) −1.63202 2.82675i −0.173974 0.301332i
\(89\) 5.66550 9.81293i 0.600542 1.04017i −0.392197 0.919881i \(-0.628285\pi\)
0.992739 0.120288i \(-0.0383817\pi\)
\(90\) 5.13452 8.89325i 0.541226 0.937431i
\(91\) −7.38877 −0.774554
\(92\) −1.46461 + 2.53678i −0.152696 + 0.264478i
\(93\) 14.1578 + 24.5221i 1.46810 + 2.54282i
\(94\) −4.74219 8.21371i −0.489120 0.847180i
\(95\) −1.39775 −0.143406
\(96\) 1.48752 2.57645i 0.151819 0.262958i
\(97\) −4.71440 8.16558i −0.478675 0.829089i 0.521026 0.853541i \(-0.325549\pi\)
−0.999701 + 0.0244516i \(0.992216\pi\)
\(98\) −2.18697 −0.220918
\(99\) −9.54866 + 16.5388i −0.959676 + 1.66221i
\(100\) 0.959725 1.66229i 0.0959725 0.166229i
\(101\) −3.11261 + 5.39120i −0.309716 + 0.536444i −0.978300 0.207192i \(-0.933567\pi\)
0.668584 + 0.743637i \(0.266901\pi\)
\(102\) 2.96050 5.12773i 0.293133 0.507721i
\(103\) −3.47073 −0.341981 −0.170990 0.985273i \(-0.554697\pi\)
−0.170990 + 0.985273i \(0.554697\pi\)
\(104\) 3.36793 0.330253
\(105\) −11.4555 −1.11794
\(106\) 4.33812 + 7.51385i 0.421356 + 0.729809i
\(107\) −0.779898 1.35082i −0.0753955 0.130589i 0.825863 0.563871i \(-0.190689\pi\)
−0.901258 + 0.433282i \(0.857355\pi\)
\(108\) −8.48124 −0.816108
\(109\) −5.98146 10.3602i −0.572920 0.992326i −0.996264 0.0863573i \(-0.972477\pi\)
0.423344 0.905969i \(-0.360856\pi\)
\(110\) 2.86445 4.96136i 0.273114 0.473048i
\(111\) −1.37770 −0.130765
\(112\) −2.19386 −0.207300
\(113\) −0.174842 + 0.302836i −0.0164478 + 0.0284884i −0.874132 0.485688i \(-0.838569\pi\)
0.857684 + 0.514177i \(0.171902\pi\)
\(114\) 1.18461 + 2.05181i 0.110949 + 0.192169i
\(115\) −5.14122 −0.479421
\(116\) 5.23651 + 9.06990i 0.486198 + 0.842119i
\(117\) −9.85256 17.0651i −0.910870 1.57767i
\(118\) −5.81887 −0.535670
\(119\) −4.36629 −0.400257
\(120\) 5.22162 0.476667
\(121\) 0.173000 0.299644i 0.0157272 0.0272404i
\(122\) 5.10860 8.84835i 0.462511 0.801092i
\(123\) −2.58641 + 4.47980i −0.233209 + 0.403930i
\(124\) −4.75889 + 8.24264i −0.427361 + 0.740210i
\(125\) 12.1447 1.08625
\(126\) 6.41793 + 11.1162i 0.571755 + 0.990308i
\(127\) 0.216387 0.374794i 0.0192013 0.0332576i −0.856265 0.516537i \(-0.827221\pi\)
0.875466 + 0.483279i \(0.160554\pi\)
\(128\) 1.00000 0.0883883
\(129\) 11.9486 + 20.6955i 1.05201 + 1.82214i
\(130\) 2.95561 + 5.11927i 0.259224 + 0.448990i
\(131\) 7.35630 12.7415i 0.642723 1.11323i −0.342100 0.939664i \(-0.611138\pi\)
0.984822 0.173565i \(-0.0555286\pi\)
\(132\) −9.71064 −0.845203
\(133\) 0.873561 1.51305i 0.0757474 0.131198i
\(134\) 1.22354 2.11924i 0.105698 0.183074i
\(135\) −7.44292 12.8915i −0.640585 1.10953i
\(136\) 1.99023 0.170661
\(137\) 7.69713 13.3318i 0.657610 1.13901i −0.323622 0.946186i \(-0.604901\pi\)
0.981233 0.192828i \(-0.0617660\pi\)
\(138\) 4.35726 + 7.54700i 0.370915 + 0.642443i
\(139\) −2.91155 + 5.04294i −0.246954 + 0.427737i −0.962679 0.270645i \(-0.912763\pi\)
0.715725 + 0.698382i \(0.246096\pi\)
\(140\) −1.92528 3.33468i −0.162716 0.281832i
\(141\) −28.2163 −2.37624
\(142\) −4.30442 + 7.45548i −0.361219 + 0.625650i
\(143\) −5.49654 9.52029i −0.459644 0.796127i
\(144\) −2.92540 5.06695i −0.243784 0.422246i
\(145\) −9.19085 + 15.9190i −0.763259 + 1.32200i
\(146\) 5.35953 + 9.28299i 0.443558 + 0.768265i
\(147\) −3.25316 + 5.63464i −0.268316 + 0.464737i
\(148\) −0.231543 0.401045i −0.0190327 0.0329657i
\(149\) −10.4423 18.0866i −0.855465 1.48171i −0.876213 0.481924i \(-0.839938\pi\)
0.0207477 0.999785i \(-0.493395\pi\)
\(150\) −2.85521 4.94537i −0.233127 0.403788i
\(151\) −5.86579 10.1598i −0.477351 0.826796i 0.522312 0.852754i \(-0.325070\pi\)
−0.999663 + 0.0259584i \(0.991736\pi\)
\(152\) −0.398184 + 0.689676i −0.0322970 + 0.0559401i
\(153\) −5.82223 10.0844i −0.470699 0.815275i
\(154\) 3.58043 + 6.20149i 0.288519 + 0.499730i
\(155\) −16.7051 −1.34179
\(156\) 5.00985 8.67731i 0.401109 0.694741i
\(157\) −18.7214 −1.49413 −0.747064 0.664752i \(-0.768537\pi\)
−0.747064 + 0.664752i \(0.768537\pi\)
\(158\) −3.32743 5.76328i −0.264716 0.458502i
\(159\) 25.8121 2.04703
\(160\) 0.877575 + 1.52000i 0.0693784 + 0.120167i
\(161\) 3.21315 5.56534i 0.253232 0.438610i
\(162\) −3.83977 + 6.65067i −0.301680 + 0.522526i
\(163\) −0.592601 −0.0464161 −0.0232080 0.999731i \(-0.507388\pi\)
−0.0232080 + 0.999731i \(0.507388\pi\)
\(164\) −1.73875 −0.135773
\(165\) −8.52181 14.7602i −0.663422 1.14908i
\(166\) 0.728309 + 1.26147i 0.0565277 + 0.0979089i
\(167\) 16.8713 1.30554 0.652768 0.757558i \(-0.273607\pi\)
0.652768 + 0.757558i \(0.273607\pi\)
\(168\) −3.26340 + 5.65238i −0.251777 + 0.436090i
\(169\) −1.65704 −0.127464
\(170\) 1.74658 + 3.02516i 0.133956 + 0.232019i
\(171\) 4.65940 0.356313
\(172\) −4.01628 + 6.95640i −0.306239 + 0.530421i
\(173\) −5.83318 + 10.1034i −0.443489 + 0.768145i −0.997946 0.0640674i \(-0.979593\pi\)
0.554457 + 0.832213i \(0.312926\pi\)
\(174\) 31.1575 2.36205
\(175\) −2.10550 + 3.64684i −0.159161 + 0.275675i
\(176\) −1.63202 2.82675i −0.123018 0.213074i
\(177\) −8.65565 + 14.9920i −0.650599 + 1.12687i
\(178\) 5.66550 9.81293i 0.424647 0.735510i
\(179\) 12.3440 + 21.3804i 0.922633 + 1.59805i 0.795324 + 0.606184i \(0.207301\pi\)
0.127309 + 0.991863i \(0.459366\pi\)
\(180\) 5.13452 8.89325i 0.382705 0.662864i
\(181\) −8.58932 + 14.8771i −0.638439 + 1.10581i 0.347337 + 0.937741i \(0.387086\pi\)
−0.985775 + 0.168068i \(0.946247\pi\)
\(182\) −7.38877 −0.547692
\(183\) −15.1982 26.3241i −1.12349 1.94593i
\(184\) −1.46461 + 2.53678i −0.107972 + 0.187014i
\(185\) 0.406393 0.703894i 0.0298786 0.0517513i
\(186\) 14.1578 + 24.5221i 1.03810 + 1.79805i
\(187\) −3.24810 5.62588i −0.237525 0.411405i
\(188\) −4.74219 8.21371i −0.345860 0.599047i
\(189\) 18.6067 1.35344
\(190\) −1.39775 −0.101403
\(191\) 22.6991 1.64245 0.821224 0.570606i \(-0.193291\pi\)
0.821224 + 0.570606i \(0.193291\pi\)
\(192\) 1.48752 2.57645i 0.107352 0.185939i
\(193\) −14.7243 −1.05988 −0.529940 0.848035i \(-0.677785\pi\)
−0.529940 + 0.848035i \(0.677785\pi\)
\(194\) −4.71440 8.16558i −0.338474 0.586254i
\(195\) 17.5861 1.25936
\(196\) −2.18697 −0.156212
\(197\) 22.1406 1.57745 0.788726 0.614745i \(-0.210741\pi\)
0.788726 + 0.614745i \(0.210741\pi\)
\(198\) −9.54866 + 16.5388i −0.678593 + 1.17536i
\(199\) 13.8449 23.9800i 0.981436 1.69990i 0.324621 0.945844i \(-0.394763\pi\)
0.656814 0.754052i \(-0.271904\pi\)
\(200\) 0.959725 1.66229i 0.0678628 0.117542i
\(201\) −3.64008 6.30480i −0.256751 0.444706i
\(202\) −3.11261 + 5.39120i −0.219002 + 0.379323i
\(203\) −11.4882 19.8981i −0.806311 1.39657i
\(204\) 2.96050 5.12773i 0.207276 0.359013i
\(205\) −1.52588 2.64290i −0.106572 0.184588i
\(206\) −3.47073 −0.241817
\(207\) 17.1383 1.19119
\(208\) 3.36793 0.233524
\(209\) 2.59938 0.179803
\(210\) −11.4555 −0.790506
\(211\) −2.42987 + 4.20866i −0.167279 + 0.289736i −0.937462 0.348087i \(-0.886831\pi\)
0.770183 + 0.637823i \(0.220165\pi\)
\(212\) 4.33812 + 7.51385i 0.297943 + 0.516053i
\(213\) 12.8058 + 22.1803i 0.877438 + 1.51977i
\(214\) −0.779898 1.35082i −0.0533127 0.0923403i
\(215\) −14.0983 −0.961499
\(216\) −8.48124 −0.577075
\(217\) 10.4403 18.0832i 0.708736 1.22757i
\(218\) −5.98146 10.3602i −0.405115 0.701681i
\(219\) 31.8896 2.15490
\(220\) 2.86445 4.96136i 0.193121 0.334495i
\(221\) 6.70296 0.450890
\(222\) −1.37770 −0.0924650
\(223\) 7.27564 + 13.0409i 0.487213 + 0.873283i
\(224\) −2.19386 −0.146583
\(225\) −11.2303 −0.748689
\(226\) −0.174842 + 0.302836i −0.0116303 + 0.0201443i
\(227\) 3.37265 0.223851 0.111925 0.993717i \(-0.464298\pi\)
0.111925 + 0.993717i \(0.464298\pi\)
\(228\) 1.18461 + 2.05181i 0.0784528 + 0.135884i
\(229\) −5.45349 + 9.44573i −0.360377 + 0.624191i −0.988023 0.154308i \(-0.950685\pi\)
0.627646 + 0.778499i \(0.284019\pi\)
\(230\) −5.14122 −0.339002
\(231\) 21.3038 1.40169
\(232\) 5.23651 + 9.06990i 0.343794 + 0.595468i
\(233\) 1.75202 + 3.03459i 0.114779 + 0.198802i 0.917691 0.397294i \(-0.130051\pi\)
−0.802913 + 0.596097i \(0.796717\pi\)
\(234\) −9.85256 17.0651i −0.644082 1.11558i
\(235\) 8.32325 14.4163i 0.542949 0.940416i
\(236\) −5.81887 −0.378776
\(237\) −19.7984 −1.28605
\(238\) −4.36629 −0.283024
\(239\) 2.07786 0.134406 0.0672029 0.997739i \(-0.478593\pi\)
0.0672029 + 0.997739i \(0.478593\pi\)
\(240\) 5.22162 0.337054
\(241\) −0.990128 1.71495i −0.0637797 0.110470i 0.832372 0.554217i \(-0.186982\pi\)
−0.896152 + 0.443747i \(0.853649\pi\)
\(242\) 0.173000 0.299644i 0.0111208 0.0192618i
\(243\) −1.29844 2.24897i −0.0832951 0.144271i
\(244\) 5.10860 8.84835i 0.327044 0.566458i
\(245\) −1.91923 3.32421i −0.122615 0.212376i
\(246\) −2.58641 + 4.47980i −0.164904 + 0.285622i
\(247\) −1.34106 + 2.32278i −0.0853295 + 0.147795i
\(248\) −4.75889 + 8.24264i −0.302190 + 0.523408i
\(249\) 4.33348 0.274623
\(250\) 12.1447 0.768096
\(251\) 26.1184 1.64858 0.824288 0.566170i \(-0.191575\pi\)
0.824288 + 0.566170i \(0.191575\pi\)
\(252\) 6.41793 + 11.1162i 0.404292 + 0.700253i
\(253\) 9.56111 0.601102
\(254\) 0.216387 0.374794i 0.0135773 0.0235166i
\(255\) 10.3922 0.650787
\(256\) 1.00000 0.0625000
\(257\) −17.1234 −1.06813 −0.534065 0.845443i \(-0.679336\pi\)
−0.534065 + 0.845443i \(0.679336\pi\)
\(258\) 11.9486 + 20.6955i 0.743885 + 1.28845i
\(259\) 0.507974 + 0.879836i 0.0315640 + 0.0546704i
\(260\) 2.95561 + 5.11927i 0.183299 + 0.317484i
\(261\) 30.6378 53.0662i 1.89643 3.28472i
\(262\) 7.35630 12.7415i 0.454474 0.787171i
\(263\) −6.90213 11.9548i −0.425604 0.737167i 0.570873 0.821038i \(-0.306605\pi\)
−0.996477 + 0.0838712i \(0.973272\pi\)
\(264\) −9.71064 −0.597649
\(265\) −7.61405 + 13.1879i −0.467728 + 0.810128i
\(266\) 0.873561 1.51305i 0.0535615 0.0927712i
\(267\) −16.8550 29.1938i −1.03151 1.78663i
\(268\) 1.22354 2.11924i 0.0747398 0.129453i
\(269\) −0.908781 + 1.57406i −0.0554094 + 0.0959718i −0.892400 0.451246i \(-0.850980\pi\)
0.836990 + 0.547218i \(0.184313\pi\)
\(270\) −7.44292 12.8915i −0.452962 0.784553i
\(271\) −11.4336 + 19.8036i −0.694543 + 1.20298i 0.275792 + 0.961217i \(0.411060\pi\)
−0.970335 + 0.241766i \(0.922273\pi\)
\(272\) 1.99023 0.120675
\(273\) −10.9909 + 19.0368i −0.665200 + 1.15216i
\(274\) 7.69713 13.3318i 0.465001 0.805405i
\(275\) −6.26517 −0.377804
\(276\) 4.35726 + 7.54700i 0.262276 + 0.454276i
\(277\) −6.56234 −0.394293 −0.197146 0.980374i \(-0.563167\pi\)
−0.197146 + 0.980374i \(0.563167\pi\)
\(278\) −2.91155 + 5.04294i −0.174623 + 0.302456i
\(279\) 55.6867 3.33387
\(280\) −1.92528 3.33468i −0.115057 0.199285i
\(281\) −9.91792 17.1783i −0.591653 1.02477i −0.994010 0.109290i \(-0.965142\pi\)
0.402357 0.915483i \(-0.368191\pi\)
\(282\) −28.2163 −1.68026
\(283\) −18.8395 −1.11989 −0.559945 0.828530i \(-0.689178\pi\)
−0.559945 + 0.828530i \(0.689178\pi\)
\(284\) −4.30442 + 7.45548i −0.255420 + 0.442401i
\(285\) −2.07917 + 3.60123i −0.123159 + 0.213318i
\(286\) −5.49654 9.52029i −0.325017 0.562947i
\(287\) 3.81457 0.225167
\(288\) −2.92540 5.06695i −0.172381 0.298573i
\(289\) −13.0390 −0.766999
\(290\) −9.19085 + 15.9190i −0.539706 + 0.934797i
\(291\) −28.0510 −1.64438
\(292\) 5.35953 + 9.28299i 0.313643 + 0.543246i
\(293\) −12.9709 22.4663i −0.757770 1.31250i −0.943986 0.329986i \(-0.892956\pi\)
0.186216 0.982509i \(-0.440378\pi\)
\(294\) −3.25316 + 5.63464i −0.189728 + 0.328619i
\(295\) −5.10649 8.84470i −0.297311 0.514958i
\(296\) −0.231543 0.401045i −0.0134582 0.0233103i
\(297\) 13.8416 + 23.9743i 0.803170 + 1.39113i
\(298\) −10.4423 18.0866i −0.604905 1.04773i
\(299\) −4.93271 + 8.54370i −0.285266 + 0.494095i
\(300\) −2.85521 4.94537i −0.164846 0.285521i
\(301\) 8.81116 15.2614i 0.507867 0.879651i
\(302\) −5.86579 10.1598i −0.337538 0.584633i
\(303\) 9.26011 + 16.0390i 0.531979 + 0.921415i
\(304\) −0.398184 + 0.689676i −0.0228374 + 0.0395556i
\(305\) 17.9327 1.02682
\(306\) −5.82223 10.0844i −0.332834 0.576486i
\(307\) −2.18053 + 3.77678i −0.124449 + 0.215552i −0.921518 0.388337i \(-0.873050\pi\)
0.797068 + 0.603889i \(0.206383\pi\)
\(308\) 3.58043 + 6.20149i 0.204014 + 0.353363i
\(309\) −5.16276 + 8.94216i −0.293699 + 0.508702i
\(310\) −16.7051 −0.948787
\(311\) 1.39938 + 2.42380i 0.0793518 + 0.137441i 0.902970 0.429703i \(-0.141382\pi\)
−0.823619 + 0.567144i \(0.808048\pi\)
\(312\) 5.00985 8.67731i 0.283627 0.491256i
\(313\) −14.6562 + 25.3852i −0.828415 + 1.43486i 0.0708666 + 0.997486i \(0.477424\pi\)
−0.899281 + 0.437371i \(0.855910\pi\)
\(314\) −18.7214 −1.05651
\(315\) −11.2644 + 19.5106i −0.634679 + 1.09930i
\(316\) −3.32743 5.76328i −0.187183 0.324210i
\(317\) −16.1589 27.9881i −0.907576 1.57197i −0.817422 0.576039i \(-0.804598\pi\)
−0.0901535 0.995928i \(-0.528736\pi\)
\(318\) 25.8121 1.44747
\(319\) 17.0922 29.6046i 0.956980 1.65754i
\(320\) 0.877575 + 1.52000i 0.0490579 + 0.0849708i
\(321\) −4.64044 −0.259004
\(322\) 3.21315 5.56534i 0.179062 0.310144i
\(323\) −0.792478 + 1.37261i −0.0440947 + 0.0763742i
\(324\) −3.83977 + 6.65067i −0.213320 + 0.369482i
\(325\) 3.23229 5.59849i 0.179295 0.310548i
\(326\) −0.592601 −0.0328211
\(327\) −35.5900 −1.96813
\(328\) −1.73875 −0.0960063
\(329\) 10.4037 + 18.0197i 0.573575 + 0.993461i
\(330\) −8.52181 14.7602i −0.469110 0.812523i
\(331\) −12.5600 −0.690358 −0.345179 0.938537i \(-0.612182\pi\)
−0.345179 + 0.938537i \(0.612182\pi\)
\(332\) 0.728309 + 1.26147i 0.0399711 + 0.0692320i
\(333\) −1.35472 + 2.34644i −0.0742379 + 0.128584i
\(334\) 16.8713 0.923154
\(335\) 4.29500 0.234661
\(336\) −3.26340 + 5.65238i −0.178033 + 0.308362i
\(337\) −5.95873 10.3208i −0.324593 0.562211i 0.656837 0.754033i \(-0.271894\pi\)
−0.981430 + 0.191821i \(0.938561\pi\)
\(338\) −1.65704 −0.0901310
\(339\) 0.520161 + 0.900945i 0.0282513 + 0.0489326i
\(340\) 1.74658 + 3.02516i 0.0947213 + 0.164062i
\(341\) 31.0665 1.68234
\(342\) 4.65940 0.251952
\(343\) 20.1549 1.08826
\(344\) −4.01628 + 6.95640i −0.216543 + 0.375064i
\(345\) −7.64764 + 13.2461i −0.411735 + 0.713146i
\(346\) −5.83318 + 10.1034i −0.313594 + 0.543161i
\(347\) 6.96499 12.0637i 0.373900 0.647614i −0.616261 0.787542i \(-0.711354\pi\)
0.990162 + 0.139927i \(0.0446869\pi\)
\(348\) 31.1575 1.67022
\(349\) −11.1497 19.3119i −0.596832 1.03374i −0.993285 0.115689i \(-0.963092\pi\)
0.396453 0.918055i \(-0.370241\pi\)
\(350\) −2.10550 + 3.64684i −0.112544 + 0.194932i
\(351\) −28.5642 −1.52465
\(352\) −1.63202 2.82675i −0.0869871 0.150666i
\(353\) 16.3468 + 28.3136i 0.870054 + 1.50698i 0.861939 + 0.507011i \(0.169250\pi\)
0.00811483 + 0.999967i \(0.497417\pi\)
\(354\) −8.65565 + 14.9920i −0.460043 + 0.796817i
\(355\) −15.1098 −0.801945
\(356\) 5.66550 9.81293i 0.300271 0.520084i
\(357\) −6.49492 + 11.2495i −0.343748 + 0.595388i
\(358\) 12.3440 + 21.3804i 0.652400 + 1.12999i
\(359\) −2.13668 −0.112770 −0.0563849 0.998409i \(-0.517957\pi\)
−0.0563849 + 0.998409i \(0.517957\pi\)
\(360\) 5.13452 8.89325i 0.270613 0.468716i
\(361\) 9.18290 + 15.9052i 0.483310 + 0.837118i
\(362\) −8.58932 + 14.8771i −0.451444 + 0.781925i
\(363\) −0.514679 0.891450i −0.0270136 0.0467890i
\(364\) −7.38877 −0.387277
\(365\) −9.40679 + 16.2930i −0.492374 + 0.852816i
\(366\) −15.1982 26.3241i −0.794424 1.37598i
\(367\) 13.2396 + 22.9317i 0.691102 + 1.19702i 0.971477 + 0.237133i \(0.0762079\pi\)
−0.280375 + 0.959891i \(0.590459\pi\)
\(368\) −1.46461 + 2.53678i −0.0763481 + 0.132239i
\(369\) 5.08654 + 8.81014i 0.264795 + 0.458638i
\(370\) 0.406393 0.703894i 0.0211274 0.0365937i
\(371\) −9.51724 16.4843i −0.494110 0.855824i
\(372\) 14.1578 + 24.5221i 0.734050 + 1.27141i
\(373\) 2.22803 + 3.85906i 0.115363 + 0.199815i 0.917925 0.396754i \(-0.129864\pi\)
−0.802562 + 0.596569i \(0.796530\pi\)
\(374\) −3.24810 5.62588i −0.167955 0.290907i
\(375\) 18.0654 31.2902i 0.932892 1.61582i
\(376\) −4.74219 8.21371i −0.244560 0.423590i
\(377\) 17.6362 + 30.5468i 0.908310 + 1.57324i
\(378\) 18.6067 0.957024
\(379\) 7.53981 13.0593i 0.387294 0.670813i −0.604790 0.796385i \(-0.706743\pi\)
0.992085 + 0.125571i \(0.0400764\pi\)
\(380\) −1.39775 −0.0717029
\(381\) −0.643759 1.11502i −0.0329808 0.0571243i
\(382\) 22.6991 1.16139
\(383\) −3.88889 6.73576i −0.198713 0.344181i 0.749398 0.662119i \(-0.230343\pi\)
−0.948111 + 0.317938i \(0.897010\pi\)
\(384\) 1.48752 2.57645i 0.0759095 0.131479i
\(385\) −6.28419 + 10.8845i −0.320272 + 0.554728i
\(386\) −14.7243 −0.749448
\(387\) 46.9970 2.38899
\(388\) −4.71440 8.16558i −0.239337 0.414545i
\(389\) 8.37102 + 14.4990i 0.424428 + 0.735130i 0.996367 0.0851657i \(-0.0271420\pi\)
−0.571939 + 0.820296i \(0.693809\pi\)
\(390\) 17.5861 0.890505
\(391\) −2.91491 + 5.04877i −0.147413 + 0.255327i
\(392\) −2.18697 −0.110459
\(393\) −21.8852 37.9063i −1.10396 1.91212i
\(394\) 22.1406 1.11543
\(395\) 5.84014 10.1154i 0.293849 0.508962i
\(396\) −9.54866 + 16.5388i −0.479838 + 0.831104i
\(397\) −15.9997 −0.803002 −0.401501 0.915859i \(-0.631511\pi\)
−0.401501 + 0.915859i \(0.631511\pi\)
\(398\) 13.8449 23.9800i 0.693980 1.20201i
\(399\) −2.59887 4.50138i −0.130106 0.225351i
\(400\) 0.959725 1.66229i 0.0479862 0.0831146i
\(401\) −9.74634 + 16.8812i −0.486709 + 0.843005i −0.999883 0.0152799i \(-0.995136\pi\)
0.513174 + 0.858284i \(0.328469\pi\)
\(402\) −3.64008 6.30480i −0.181551 0.314455i
\(403\) −16.0276 + 27.7606i −0.798392 + 1.38286i
\(404\) −3.11261 + 5.39120i −0.154858 + 0.268222i
\(405\) −13.4787 −0.669763
\(406\) −11.4882 19.8981i −0.570148 0.987526i
\(407\) −0.755768 + 1.30903i −0.0374620 + 0.0648861i
\(408\) 2.96050 5.12773i 0.146566 0.253861i
\(409\) 3.84046 + 6.65188i 0.189899 + 0.328914i 0.945216 0.326445i \(-0.105851\pi\)
−0.755318 + 0.655359i \(0.772517\pi\)
\(410\) −1.52588 2.64290i −0.0753579 0.130524i
\(411\) −22.8992 39.6626i −1.12953 1.95641i
\(412\) −3.47073 −0.170990
\(413\) 12.7658 0.628163
\(414\) 17.1383 0.842302
\(415\) −1.27829 + 2.21406i −0.0627488 + 0.108684i
\(416\) 3.36793 0.165126
\(417\) 8.66194 + 15.0029i 0.424177 + 0.734696i
\(418\) 2.59938 0.127140
\(419\) 23.1354 1.13024 0.565118 0.825010i \(-0.308831\pi\)
0.565118 + 0.825010i \(0.308831\pi\)
\(420\) −11.4555 −0.558972
\(421\) 14.6675 25.4048i 0.714849 1.23816i −0.248168 0.968717i \(-0.579829\pi\)
0.963018 0.269438i \(-0.0868380\pi\)
\(422\) −2.42987 + 4.20866i −0.118284 + 0.204874i
\(423\) −27.7456 + 48.0569i −1.34904 + 2.33660i
\(424\) 4.33812 + 7.51385i 0.210678 + 0.364905i
\(425\) 1.91007 3.30834i 0.0926521 0.160478i
\(426\) 12.8058 + 22.1803i 0.620442 + 1.07464i
\(427\) −11.2076 + 19.4120i −0.542371 + 0.939415i
\(428\) −0.779898 1.35082i −0.0376978 0.0652945i
\(429\) −32.7048 −1.57900
\(430\) −14.0983 −0.679883
\(431\) −11.3220 −0.545360 −0.272680 0.962105i \(-0.587910\pi\)
−0.272680 + 0.962105i \(0.587910\pi\)
\(432\) −8.48124 −0.408054
\(433\) 3.94418 0.189545 0.0947725 0.995499i \(-0.469788\pi\)
0.0947725 + 0.995499i \(0.469788\pi\)
\(434\) 10.4403 18.0832i 0.501152 0.868021i
\(435\) 27.3431 + 47.3596i 1.31100 + 2.27072i
\(436\) −5.98146 10.3602i −0.286460 0.496163i
\(437\) −1.16637 2.02021i −0.0557950 0.0966398i
\(438\) 31.8896 1.52374
\(439\) 19.1853 0.915667 0.457833 0.889038i \(-0.348626\pi\)
0.457833 + 0.889038i \(0.348626\pi\)
\(440\) 2.86445 4.96136i 0.136557 0.236524i
\(441\) 6.39779 + 11.0813i 0.304656 + 0.527680i
\(442\) 6.70296 0.318827
\(443\) 6.20393 10.7455i 0.294758 0.510535i −0.680171 0.733054i \(-0.738094\pi\)
0.974929 + 0.222518i \(0.0714277\pi\)
\(444\) −1.37770 −0.0653826
\(445\) 19.8876 0.942763
\(446\) 7.27564 + 13.0409i 0.344511 + 0.617505i
\(447\) −62.1322 −2.93875
\(448\) −2.19386 −0.103650
\(449\) −17.5449 + 30.3887i −0.827995 + 1.43413i 0.0716132 + 0.997432i \(0.477185\pi\)
−0.899608 + 0.436697i \(0.856148\pi\)
\(450\) −11.2303 −0.529403
\(451\) 2.83768 + 4.91500i 0.133621 + 0.231438i
\(452\) −0.174842 + 0.302836i −0.00822388 + 0.0142442i
\(453\) −34.9018 −1.63983
\(454\) 3.37265 0.158286
\(455\) −6.48420 11.2310i −0.303984 0.526516i
\(456\) 1.18461 + 2.05181i 0.0554745 + 0.0960846i
\(457\) −11.8729 20.5645i −0.555391 0.961965i −0.997873 0.0651875i \(-0.979235\pi\)
0.442482 0.896777i \(-0.354098\pi\)
\(458\) −5.45349 + 9.44573i −0.254825 + 0.441370i
\(459\) −16.8796 −0.787873
\(460\) −5.14122 −0.239711
\(461\) 31.9580 1.48843 0.744217 0.667938i \(-0.232823\pi\)
0.744217 + 0.667938i \(0.232823\pi\)
\(462\) 21.3038 0.991142
\(463\) −22.5766 −1.04922 −0.524611 0.851342i \(-0.675789\pi\)
−0.524611 + 0.851342i \(0.675789\pi\)
\(464\) 5.23651 + 9.06990i 0.243099 + 0.421059i
\(465\) −24.8491 + 43.0399i −1.15235 + 1.99593i
\(466\) 1.75202 + 3.03459i 0.0811607 + 0.140574i
\(467\) −16.0006 + 27.7138i −0.740419 + 1.28244i 0.211886 + 0.977294i \(0.432039\pi\)
−0.952305 + 0.305149i \(0.901294\pi\)
\(468\) −9.85256 17.0651i −0.455435 0.788836i
\(469\) −2.68428 + 4.64931i −0.123949 + 0.214685i
\(470\) 8.32325 14.4163i 0.383923 0.664974i
\(471\) −27.8483 + 48.2347i −1.28318 + 2.22254i
\(472\) −5.81887 −0.267835
\(473\) 26.2187 1.20554
\(474\) −19.7984 −0.909371
\(475\) 0.764295 + 1.32380i 0.0350683 + 0.0607400i
\(476\) −4.36629 −0.200128
\(477\) 25.3815 43.9621i 1.16214 2.01289i
\(478\) 2.07786 0.0950393
\(479\) 3.74778 0.171240 0.0856202 0.996328i \(-0.472713\pi\)
0.0856202 + 0.996328i \(0.472713\pi\)
\(480\) 5.22162 0.238333
\(481\) −0.779822 1.35069i −0.0355568 0.0615862i
\(482\) −0.990128 1.71495i −0.0450991 0.0781139i
\(483\) −9.55922 16.5571i −0.434960 0.753372i
\(484\) 0.173000 0.299644i 0.00786362 0.0136202i
\(485\) 8.27448 14.3318i 0.375725 0.650774i
\(486\) −1.29844 2.24897i −0.0588985 0.102015i
\(487\) −26.5414 −1.20270 −0.601352 0.798984i \(-0.705371\pi\)
−0.601352 + 0.798984i \(0.705371\pi\)
\(488\) 5.10860 8.84835i 0.231255 0.400546i
\(489\) −0.881503 + 1.52681i −0.0398629 + 0.0690446i
\(490\) −1.91923 3.32421i −0.0867022 0.150173i
\(491\) 9.47748 16.4155i 0.427713 0.740820i −0.568957 0.822367i \(-0.692653\pi\)
0.996669 + 0.0815474i \(0.0259862\pi\)
\(492\) −2.58641 + 4.47980i −0.116605 + 0.201965i
\(493\) 10.4219 + 18.0512i 0.469377 + 0.812984i
\(494\) −1.34106 + 2.32278i −0.0603370 + 0.104507i
\(495\) −33.5186 −1.50655
\(496\) −4.75889 + 8.24264i −0.213680 + 0.370105i
\(497\) 9.44330 16.3563i 0.423590 0.733679i
\(498\) 4.33348 0.194188
\(499\) −1.42492 2.46803i −0.0637882 0.110484i 0.832368 0.554224i \(-0.186985\pi\)
−0.896156 + 0.443740i \(0.853652\pi\)
\(500\) 12.1447 0.543126
\(501\) 25.0963 43.4680i 1.12122 1.94201i
\(502\) 26.1184 1.16572
\(503\) 8.33314 + 14.4334i 0.371557 + 0.643555i 0.989805 0.142428i \(-0.0454909\pi\)
−0.618249 + 0.785983i \(0.712158\pi\)
\(504\) 6.41793 + 11.1162i 0.285877 + 0.495154i
\(505\) −10.9262 −0.486209
\(506\) 9.56111 0.425043
\(507\) −2.46487 + 4.26928i −0.109469 + 0.189605i
\(508\) 0.216387 0.374794i 0.00960063 0.0166288i
\(509\) 17.7186 + 30.6895i 0.785363 + 1.36029i 0.928782 + 0.370626i \(0.120857\pi\)
−0.143420 + 0.989662i \(0.545810\pi\)
\(510\) 10.3922 0.460176
\(511\) −11.7581 20.3656i −0.520147 0.900920i
\(512\) 1.00000 0.0441942
\(513\) 3.37710 5.84931i 0.149103 0.258253i
\(514\) −17.1234 −0.755282
\(515\) −3.04582 5.27552i −0.134215 0.232467i
\(516\) 11.9486 + 20.6955i 0.526006 + 0.911069i
\(517\) −15.4787 + 26.8099i −0.680754 + 1.17910i
\(518\) 0.507974 + 0.879836i 0.0223191 + 0.0386578i
\(519\) 17.3539 + 30.0578i 0.761752 + 1.31939i
\(520\) 2.95561 + 5.11927i 0.129612 + 0.224495i
\(521\) 7.95487 + 13.7782i 0.348509 + 0.603636i 0.985985 0.166835i \(-0.0533546\pi\)
−0.637476 + 0.770471i \(0.720021\pi\)
\(522\) 30.6378 53.0662i 1.34098 2.32265i
\(523\) −3.04627 5.27629i −0.133204 0.230716i 0.791706 0.610902i \(-0.209193\pi\)
−0.924910 + 0.380186i \(0.875860\pi\)
\(524\) 7.35630 12.7415i 0.321361 0.556614i
\(525\) 6.26394 + 10.8495i 0.273381 + 0.473509i
\(526\) −6.90213 11.9548i −0.300947 0.521256i
\(527\) −9.47128 + 16.4047i −0.412575 + 0.714602i
\(528\) −9.71064 −0.422601
\(529\) 7.20983 + 12.4878i 0.313471 + 0.542948i
\(530\) −7.61405 + 13.1879i −0.330733 + 0.572847i
\(531\) 17.0225 + 29.4839i 0.738715 + 1.27949i
\(532\) 0.873561 1.51305i 0.0378737 0.0655991i
\(533\) −5.85598 −0.253651
\(534\) −16.8550 29.1938i −0.729389 1.26334i
\(535\) 1.36884 2.37089i 0.0591800 0.102503i
\(536\) 1.22354 2.11924i 0.0528490 0.0915372i
\(537\) 73.4475 3.16949
\(538\) −0.908781 + 1.57406i −0.0391803 + 0.0678623i
\(539\) 3.56919 + 6.18203i 0.153736 + 0.266279i
\(540\) −7.44292 12.8915i −0.320292 0.554763i
\(541\) −34.3747 −1.47789 −0.738943 0.673768i \(-0.764675\pi\)
−0.738943 + 0.673768i \(0.764675\pi\)
\(542\) −11.4336 + 19.8036i −0.491116 + 0.850637i
\(543\) 25.5535 + 44.2599i 1.09660 + 1.89938i
\(544\) 1.99023 0.0853304
\(545\) 10.4984 18.1837i 0.449700 0.778903i
\(546\) −10.9909 + 19.0368i −0.470368 + 0.814701i
\(547\) −7.05699 + 12.2231i −0.301735 + 0.522621i −0.976529 0.215386i \(-0.930899\pi\)
0.674794 + 0.738006i \(0.264233\pi\)
\(548\) 7.69713 13.3318i 0.328805 0.569507i
\(549\) −59.7788 −2.55130
\(550\) −6.26517 −0.267148
\(551\) −8.34038 −0.355312
\(552\) 4.35726 + 7.54700i 0.185457 + 0.321221i
\(553\) 7.29992 + 12.6438i 0.310424 + 0.537670i
\(554\) −6.56234 −0.278807
\(555\) −1.20903 2.09410i −0.0513206 0.0888898i
\(556\) −2.91155 + 5.04294i −0.123477 + 0.213869i
\(557\) 7.97227 0.337796 0.168898 0.985634i \(-0.445979\pi\)
0.168898 + 0.985634i \(0.445979\pi\)
\(558\) 55.6867 2.35741
\(559\) −13.5266 + 23.4287i −0.572112 + 0.990928i
\(560\) −1.92528 3.33468i −0.0813578 0.140916i
\(561\) −19.3264 −0.815961
\(562\) −9.91792 17.1783i −0.418362 0.724624i
\(563\) 5.86544 + 10.1592i 0.247199 + 0.428161i 0.962748 0.270402i \(-0.0871565\pi\)
−0.715549 + 0.698563i \(0.753823\pi\)
\(564\) −28.2163 −1.18812
\(565\) −0.613748 −0.0258206
\(566\) −18.8395 −0.791881
\(567\) 8.42391 14.5906i 0.353771 0.612749i
\(568\) −4.30442 + 7.45548i −0.180610 + 0.312825i
\(569\) 11.2615 19.5055i 0.472106 0.817712i −0.527384 0.849627i \(-0.676827\pi\)
0.999491 + 0.0319150i \(0.0101606\pi\)
\(570\) −2.07917 + 3.60123i −0.0870868 + 0.150839i
\(571\) 44.4680 1.86093 0.930465 0.366381i \(-0.119403\pi\)
0.930465 + 0.366381i \(0.119403\pi\)
\(572\) −5.49654 9.52029i −0.229822 0.398063i
\(573\) 33.7652 58.4831i 1.41056 2.44317i
\(574\) 3.81457 0.159217
\(575\) 2.81125 + 4.86922i 0.117237 + 0.203061i
\(576\) −2.92540 5.06695i −0.121892 0.211123i
\(577\) 3.30737 5.72853i 0.137687 0.238482i −0.788933 0.614479i \(-0.789366\pi\)
0.926621 + 0.375997i \(0.122700\pi\)
\(578\) −13.0390 −0.542350
\(579\) −21.9026 + 37.9365i −0.910243 + 1.57659i
\(580\) −9.19085 + 15.9190i −0.381629 + 0.661002i
\(581\) −1.59781 2.76748i −0.0662882 0.114815i
\(582\) −28.0510 −1.16275
\(583\) 14.1598 24.5256i 0.586440 1.01574i
\(584\) 5.35953 + 9.28299i 0.221779 + 0.384133i
\(585\) 17.2927 29.9519i 0.714966 1.23836i
\(586\) −12.9709 22.4663i −0.535824 0.928074i
\(587\) −30.8495 −1.27329 −0.636647 0.771155i \(-0.719679\pi\)
−0.636647 + 0.771155i \(0.719679\pi\)
\(588\) −3.25316 + 5.63464i −0.134158 + 0.232368i
\(589\) −3.78983 6.56418i −0.156157 0.270472i
\(590\) −5.10649 8.84470i −0.210231 0.364131i
\(591\) 32.9345 57.0442i 1.35474 2.34648i
\(592\) −0.231543 0.401045i −0.00951637 0.0164828i
\(593\) 20.8961 36.1931i 0.858099 1.48627i −0.0156406 0.999878i \(-0.504979\pi\)
0.873740 0.486394i \(-0.161688\pi\)
\(594\) 13.8416 + 23.9743i 0.567927 + 0.983679i
\(595\) −3.83174 6.63677i −0.157086 0.272081i
\(596\) −10.4423 18.0866i −0.427733 0.740855i
\(597\) −41.1889 71.3412i −1.68575 2.91980i
\(598\) −4.93271 + 8.54370i −0.201713 + 0.349378i
\(599\) 3.32819 + 5.76459i 0.135986 + 0.235535i 0.925974 0.377588i \(-0.123246\pi\)
−0.789988 + 0.613123i \(0.789913\pi\)
\(600\) −2.85521 4.94537i −0.116564 0.201894i
\(601\) 28.6129 1.16714 0.583572 0.812062i \(-0.301655\pi\)
0.583572 + 0.812062i \(0.301655\pi\)
\(602\) 8.81116 15.2614i 0.359116 0.622007i
\(603\) −14.3174 −0.583051
\(604\) −5.86579 10.1598i −0.238675 0.413398i
\(605\) 0.607280 0.0246894
\(606\) 9.26011 + 16.0390i 0.376166 + 0.651539i
\(607\) −1.67512 + 2.90139i −0.0679909 + 0.117764i −0.898017 0.439961i \(-0.854992\pi\)
0.830026 + 0.557725i \(0.188326\pi\)
\(608\) −0.398184 + 0.689676i −0.0161485 + 0.0279700i
\(609\) −68.3553 −2.76990
\(610\) 17.9327 0.726074
\(611\) −15.9714 27.6632i −0.646133 1.11913i
\(612\) −5.82223 10.0844i −0.235350 0.407637i
\(613\) −16.5054 −0.666647 −0.333324 0.942813i \(-0.608170\pi\)
−0.333324 + 0.942813i \(0.608170\pi\)
\(614\) −2.18053 + 3.77678i −0.0879989 + 0.152419i
\(615\) −9.07909 −0.366104
\(616\) 3.58043 + 6.20149i 0.144260 + 0.249865i
\(617\) −17.3632 −0.699015 −0.349507 0.936934i \(-0.613651\pi\)
−0.349507 + 0.936934i \(0.613651\pi\)
\(618\) −5.16276 + 8.94216i −0.207677 + 0.359706i
\(619\) 13.3767 23.1692i 0.537657 0.931249i −0.461373 0.887206i \(-0.652643\pi\)
0.999030 0.0440425i \(-0.0140237\pi\)
\(620\) −16.7051 −0.670894
\(621\) 12.4217 21.5150i 0.498466 0.863369i
\(622\) 1.39938 + 2.42380i 0.0561102 + 0.0971857i
\(623\) −12.4293 + 21.5282i −0.497970 + 0.862509i
\(624\) 5.00985 8.67731i 0.200555 0.347371i
\(625\) 5.85923 + 10.1485i 0.234369 + 0.405939i
\(626\) −14.6562 + 25.3852i −0.585778 + 1.01460i
\(627\) 3.86662 6.69719i 0.154418 0.267460i
\(628\) −18.7214 −0.747064
\(629\) −0.460824 0.798171i −0.0183743 0.0318252i
\(630\) −11.2644 + 19.5106i −0.448785 + 0.777319i
\(631\) −14.7704 + 25.5831i −0.588000 + 1.01845i 0.406494 + 0.913653i \(0.366751\pi\)
−0.994494 + 0.104793i \(0.966582\pi\)
\(632\) −3.32743 5.76328i −0.132358 0.229251i
\(633\) 7.22894 + 12.5209i 0.287325 + 0.497661i
\(634\) −16.1589 27.9881i −0.641753 1.11155i
\(635\) 0.759584 0.0301432
\(636\) 25.8121 1.02352
\(637\) −7.36558 −0.291835
\(638\) 17.0922 29.6046i 0.676687 1.17206i
\(639\) 50.3687 1.99255
\(640\) 0.877575 + 1.52000i 0.0346892 + 0.0600834i
\(641\) −30.2564 −1.19506 −0.597528 0.801848i \(-0.703850\pi\)
−0.597528 + 0.801848i \(0.703850\pi\)
\(642\) −4.64044 −0.183143
\(643\) 26.1644 1.03182 0.515912 0.856642i \(-0.327453\pi\)
0.515912 + 0.856642i \(0.327453\pi\)
\(644\) 3.21315 5.56534i 0.126616 0.219305i
\(645\) −20.9715 + 36.3237i −0.825752 + 1.43025i
\(646\) −0.792478 + 1.37261i −0.0311796 + 0.0540047i
\(647\) −2.02059 3.49976i −0.0794375 0.137590i 0.823570 0.567215i \(-0.191979\pi\)
−0.903007 + 0.429625i \(0.858646\pi\)
\(648\) −3.83977 + 6.65067i −0.150840 + 0.261263i
\(649\) 9.49653 + 16.4485i 0.372771 + 0.645659i
\(650\) 3.23229 5.59849i 0.126781 0.219591i
\(651\) −31.0603 53.7981i −1.21735 2.10851i
\(652\) −0.592601 −0.0232080
\(653\) −4.00404 −0.156690 −0.0783452 0.996926i \(-0.524964\pi\)
−0.0783452 + 0.996926i \(0.524964\pi\)
\(654\) −35.5900 −1.39168
\(655\) 25.8228 1.00898
\(656\) −1.73875 −0.0678867
\(657\) 31.3576 54.3130i 1.22338 2.11895i
\(658\) 10.4037 + 18.0197i 0.405579 + 0.702483i
\(659\) 1.08974 + 1.88749i 0.0424503 + 0.0735260i 0.886470 0.462786i \(-0.153150\pi\)
−0.844020 + 0.536312i \(0.819817\pi\)
\(660\) −8.52181 14.7602i −0.331711 0.574540i
\(661\) 45.9046 1.78548 0.892742 0.450569i \(-0.148779\pi\)
0.892742 + 0.450569i \(0.148779\pi\)
\(662\) −12.5600 −0.488157
\(663\) 9.97075 17.2698i 0.387232 0.670705i
\(664\) 0.728309 + 1.26147i 0.0282639 + 0.0489544i
\(665\) 3.06646 0.118912
\(666\) −1.35472 + 2.34644i −0.0524942 + 0.0909225i
\(667\) −30.6778 −1.18785
\(668\) 16.8713 0.652768
\(669\) 44.4219 + 0.653207i 1.71745 + 0.0252545i
\(670\) 4.29500 0.165930
\(671\) −33.3494 −1.28744
\(672\) −3.26340 + 5.65238i −0.125888 + 0.218045i
\(673\) 21.0795 0.812555 0.406277 0.913750i \(-0.366827\pi\)
0.406277 + 0.913750i \(0.366827\pi\)
\(674\) −5.95873 10.3208i −0.229522 0.397543i
\(675\) −8.13966 + 14.0983i −0.313296 + 0.542644i
\(676\) −1.65704 −0.0637322
\(677\) −25.2847 −0.971772 −0.485886 0.874022i \(-0.661503\pi\)
−0.485886 + 0.874022i \(0.661503\pi\)
\(678\) 0.520161 + 0.900945i 0.0199767 + 0.0346006i
\(679\) 10.3427 + 17.9141i 0.396918 + 0.687482i
\(680\) 1.74658 + 3.02516i 0.0669781 + 0.116009i
\(681\) 5.01687 8.68948i 0.192247 0.332982i
\(682\) 31.0665 1.18960
\(683\) 35.4149 1.35511 0.677557 0.735470i \(-0.263039\pi\)
0.677557 + 0.735470i \(0.263039\pi\)
\(684\) 4.65940 0.178157
\(685\) 27.0192 1.03235
\(686\) 20.1549 0.769519
\(687\) 16.2243 + 28.1013i 0.618996 + 1.07213i
\(688\) −4.01628 + 6.95640i −0.153119 + 0.265210i
\(689\) 14.6105 + 25.3061i 0.556616 + 0.964087i
\(690\) −7.64764 + 13.2461i −0.291141 + 0.504271i
\(691\) 3.33261 + 5.77224i 0.126778 + 0.219586i 0.922427 0.386172i \(-0.126203\pi\)
−0.795648 + 0.605759i \(0.792870\pi\)
\(692\) −5.83318 + 10.1034i −0.221744 + 0.384073i
\(693\) 20.9484 36.2837i 0.795765 1.37830i
\(694\) 6.96499 12.0637i 0.264387 0.457932i
\(695\) −10.2204 −0.387682
\(696\) 31.1575 1.18102
\(697\) −3.46051 −0.131076
\(698\) −11.1497 19.3119i −0.422024 0.730967i
\(699\) 10.4246 0.394295
\(700\) −2.10550 + 3.64684i −0.0795805 + 0.137838i
\(701\) 32.9004 1.24263 0.621315 0.783561i \(-0.286599\pi\)
0.621315 + 0.783561i \(0.286599\pi\)
\(702\) −28.5642 −1.07809
\(703\) 0.368788 0.0139091
\(704\) −1.63202 2.82675i −0.0615092 0.106537i
\(705\) −24.7619 42.8889i −0.932588 1.61529i
\(706\) 16.3468 + 28.3136i 0.615221 + 1.06559i
\(707\) 6.82863 11.8275i 0.256817 0.444820i
\(708\) −8.65565 + 14.9920i −0.325299 + 0.563435i
\(709\) 4.25381 + 7.36782i 0.159755 + 0.276704i 0.934780 0.355226i \(-0.115596\pi\)
−0.775025 + 0.631930i \(0.782263\pi\)
\(710\) −15.1098 −0.567061
\(711\) −19.4682 + 33.7198i −0.730113 + 1.26459i
\(712\) 5.66550 9.81293i 0.212324 0.367755i
\(713\) −13.9398 24.1445i −0.522051 0.904218i
\(714\) −6.49492 + 11.2495i −0.243066 + 0.421003i
\(715\) 9.64725 16.7095i 0.360787 0.624901i
\(716\) 12.3440 + 21.3804i 0.461317 + 0.799024i
\(717\) 3.09086 5.35352i 0.115430 0.199931i
\(718\) −2.13668 −0.0797402
\(719\) −17.1285 + 29.6674i −0.638784 + 1.10641i 0.346916 + 0.937896i \(0.387229\pi\)
−0.985700 + 0.168510i \(0.946104\pi\)
\(720\) 5.13452 8.89325i 0.191352 0.331432i
\(721\) 7.61429 0.283571
\(722\) 9.18290 + 15.9052i 0.341752 + 0.591932i
\(723\) −5.89132 −0.219101
\(724\) −8.58932 + 14.8771i −0.319219 + 0.552904i
\(725\) 20.1024 0.746585
\(726\) −0.514679 0.891450i −0.0191015 0.0330848i
\(727\) −8.67751 15.0299i −0.321831 0.557428i 0.659035 0.752113i \(-0.270965\pi\)
−0.980866 + 0.194685i \(0.937632\pi\)
\(728\) −7.38877 −0.273846
\(729\) −30.7644 −1.13942
\(730\) −9.40679 + 16.2930i −0.348161 + 0.603032i
\(731\) −7.99332 + 13.8448i −0.295644 + 0.512070i
\(732\) −15.1982 26.3241i −0.561743 0.972967i
\(733\) 40.0916 1.48082 0.740408 0.672158i \(-0.234632\pi\)
0.740408 + 0.672158i \(0.234632\pi\)
\(734\) 13.2396 + 22.9317i 0.488683 + 0.846424i
\(735\) −11.4196 −0.421217
\(736\) −1.46461 + 2.53678i −0.0539862 + 0.0935069i
\(737\) −7.98740 −0.294220
\(738\) 5.08654 + 8.81014i 0.187238 + 0.324306i
\(739\) −24.7321 42.8372i −0.909784 1.57579i −0.814363 0.580355i \(-0.802914\pi\)
−0.0954207 0.995437i \(-0.530420\pi\)
\(740\) 0.406393 0.703894i 0.0149393 0.0258756i
\(741\) 3.98969 + 6.91034i 0.146565 + 0.253858i
\(742\) −9.51724 16.4843i −0.349389 0.605159i
\(743\) 14.9909 + 25.9650i 0.549964 + 0.952565i 0.998276 + 0.0586880i \(0.0186917\pi\)
−0.448313 + 0.893877i \(0.647975\pi\)
\(744\) 14.1578 + 24.5221i 0.519051 + 0.899024i
\(745\) 18.3278 31.7446i 0.671477 1.16303i
\(746\) 2.22803 + 3.85906i 0.0815739 + 0.141290i
\(747\) 4.26119 7.38061i 0.155909 0.270042i
\(748\) −3.24810 5.62588i −0.118762 0.205702i
\(749\) 1.71099 + 2.96352i 0.0625181 + 0.108285i
\(750\) 18.0654 31.2902i 0.659655 1.14256i
\(751\) 51.2216 1.86910 0.934552 0.355827i \(-0.115801\pi\)
0.934552 + 0.355827i \(0.115801\pi\)
\(752\) −4.74219 8.21371i −0.172930 0.299523i
\(753\) 38.8515 67.2927i 1.41583 2.45228i
\(754\) 17.6362 + 30.5468i 0.642273 + 1.11245i
\(755\) 10.2953 17.8320i 0.374686 0.648974i
\(756\) 18.6067 0.676718
\(757\) −0.305177 0.528583i −0.0110919 0.0192117i 0.860426 0.509575i \(-0.170197\pi\)
−0.871518 + 0.490363i \(0.836864\pi\)
\(758\) 7.53981 13.0593i 0.273858 0.474337i
\(759\) 14.2223 24.6337i 0.516237 0.894148i
\(760\) −1.39775 −0.0507016
\(761\) −2.63964 + 4.57198i −0.0956867 + 0.165734i −0.909895 0.414839i \(-0.863838\pi\)
0.814208 + 0.580573i \(0.197171\pi\)
\(762\) −0.643759 1.11502i −0.0233209 0.0403930i
\(763\) 13.1225 + 22.7288i 0.475066 + 0.822838i
\(764\) 22.6991 0.821224
\(765\) 10.2189 17.6996i 0.369464 0.639931i
\(766\) −3.88889 6.73576i −0.140511 0.243373i
\(767\) −19.5975 −0.707626
\(768\) 1.48752 2.57645i 0.0536761 0.0929697i
\(769\) 10.9993 19.0514i 0.396647 0.687012i −0.596663 0.802492i \(-0.703507\pi\)
0.993310 + 0.115480i \(0.0368405\pi\)
\(770\) −6.28419 + 10.8845i −0.226467 + 0.392252i
\(771\) −25.4714 + 44.1177i −0.917329 + 1.58886i
\(772\) −14.7243 −0.529940
\(773\) −8.91084 −0.320501 −0.160250 0.987076i \(-0.551230\pi\)
−0.160250 + 0.987076i \(0.551230\pi\)
\(774\) 46.9970 1.68927
\(775\) 9.13445 + 15.8213i 0.328119 + 0.568319i
\(776\) −4.71440 8.16558i −0.169237 0.293127i
\(777\) 3.02248 0.108431
\(778\) 8.37102 + 14.4990i 0.300116 + 0.519816i
\(779\) 0.692342 1.19917i 0.0248057 0.0429648i
\(780\) 17.5861 0.629682
\(781\) 28.0997 1.00549
\(782\) −2.91491 + 5.04877i −0.104237 + 0.180544i
\(783\) −44.4121 76.9240i −1.58716 2.74904i
\(784\) −2.18697 −0.0781062
\(785\) −16.4294 28.4566i −0.586391 1.01566i
\(786\) −21.8852 37.9063i −0.780620 1.35207i
\(787\) 14.6146 0.520955 0.260478 0.965480i \(-0.416120\pi\)
0.260478 + 0.965480i \(0.416120\pi\)
\(788\) 22.1406 0.788726
\(789\) −41.0681 −1.46206
\(790\) 5.84014 10.1154i 0.207783 0.359890i
\(791\) 0.383579 0.664379i 0.0136385 0.0236226i
\(792\) −9.54866 + 16.5388i −0.339297 + 0.587679i
\(793\) 17.2054 29.8006i 0.610982 1.05825i
\(794\) −15.9997 −0.567808
\(795\) 22.6520 + 39.2345i 0.803385 + 1.39150i
\(796\) 13.8449 23.9800i 0.490718 0.849948i
\(797\) −8.39365 −0.297318 −0.148659 0.988888i \(-0.547496\pi\)
−0.148659 + 0.988888i \(0.547496\pi\)
\(798\) −2.59887 4.50138i −0.0919990 0.159347i
\(799\) −9.43805 16.3472i −0.333894 0.578322i
\(800\) 0.959725 1.66229i 0.0339314 0.0587709i
\(801\) −66.2955 −2.34244
\(802\) −9.74634 + 16.8812i −0.344155 + 0.596094i
\(803\) 17.4938 30.3001i 0.617342 1.06927i
\(804\) −3.64008 6.30480i −0.128376 0.222353i
\(805\) 11.2791 0.397537
\(806\) −16.0276 + 27.7606i −0.564548 + 0.977826i
\(807\) 2.70365 + 4.68286i 0.0951731 + 0.164845i
\(808\) −3.11261 + 5.39120i −0.109501 + 0.189662i
\(809\) 9.72117 + 16.8376i 0.341778 + 0.591977i 0.984763 0.173902i \(-0.0556375\pi\)
−0.642985 + 0.765879i \(0.722304\pi\)
\(810\) −13.4787 −0.473594
\(811\) 17.6312 30.5382i 0.619116 1.07234i −0.370532 0.928820i \(-0.620825\pi\)
0.989647 0.143520i \(-0.0458422\pi\)
\(812\) −11.4882 19.8981i −0.403156 0.698286i
\(813\) 34.0154 + 58.9163i 1.19297 + 2.06629i
\(814\) −0.755768 + 1.30903i −0.0264897 + 0.0458814i
\(815\) −0.520051 0.900755i −0.0182166 0.0315521i
\(816\) 2.96050 5.12773i 0.103638 0.179507i
\(817\) −3.19844 5.53986i −0.111899 0.193815i
\(818\) 3.84046 + 6.65188i 0.134279 + 0.232577i
\(819\) 21.6151 + 37.4385i 0.755294 + 1.30821i
\(820\) −1.52588 2.64290i −0.0532861 0.0922942i
\(821\) −12.3686 + 21.4231i −0.431667 + 0.747670i −0.997017 0.0771815i \(-0.975408\pi\)
0.565350 + 0.824851i \(0.308741\pi\)
\(822\) −22.8992 39.6626i −0.798701 1.38339i
\(823\) −14.6185 25.3201i −0.509570 0.882602i −0.999939 0.0110864i \(-0.996471\pi\)
0.490368 0.871515i \(-0.336862\pi\)
\(824\) −3.47073 −0.120908
\(825\) −9.31954 + 16.1419i −0.324465 + 0.561990i
\(826\) 12.7658 0.444178
\(827\) 8.44789 + 14.6322i 0.293762 + 0.508811i 0.974696 0.223534i \(-0.0717594\pi\)
−0.680934 + 0.732345i \(0.738426\pi\)
\(828\) 17.1383 0.595597
\(829\) −9.47815 16.4166i −0.329190 0.570174i 0.653161 0.757219i \(-0.273442\pi\)
−0.982351 + 0.187045i \(0.940109\pi\)
\(830\) −1.27829 + 2.21406i −0.0443701 + 0.0768513i
\(831\) −9.76158 + 16.9075i −0.338625 + 0.586516i
\(832\) 3.36793 0.116762
\(833\) −4.35258 −0.150808
\(834\) 8.66194 + 15.0029i 0.299938 + 0.519509i
\(835\) 14.8058 + 25.6444i 0.512375 + 0.887460i
\(836\) 2.59938 0.0899016
\(837\) 40.3613 69.9078i 1.39509 2.41637i
\(838\) 23.1354 0.799198
\(839\) 9.72940 + 16.8518i 0.335896 + 0.581789i 0.983657 0.180055i \(-0.0576276\pi\)
−0.647760 + 0.761844i \(0.724294\pi\)
\(840\) −11.4555 −0.395253
\(841\) −40.3420 + 69.8744i −1.39110 + 2.40946i
\(842\) 14.6675 25.4048i 0.505475 0.875508i
\(843\) −59.0122 −2.03249
\(844\) −2.42987 + 4.20866i −0.0836396 + 0.144868i
\(845\) −1.45417 2.51870i −0.0500251 0.0866461i
\(846\) −27.7456 + 48.0569i −0.953915 + 1.65223i
\(847\) −0.379537 + 0.657377i −0.0130410 + 0.0225877i
\(848\) 4.33812 + 7.51385i 0.148972 + 0.258027i
\(849\) −28.0240 + 48.5389i −0.961780 + 1.66585i
\(850\) 1.91007 3.30834i 0.0655150 0.113475i
\(851\) 1.35648 0.0464996
\(852\) 12.8058 + 22.1803i 0.438719 + 0.759884i
\(853\) −23.0706 + 39.9595i −0.789923 + 1.36819i 0.136090 + 0.990696i \(0.456546\pi\)
−0.926013 + 0.377491i \(0.876787\pi\)
\(854\) −11.2076 + 19.4120i −0.383515 + 0.664267i
\(855\) 4.08897 + 7.08231i 0.139840 + 0.242210i
\(856\) −0.779898 1.35082i −0.0266563 0.0461701i
\(857\) 0.930876 + 1.61232i 0.0317981 + 0.0550759i 0.881487 0.472209i \(-0.156543\pi\)
−0.849688 + 0.527285i \(0.823210\pi\)
\(858\) −32.7048 −1.11652
\(859\) 54.8820 1.87255 0.936274 0.351270i \(-0.114250\pi\)
0.936274 + 0.351270i \(0.114250\pi\)
\(860\) −14.0983 −0.480750
\(861\) 5.67423 9.82806i 0.193377 0.334939i
\(862\) −11.3220 −0.385628
\(863\) 2.09450 + 3.62778i 0.0712977 + 0.123491i 0.899470 0.436982i \(-0.143953\pi\)
−0.828173 + 0.560473i \(0.810619\pi\)
\(864\) −8.48124 −0.288538
\(865\) −20.4762 −0.696212
\(866\) 3.94418 0.134029
\(867\) −19.3957 + 33.5943i −0.658712 + 1.14092i
\(868\) 10.4403 18.0832i 0.354368 0.613784i
\(869\) −10.8609 + 18.8116i −0.368430 + 0.638140i
\(870\) 27.3431 + 47.3596i 0.927017 + 1.60564i
\(871\) 4.12081 7.13745i 0.139628 0.241843i
\(872\) −5.98146 10.3602i −0.202558 0.350840i
\(873\) −27.5830 + 47.7752i −0.933545 + 1.61695i
\(874\) −1.16637 2.02021i −0.0394530 0.0683347i
\(875\) −26.6437 −0.900722
\(876\) 31.8896 1.07745
\(877\) 4.79523 0.161923 0.0809617 0.996717i \(-0.474201\pi\)
0.0809617 + 0.996717i \(0.474201\pi\)
\(878\) 19.1853 0.647474
\(879\) −77.1778 −2.60314
\(880\) 2.86445 4.96136i 0.0965604 0.167248i
\(881\) 17.3918 + 30.1234i 0.585944 + 1.01488i 0.994757 + 0.102266i \(0.0326094\pi\)
−0.408813 + 0.912618i \(0.634057\pi\)
\(882\) 6.39779 + 11.0813i 0.215425 + 0.373126i
\(883\) −24.1165 41.7711i −0.811586 1.40571i −0.911754 0.410737i \(-0.865271\pi\)
0.100168 0.994971i \(-0.468062\pi\)
\(884\) 6.70296 0.225445
\(885\) −30.3839 −1.02134
\(886\) 6.20393 10.7455i 0.208425 0.361003i
\(887\) −3.63392 6.29414i −0.122015 0.211337i 0.798547 0.601932i \(-0.205602\pi\)
−0.920562 + 0.390596i \(0.872269\pi\)
\(888\) −1.37770 −0.0462325
\(889\) −0.474723 + 0.822245i −0.0159217 + 0.0275772i
\(890\) 19.8876 0.666634
\(891\) 25.0664 0.839754
\(892\) 7.27564 + 13.0409i 0.243606 + 0.436642i
\(893\) 7.55306 0.252754
\(894\) −62.1322 −2.07801
\(895\) −21.6655 + 37.5258i −0.724199 + 1.25435i
\(896\) −2.19386 −0.0732917
\(897\) 14.6750 + 25.4178i 0.489982 + 0.848674i
\(898\) −17.5449 + 30.3887i −0.585481 + 1.01408i
\(899\) −99.6798 −3.32451
\(900\) −11.2303 −0.374344
\(901\) 8.63386 + 14.9543i 0.287636 + 0.498199i
\(902\) 2.83768 + 4.91500i 0.0944843 + 0.163652i
\(903\) −26.2135 45.4031i −0.872330 1.51092i
\(904\) −0.174842 + 0.302836i −0.00581516 + 0.0100722i
\(905\) −30.1511 −1.00226
\(906\) −34.9018 −1.15953
\(907\) −26.8157 −0.890401 −0.445201 0.895431i \(-0.646868\pi\)
−0.445201 + 0.895431i \(0.646868\pi\)
\(908\) 3.37265 0.111925
\(909\) 36.4226 1.20806
\(910\) −6.48420 11.2310i −0.214949 0.372303i
\(911\) 16.0896 27.8681i 0.533073 0.923310i −0.466181 0.884690i \(-0.654370\pi\)
0.999254 0.0386204i \(-0.0122963\pi\)
\(912\) 1.18461 + 2.05181i 0.0392264 + 0.0679421i
\(913\) 2.37723 4.11749i 0.0786750 0.136269i
\(914\) −11.8729 20.5645i −0.392720 0.680212i
\(915\) 26.6752 46.2028i 0.881854 1.52742i
\(916\) −5.45349 + 9.44573i −0.180188 + 0.312096i
\(917\) −16.1387 + 27.9530i −0.532947 + 0.923091i
\(918\) −16.8796 −0.557110
\(919\) 14.8936 0.491296 0.245648 0.969359i \(-0.420999\pi\)
0.245648 + 0.969359i \(0.420999\pi\)
\(920\) −5.14122 −0.169501
\(921\) 6.48713 + 11.2360i 0.213758 + 0.370240i
\(922\) 31.9580 1.05248
\(923\) −14.4970 + 25.1095i −0.477174 + 0.826490i
\(924\) 21.3038 0.700843
\(925\) −0.888871 −0.0292259
\(926\) −22.5766 −0.741912
\(927\) 10.1533 + 17.5860i 0.333477 + 0.577600i
\(928\) 5.23651 + 9.06990i 0.171897 + 0.297734i
\(929\) 26.1913 + 45.3646i 0.859307 + 1.48836i 0.872591 + 0.488452i \(0.162438\pi\)
−0.0132838 + 0.999912i \(0.504228\pi\)
\(930\) −24.8491 + 43.0399i −0.814835 + 1.41134i
\(931\) 0.870819 1.50830i 0.0285399 0.0494326i
\(932\) 1.75202 + 3.03459i 0.0573893 + 0.0994012i
\(933\) 8.32642 0.272595
\(934\) −16.0006 + 27.7138i −0.523555 + 0.906824i
\(935\) 5.70090 9.87425i 0.186439 0.322923i
\(936\) −9.85256 17.0651i −0.322041 0.557791i
\(937\) 3.69018 6.39158i 0.120553 0.208804i −0.799433 0.600755i \(-0.794867\pi\)
0.919986 + 0.391952i \(0.128200\pi\)
\(938\) −2.68428 + 4.64931i −0.0876449 + 0.151805i
\(939\) 43.6025 + 75.5218i 1.42291 + 2.46456i
\(940\) 8.32325 14.4163i 0.271475 0.470208i
\(941\) 9.63459 0.314079 0.157039 0.987592i \(-0.449805\pi\)
0.157039 + 0.987592i \(0.449805\pi\)
\(942\) −27.8483 + 48.2347i −0.907348 + 1.57157i
\(943\) 2.54659 4.41082i 0.0829283 0.143636i
\(944\) −5.81887 −0.189388
\(945\) 16.3287 + 28.2822i 0.531174 + 0.920020i
\(946\) 26.2187 0.852442
\(947\) 17.8331 30.8879i 0.579499 1.00372i −0.416038 0.909347i \(-0.636582\pi\)
0.995537 0.0943740i \(-0.0300849\pi\)
\(948\) −19.7984 −0.643023
\(949\) 18.0505 + 31.2645i 0.585946 + 1.01489i
\(950\) 0.764295 + 1.32380i 0.0247970 + 0.0429497i
\(951\) −96.1466 −3.11777
\(952\) −4.36629 −0.141512
\(953\) 21.8386 37.8255i 0.707420 1.22529i −0.258391 0.966041i \(-0.583192\pi\)
0.965811 0.259247i \(-0.0834745\pi\)
\(954\) 25.3815 43.9621i 0.821757 1.42333i
\(955\) 19.9201 + 34.5027i 0.644601 + 1.11648i
\(956\) 2.07786 0.0672029
\(957\) −50.8498 88.0745i −1.64374 2.84704i
\(958\) 3.74778 0.121085
\(959\) −16.8864 + 29.2482i −0.545291 + 0.944473i
\(960\) 5.22162 0.168527
\(961\) −29.7940 51.6048i −0.961097 1.66467i
\(962\) −0.779822 1.35069i −0.0251425 0.0435480i
\(963\) −4.56303 + 7.90340i −0.147042 + 0.254684i
\(964\) −0.990128 1.71495i −0.0318899 0.0552349i
\(965\) −12.9217 22.3810i −0.415964 0.720471i
\(966\) −9.55922 16.5571i −0.307563 0.532715i
\(967\) −0.634568 1.09910i −0.0204063 0.0353448i 0.855642 0.517568i \(-0.173163\pi\)
−0.876048 + 0.482223i \(0.839829\pi\)
\(968\) 0.173000 0.299644i 0.00556042 0.00963092i
\(969\) 2.35765 + 4.08356i 0.0757385 + 0.131183i
\(970\) 8.27448 14.3318i 0.265677 0.460167i
\(971\) −14.2723 24.7203i −0.458019 0.793312i 0.540838 0.841127i \(-0.318107\pi\)
−0.998856 + 0.0478155i \(0.984774\pi\)
\(972\) −1.29844 2.24897i −0.0416475 0.0721356i
\(973\) 6.38753 11.0635i 0.204775 0.354680i
\(974\) −26.5414 −0.850440
\(975\) −9.61616 16.6557i −0.307963 0.533408i
\(976\) 5.10860 8.84835i 0.163522 0.283229i
\(977\) −23.2954 40.3489i −0.745287 1.29088i −0.950060 0.312066i \(-0.898979\pi\)
0.204773 0.978809i \(-0.434354\pi\)
\(978\) −0.881503 + 1.52681i −0.0281873 + 0.0488219i
\(979\) −36.9849 −1.18204
\(980\) −1.91923 3.32421i −0.0613077 0.106188i
\(981\) −34.9964 + 60.6155i −1.11735 + 1.93530i
\(982\) 9.47748 16.4155i 0.302439 0.523839i
\(983\) −40.5059 −1.29194 −0.645969 0.763364i \(-0.723546\pi\)
−0.645969 + 0.763364i \(0.723546\pi\)
\(984\) −2.58641 + 4.47980i −0.0824519 + 0.142811i
\(985\) 19.4300 + 33.6538i 0.619092 + 1.07230i
\(986\) 10.4219 + 18.0512i 0.331899 + 0.574867i
\(987\) 61.9027 1.97038
\(988\) −1.34106 + 2.32278i −0.0426647 + 0.0738975i
\(989\) −11.7646 20.3768i −0.374092 0.647946i
\(990\) −33.5186 −1.06529
\(991\) 21.5622 37.3469i 0.684946 1.18636i −0.288507 0.957478i \(-0.593159\pi\)
0.973454 0.228884i \(-0.0735078\pi\)
\(992\) −4.75889 + 8.24264i −0.151095 + 0.261704i
\(993\) −18.6831 + 32.3601i −0.592891 + 1.02692i
\(994\) 9.44330 16.3563i 0.299523 0.518790i
\(995\) 48.5996 1.54071
\(996\) 4.33348 0.137312
\(997\) 8.43187 0.267040 0.133520 0.991046i \(-0.457372\pi\)
0.133520 + 0.991046i \(0.457372\pi\)
\(998\) −1.42492 2.46803i −0.0451050 0.0781242i
\(999\) 1.96377 + 3.40136i 0.0621311 + 0.107614i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 446.2.c.d.39.7 14
223.183 even 3 inner 446.2.c.d.183.7 yes 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
446.2.c.d.39.7 14 1.1 even 1 trivial
446.2.c.d.183.7 yes 14 223.183 even 3 inner