Properties

Label 446.2.c.d
Level $446$
Weight $2$
Character orbit 446.c
Analytic conductor $3.561$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [446,2,Mod(39,446)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(446, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("446.39"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 446 = 2 \cdot 223 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 446.c (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,14,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.56132793015\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 16 x^{12} - 12 x^{11} + 175 x^{10} - 149 x^{9} + 1070 x^{8} - 1093 x^{7} + 4783 x^{6} + \cdots + 13689 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{13}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} + \beta_{6} q^{3} + q^{4} + ( - \beta_{7} - \beta_{5} - 1) q^{5} + \beta_{6} q^{6} - \beta_{8} q^{7} + q^{8} + ( - \beta_{10} + \beta_{9} - 3 \beta_{5} - 3) q^{9} + ( - \beta_{7} - \beta_{5} - 1) q^{10}+ \cdots + (2 \beta_{12} + 2 \beta_{11} + \cdots - 2 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q + 14 q^{2} - 3 q^{3} + 14 q^{4} - 6 q^{5} - 3 q^{6} - 6 q^{7} + 14 q^{8} - 18 q^{9} - 6 q^{10} - 5 q^{11} - 3 q^{12} + 14 q^{13} - 6 q^{14} - 8 q^{15} + 14 q^{16} - 18 q^{18} - 4 q^{19} - 6 q^{20}+ \cdots - 43 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{14} + 16 x^{12} - 12 x^{11} + 175 x^{10} - 149 x^{9} + 1070 x^{8} - 1093 x^{7} + 4783 x^{6} + \cdots + 13689 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 21698860657301 \nu^{13} - 35673861573020 \nu^{12} - 205948553802311 \nu^{11} + \cdots - 81\!\cdots\!65 ) / 78\!\cdots\!03 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 43198485694955 \nu^{13} - 912255338616716 \nu^{12} + 438516109272337 \nu^{11} + \cdots - 10\!\cdots\!25 ) / 78\!\cdots\!03 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 57372722230321 \nu^{13} - 105559355141485 \nu^{12} + 728523903537619 \nu^{11} + \cdots - 33\!\cdots\!39 ) / 78\!\cdots\!03 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 69\!\cdots\!45 \nu^{13} + \cdots - 13\!\cdots\!75 ) / 91\!\cdots\!51 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 30\!\cdots\!85 \nu^{13} + \cdots - 10\!\cdots\!88 ) / 91\!\cdots\!51 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 45\!\cdots\!95 \nu^{13} + \cdots - 77\!\cdots\!42 ) / 91\!\cdots\!51 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 417026483583693 \nu^{13} - 836902699143030 \nu^{12} + \cdots - 13\!\cdots\!83 ) / 78\!\cdots\!03 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 489846925297178 \nu^{13} - 517300174563425 \nu^{12} + \cdots - 74\!\cdots\!63 ) / 78\!\cdots\!03 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - 61\!\cdots\!25 \nu^{13} + \cdots - 45\!\cdots\!22 ) / 91\!\cdots\!51 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 71\!\cdots\!93 \nu^{13} + \cdots + 11\!\cdots\!81 ) / 91\!\cdots\!51 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( - 29\!\cdots\!20 \nu^{13} + \cdots - 18\!\cdots\!15 ) / 30\!\cdots\!17 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( - 10\!\cdots\!10 \nu^{13} + 671327122309198 \nu^{12} + \cdots + 16\!\cdots\!59 ) / 78\!\cdots\!03 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{6} - 5\beta_{5} - \beta_{4} - \beta_{2} - \beta _1 - 5 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{9} - \beta_{8} + \beta_{4} + 6\beta_{2} + 3 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 2\beta_{12} - \beta_{10} - 11\beta_{6} + 32\beta_{5} + 11\beta_1 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( - 12 \beta_{12} + 11 \beta_{10} - 11 \beta_{9} + 12 \beta_{8} - \beta_{7} + 18 \beta_{6} - 39 \beta_{5} + \cdots - 39 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -\beta_{13} + 17\beta_{9} - 31\beta_{8} + 103\beta_{4} + 2\beta_{3} + 106\beta_{2} + 238 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 123\beta_{12} - 101\beta_{10} + 16\beta_{7} - 220\beta_{6} + 425\beta_{5} - 16\beta_{3} + 378\beta_1 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( 16 \beta_{13} - 353 \beta_{12} - 16 \beta_{11} + 204 \beta_{10} - 204 \beta_{9} + 353 \beta_{8} + \cdots - 1946 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( -6\beta_{13} + 905\beta_{9} - 1207\beta_{8} + 2345\beta_{4} + 187\beta_{3} + 3359\beta_{2} + 4351 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( 3618 \beta_{12} + 175 \beta_{11} - 2158 \beta_{10} + 489 \beta_{7} - 8669 \beta_{6} + 16884 \beta_{5} + \cdots + 9520 \beta_1 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( 139 \beta_{13} - 11630 \beta_{12} - 139 \beta_{11} + 8180 \beta_{10} - 8180 \beta_{9} + 11630 \beta_{8} + \cdots - 43106 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( -1671\beta_{13} + 21595\beta_{9} - 35483\beta_{8} + 80330\beta_{4} + 5399\beta_{3} + 90186\beta_{2} + 151840 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( 111052 \beta_{12} + 2057 \beta_{11} - 74931 \beta_{10} + 19287 \beta_{7} - 229665 \beta_{6} + \cdots + 285216 \beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/446\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(-1 - \beta_{5}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
39.1
−0.985730 + 1.70733i
−1.08093 + 1.87223i
0.587389 1.01739i
0.725005 1.25575i
−1.53681 + 2.66183i
1.10711 1.91758i
1.18397 2.05069i
−0.985730 1.70733i
−1.08093 1.87223i
0.587389 + 1.01739i
0.725005 + 1.25575i
−1.53681 2.66183i
1.10711 + 1.91758i
1.18397 + 2.05069i
1.00000 −1.54240 + 2.67152i 1.00000 −2.02734 3.51145i −1.54240 + 2.67152i −0.565541 1.00000 −3.25801 5.64305i −2.02734 3.51145i
39.2 1.00000 −1.24410 + 2.15484i 1.00000 1.45788 + 2.52512i −1.24410 + 2.15484i −3.18805 1.00000 −1.59555 2.76357i 1.45788 + 2.52512i
39.3 1.00000 −1.22256 + 2.11753i 1.00000 0.904347 + 1.56637i −1.22256 + 2.11753i 4.85106 1.00000 −1.48930 2.57954i 0.904347 + 1.56637i
39.4 1.00000 −0.723729 + 1.25354i 1.00000 −0.806833 1.39748i −0.723729 + 1.25354i 0.193964 1.00000 0.452433 + 0.783637i −0.806833 1.39748i
39.5 1.00000 0.686757 1.18950i 1.00000 −1.36639 2.36665i 0.686757 1.18950i 2.10820 1.00000 0.556729 + 0.964283i −1.36639 2.36665i
39.6 1.00000 1.05851 1.83340i 1.00000 −2.03924 3.53208i 1.05851 1.83340i −4.20578 1.00000 −0.740900 1.28328i −2.03924 3.53208i
39.7 1.00000 1.48752 2.57645i 1.00000 0.877575 + 1.52000i 1.48752 2.57645i −2.19386 1.00000 −2.92540 5.06695i 0.877575 + 1.52000i
183.1 1.00000 −1.54240 2.67152i 1.00000 −2.02734 + 3.51145i −1.54240 2.67152i −0.565541 1.00000 −3.25801 + 5.64305i −2.02734 + 3.51145i
183.2 1.00000 −1.24410 2.15484i 1.00000 1.45788 2.52512i −1.24410 2.15484i −3.18805 1.00000 −1.59555 + 2.76357i 1.45788 2.52512i
183.3 1.00000 −1.22256 2.11753i 1.00000 0.904347 1.56637i −1.22256 2.11753i 4.85106 1.00000 −1.48930 + 2.57954i 0.904347 1.56637i
183.4 1.00000 −0.723729 1.25354i 1.00000 −0.806833 + 1.39748i −0.723729 1.25354i 0.193964 1.00000 0.452433 0.783637i −0.806833 + 1.39748i
183.5 1.00000 0.686757 + 1.18950i 1.00000 −1.36639 + 2.36665i 0.686757 + 1.18950i 2.10820 1.00000 0.556729 0.964283i −1.36639 + 2.36665i
183.6 1.00000 1.05851 + 1.83340i 1.00000 −2.03924 + 3.53208i 1.05851 + 1.83340i −4.20578 1.00000 −0.740900 + 1.28328i −2.03924 + 3.53208i
183.7 1.00000 1.48752 + 2.57645i 1.00000 0.877575 1.52000i 1.48752 + 2.57645i −2.19386 1.00000 −2.92540 + 5.06695i 0.877575 1.52000i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 39.7
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
223.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 446.2.c.d 14
223.c even 3 1 inner 446.2.c.d 14
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
446.2.c.d 14 1.a even 1 1 trivial
446.2.c.d 14 223.c even 3 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(446, [\chi])\):

\( T_{3}^{14} + 3 T_{3}^{13} + 24 T_{3}^{12} + 47 T_{3}^{11} + 301 T_{3}^{10} + 517 T_{3}^{9} + \cdots + 55225 \) Copy content Toggle raw display
\( T_{5}^{14} + 6 T_{5}^{13} + 47 T_{5}^{12} + 128 T_{5}^{11} + 680 T_{5}^{10} + 1259 T_{5}^{9} + \cdots + 455625 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{14} \) Copy content Toggle raw display
$3$ \( T^{14} + 3 T^{13} + \cdots + 55225 \) Copy content Toggle raw display
$5$ \( T^{14} + 6 T^{13} + \cdots + 455625 \) Copy content Toggle raw display
$7$ \( (T^{7} + 3 T^{6} - 26 T^{5} + \cdots - 33)^{2} \) Copy content Toggle raw display
$11$ \( T^{14} + 5 T^{13} + \cdots + 17313921 \) Copy content Toggle raw display
$13$ \( (T^{7} - 7 T^{6} + \cdots + 135)^{2} \) Copy content Toggle raw display
$17$ \( (T^{7} - 36 T^{5} + \cdots + 1091)^{2} \) Copy content Toggle raw display
$19$ \( T^{14} + 4 T^{13} + \cdots + 1010025 \) Copy content Toggle raw display
$23$ \( T^{14} - 2 T^{13} + \cdots + 8555625 \) Copy content Toggle raw display
$29$ \( T^{14} - 2 T^{13} + \cdots + 19881 \) Copy content Toggle raw display
$31$ \( T^{14} + \cdots + 9255402025 \) Copy content Toggle raw display
$37$ \( T^{14} + 5 T^{13} + \cdots + 6305121 \) Copy content Toggle raw display
$41$ \( (T^{7} - 22 T^{6} + \cdots + 116211)^{2} \) Copy content Toggle raw display
$43$ \( T^{14} + \cdots + 6380015625 \) Copy content Toggle raw display
$47$ \( T^{14} + \cdots + 4565046740409 \) Copy content Toggle raw display
$53$ \( T^{14} + \cdots + 146019515625 \) Copy content Toggle raw display
$59$ \( (T^{7} - 10 T^{6} + \cdots - 405)^{2} \) Copy content Toggle raw display
$61$ \( T^{14} + \cdots + 215731451961 \) Copy content Toggle raw display
$67$ \( T^{14} + \cdots + 757625625 \) Copy content Toggle raw display
$71$ \( T^{14} + 18 T^{13} + \cdots + 1010025 \) Copy content Toggle raw display
$73$ \( T^{14} + \cdots + 81524525625 \) Copy content Toggle raw display
$79$ \( T^{14} + \cdots + 21412761561 \) Copy content Toggle raw display
$83$ \( T^{14} + 15 T^{13} + \cdots + 5517801 \) Copy content Toggle raw display
$89$ \( T^{14} + \cdots + 572103140625 \) Copy content Toggle raw display
$97$ \( T^{14} + \cdots + 870729730641 \) Copy content Toggle raw display
show more
show less