Defining parameters
Level: | \( N \) | \(=\) | \( 446 = 2 \cdot 223 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 446.c (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 223 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(112\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\), \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(446, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 116 | 36 | 80 |
Cusp forms | 108 | 36 | 72 |
Eisenstein series | 8 | 0 | 8 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(446, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
446.2.c.a | $2$ | $3.561$ | \(\Q(\sqrt{-3}) \) | None | \(-2\) | \(1\) | \(1\) | \(8\) | \(q-q^{2}+(1-\zeta_{6})q^{3}+q^{4}+\zeta_{6}q^{5}+(-1+\cdots)q^{6}+\cdots\) |
446.2.c.b | $2$ | $3.561$ | \(\Q(\sqrt{-3}) \) | None | \(2\) | \(0\) | \(0\) | \(2\) | \(q+q^{2}+q^{4}+q^{7}+q^{8}+3\zeta_{6}q^{9}+2\zeta_{6}q^{11}+\cdots\) |
446.2.c.c | $2$ | $3.561$ | \(\Q(\sqrt{-3}) \) | None | \(2\) | \(1\) | \(3\) | \(0\) | \(q+q^{2}+(1-\zeta_{6})q^{3}+q^{4}+3\zeta_{6}q^{5}+\cdots\) |
446.2.c.d | $14$ | $3.561$ | \(\mathbb{Q}[x]/(x^{14} + \cdots)\) | None | \(14\) | \(-3\) | \(-6\) | \(-6\) | \(q+q^{2}+\beta _{6}q^{3}+q^{4}+(-1-\beta _{5}-\beta _{7}+\cdots)q^{5}+\cdots\) |
446.2.c.e | $16$ | $3.561$ | \(\mathbb{Q}[x]/(x^{16} + \cdots)\) | None | \(-16\) | \(3\) | \(-4\) | \(0\) | \(q-q^{2}+(-\beta _{3}+\beta _{5})q^{3}+q^{4}+\beta _{13}q^{5}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(446, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(446, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(223, [\chi])\)\(^{\oplus 2}\)