Properties

Label 446.2.c
Level $446$
Weight $2$
Character orbit 446.c
Rep. character $\chi_{446}(39,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $36$
Newform subspaces $5$
Sturm bound $112$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 446 = 2 \cdot 223 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 446.c (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 223 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 5 \)
Sturm bound: \(112\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\), \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(446, [\chi])\).

Total New Old
Modular forms 116 36 80
Cusp forms 108 36 72
Eisenstein series 8 0 8

Trace form

\( 36 q + 2 q^{3} + 36 q^{4} - 6 q^{5} - 6 q^{6} + 4 q^{7} - 26 q^{9} + 4 q^{11} + 2 q^{12} + 16 q^{13} - 12 q^{14} + 8 q^{15} + 36 q^{16} - 20 q^{17} + 8 q^{19} - 6 q^{20} - 16 q^{21} - 12 q^{22} - 2 q^{23}+ \cdots + 22 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(446, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
446.2.c.a 446.c 223.c $2$ $3.561$ \(\Q(\sqrt{-3}) \) None 446.2.c.a \(-2\) \(1\) \(1\) \(8\) $\mathrm{SU}(2)[C_{3}]$ \(q-q^{2}+(1-\zeta_{6})q^{3}+q^{4}+\zeta_{6}q^{5}+(-1+\cdots)q^{6}+\cdots\)
446.2.c.b 446.c 223.c $2$ $3.561$ \(\Q(\sqrt{-3}) \) None 446.2.c.b \(2\) \(0\) \(0\) \(2\) $\mathrm{SU}(2)[C_{3}]$ \(q+q^{2}+q^{4}+q^{7}+q^{8}+3\zeta_{6}q^{9}+2\zeta_{6}q^{11}+\cdots\)
446.2.c.c 446.c 223.c $2$ $3.561$ \(\Q(\sqrt{-3}) \) None 446.2.c.c \(2\) \(1\) \(3\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+q^{2}+(1-\zeta_{6})q^{3}+q^{4}+3\zeta_{6}q^{5}+\cdots\)
446.2.c.d 446.c 223.c $14$ $3.561$ \(\mathbb{Q}[x]/(x^{14} + \cdots)\) None 446.2.c.d \(14\) \(-3\) \(-6\) \(-6\) $\mathrm{SU}(2)[C_{3}]$ \(q+q^{2}+\beta _{6}q^{3}+q^{4}+(-1-\beta _{5}-\beta _{7}+\cdots)q^{5}+\cdots\)
446.2.c.e 446.c 223.c $16$ $3.561$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 446.2.c.e \(-16\) \(3\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-q^{2}+(-\beta _{3}+\beta _{5})q^{3}+q^{4}+\beta _{13}q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(446, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(446, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(223, [\chi])\)\(^{\oplus 2}\)