L(s) = 1 | + 2-s + (1.48 + 2.57i)3-s + 4-s + (0.877 − 1.52i)5-s + (1.48 + 2.57i)6-s − 2.19·7-s + 8-s + (−2.92 + 5.06i)9-s + (0.877 − 1.52i)10-s + (−1.63 + 2.82i)11-s + (1.48 + 2.57i)12-s + 3.36·13-s − 2.19·14-s + 5.22·15-s + 16-s + 1.99·17-s + ⋯ |
L(s) = 1 | + 0.707·2-s + (0.858 + 1.48i)3-s + 0.5·4-s + (0.392 − 0.679i)5-s + (0.607 + 1.05i)6-s − 0.829·7-s + 0.353·8-s + (−0.975 + 1.68i)9-s + (0.277 − 0.480i)10-s + (−0.492 + 0.852i)11-s + (0.429 + 0.743i)12-s + 0.934·13-s − 0.586·14-s + 1.34·15-s + 0.250·16-s + 0.482·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 446 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.380 - 0.924i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 446 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.380 - 0.924i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.22003 + 1.48702i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.22003 + 1.48702i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 223 | \( 1 + (-7.27 + 13.0i)T \) |
good | 3 | \( 1 + (-1.48 - 2.57i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + (-0.877 + 1.52i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + 2.19T + 7T^{2} \) |
| 11 | \( 1 + (1.63 - 2.82i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 - 3.36T + 13T^{2} \) |
| 17 | \( 1 - 1.99T + 17T^{2} \) |
| 19 | \( 1 + (0.398 + 0.689i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (1.46 + 2.53i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-5.23 + 9.06i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (4.75 + 8.24i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (0.231 - 0.401i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 1.73T + 41T^{2} \) |
| 43 | \( 1 + (4.01 + 6.95i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (4.74 - 8.21i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-4.33 + 7.51i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + 5.81T + 59T^{2} \) |
| 61 | \( 1 + (-5.10 - 8.84i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.22 - 2.11i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (4.30 + 7.45i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (-5.35 + 9.28i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (3.32 - 5.76i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-0.728 + 1.26i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (-5.66 - 9.81i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (4.71 - 8.16i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.11363382760130771889871680363, −10.09288120099957464044136647954, −9.691535008021721709338592543628, −8.754968277318093781233714588066, −7.81404738959838166627338737089, −6.28244254906737025674126678077, −5.24753836621414326728103056211, −4.35525644671525085134781907814, −3.51961359966639729842736813538, −2.35977691719923661025481435169,
1.51633594983842464006610994692, 3.00200316392190915963279668852, 3.33690328845407795608847814792, 5.53911125224953324855218939900, 6.50817383501810193284437313278, 6.91212332424449949433434008274, 8.090728535478557444926569452191, 8.819916257641190114369492674236, 10.17410090472456791667956351723, 11.07440006941942714591763190807