Properties

Label 446.2.a.e.1.6
Level $446$
Weight $2$
Character 446.1
Self dual yes
Analytic conductor $3.561$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [446,2,Mod(1,446)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(446, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("446.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 446 = 2 \cdot 223 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 446.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [7,7,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.56132793015\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - x^{6} - 14x^{5} + 12x^{4} + 50x^{3} - 36x^{2} - 38x + 18 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(2.08198\) of defining polynomial
Character \(\chi\) \(=\) 446.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +2.08198 q^{3} +1.00000 q^{4} -3.23274 q^{5} +2.08198 q^{6} +4.23794 q^{7} +1.00000 q^{8} +1.33463 q^{9} -3.23274 q^{10} +1.62710 q^{11} +2.08198 q^{12} +0.843989 q^{13} +4.23794 q^{14} -6.73050 q^{15} +1.00000 q^{16} -0.942042 q^{17} +1.33463 q^{18} -4.16396 q^{19} -3.23274 q^{20} +8.82331 q^{21} +1.62710 q^{22} -1.50859 q^{23} +2.08198 q^{24} +5.45063 q^{25} +0.843989 q^{26} -3.46725 q^{27} +4.23794 q^{28} +9.60642 q^{29} -6.73050 q^{30} -3.22967 q^{31} +1.00000 q^{32} +3.38759 q^{33} -0.942042 q^{34} -13.7002 q^{35} +1.33463 q^{36} -0.461265 q^{37} -4.16396 q^{38} +1.75717 q^{39} -3.23274 q^{40} -12.3855 q^{41} +8.82331 q^{42} +2.06612 q^{43} +1.62710 q^{44} -4.31453 q^{45} -1.50859 q^{46} -8.12310 q^{47} +2.08198 q^{48} +10.9602 q^{49} +5.45063 q^{50} -1.96131 q^{51} +0.843989 q^{52} -7.87624 q^{53} -3.46725 q^{54} -5.26001 q^{55} +4.23794 q^{56} -8.66927 q^{57} +9.60642 q^{58} -3.22499 q^{59} -6.73050 q^{60} -1.92513 q^{61} -3.22967 q^{62} +5.65611 q^{63} +1.00000 q^{64} -2.72840 q^{65} +3.38759 q^{66} +3.16991 q^{67} -0.942042 q^{68} -3.14085 q^{69} -13.7002 q^{70} -6.48629 q^{71} +1.33463 q^{72} +5.90009 q^{73} -0.461265 q^{74} +11.3481 q^{75} -4.16396 q^{76} +6.89557 q^{77} +1.75717 q^{78} +5.22096 q^{79} -3.23274 q^{80} -11.2227 q^{81} -12.3855 q^{82} +9.91652 q^{83} +8.82331 q^{84} +3.04538 q^{85} +2.06612 q^{86} +20.0004 q^{87} +1.62710 q^{88} -18.3369 q^{89} -4.31453 q^{90} +3.57678 q^{91} -1.50859 q^{92} -6.72411 q^{93} -8.12310 q^{94} +13.4610 q^{95} +2.08198 q^{96} +14.2978 q^{97} +10.9602 q^{98} +2.17159 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + 7 q^{2} + q^{3} + 7 q^{4} + 2 q^{5} + q^{6} + 6 q^{7} + 7 q^{8} + 8 q^{9} + 2 q^{10} + 9 q^{11} + q^{12} - 2 q^{13} + 6 q^{14} + 6 q^{15} + 7 q^{16} - 7 q^{17} + 8 q^{18} - 2 q^{19} + 2 q^{20}+ \cdots + 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 2.08198 1.20203 0.601015 0.799237i \(-0.294763\pi\)
0.601015 + 0.799237i \(0.294763\pi\)
\(4\) 1.00000 0.500000
\(5\) −3.23274 −1.44573 −0.722863 0.690991i \(-0.757174\pi\)
−0.722863 + 0.690991i \(0.757174\pi\)
\(6\) 2.08198 0.849964
\(7\) 4.23794 1.60179 0.800896 0.598803i \(-0.204357\pi\)
0.800896 + 0.598803i \(0.204357\pi\)
\(8\) 1.00000 0.353553
\(9\) 1.33463 0.444878
\(10\) −3.23274 −1.02228
\(11\) 1.62710 0.490590 0.245295 0.969448i \(-0.421115\pi\)
0.245295 + 0.969448i \(0.421115\pi\)
\(12\) 2.08198 0.601015
\(13\) 0.843989 0.234080 0.117040 0.993127i \(-0.462659\pi\)
0.117040 + 0.993127i \(0.462659\pi\)
\(14\) 4.23794 1.13264
\(15\) −6.73050 −1.73781
\(16\) 1.00000 0.250000
\(17\) −0.942042 −0.228479 −0.114239 0.993453i \(-0.536443\pi\)
−0.114239 + 0.993453i \(0.536443\pi\)
\(18\) 1.33463 0.314576
\(19\) −4.16396 −0.955277 −0.477639 0.878556i \(-0.658507\pi\)
−0.477639 + 0.878556i \(0.658507\pi\)
\(20\) −3.23274 −0.722863
\(21\) 8.82331 1.92540
\(22\) 1.62710 0.346900
\(23\) −1.50859 −0.314562 −0.157281 0.987554i \(-0.550273\pi\)
−0.157281 + 0.987554i \(0.550273\pi\)
\(24\) 2.08198 0.424982
\(25\) 5.45063 1.09013
\(26\) 0.843989 0.165520
\(27\) −3.46725 −0.667273
\(28\) 4.23794 0.800896
\(29\) 9.60642 1.78387 0.891934 0.452165i \(-0.149348\pi\)
0.891934 + 0.452165i \(0.149348\pi\)
\(30\) −6.73050 −1.22882
\(31\) −3.22967 −0.580066 −0.290033 0.957017i \(-0.593666\pi\)
−0.290033 + 0.957017i \(0.593666\pi\)
\(32\) 1.00000 0.176777
\(33\) 3.38759 0.589705
\(34\) −0.942042 −0.161559
\(35\) −13.7002 −2.31575
\(36\) 1.33463 0.222439
\(37\) −0.461265 −0.0758315 −0.0379158 0.999281i \(-0.512072\pi\)
−0.0379158 + 0.999281i \(0.512072\pi\)
\(38\) −4.16396 −0.675483
\(39\) 1.75717 0.281372
\(40\) −3.23274 −0.511142
\(41\) −12.3855 −1.93428 −0.967142 0.254235i \(-0.918176\pi\)
−0.967142 + 0.254235i \(0.918176\pi\)
\(42\) 8.82331 1.36147
\(43\) 2.06612 0.315080 0.157540 0.987513i \(-0.449644\pi\)
0.157540 + 0.987513i \(0.449644\pi\)
\(44\) 1.62710 0.245295
\(45\) −4.31453 −0.643173
\(46\) −1.50859 −0.222429
\(47\) −8.12310 −1.18488 −0.592438 0.805616i \(-0.701834\pi\)
−0.592438 + 0.805616i \(0.701834\pi\)
\(48\) 2.08198 0.300508
\(49\) 10.9602 1.56574
\(50\) 5.45063 0.770836
\(51\) −1.96131 −0.274639
\(52\) 0.843989 0.117040
\(53\) −7.87624 −1.08188 −0.540942 0.841060i \(-0.681932\pi\)
−0.540942 + 0.841060i \(0.681932\pi\)
\(54\) −3.46725 −0.471834
\(55\) −5.26001 −0.709259
\(56\) 4.23794 0.566319
\(57\) −8.66927 −1.14827
\(58\) 9.60642 1.26139
\(59\) −3.22499 −0.419858 −0.209929 0.977717i \(-0.567323\pi\)
−0.209929 + 0.977717i \(0.567323\pi\)
\(60\) −6.73050 −0.868904
\(61\) −1.92513 −0.246488 −0.123244 0.992376i \(-0.539330\pi\)
−0.123244 + 0.992376i \(0.539330\pi\)
\(62\) −3.22967 −0.410169
\(63\) 5.65611 0.712603
\(64\) 1.00000 0.125000
\(65\) −2.72840 −0.338416
\(66\) 3.38759 0.416984
\(67\) 3.16991 0.387266 0.193633 0.981074i \(-0.437973\pi\)
0.193633 + 0.981074i \(0.437973\pi\)
\(68\) −0.942042 −0.114239
\(69\) −3.14085 −0.378114
\(70\) −13.7002 −1.63749
\(71\) −6.48629 −0.769781 −0.384891 0.922962i \(-0.625761\pi\)
−0.384891 + 0.922962i \(0.625761\pi\)
\(72\) 1.33463 0.157288
\(73\) 5.90009 0.690553 0.345277 0.938501i \(-0.387785\pi\)
0.345277 + 0.938501i \(0.387785\pi\)
\(74\) −0.461265 −0.0536210
\(75\) 11.3481 1.31037
\(76\) −4.16396 −0.477639
\(77\) 6.89557 0.785824
\(78\) 1.75717 0.198960
\(79\) 5.22096 0.587404 0.293702 0.955897i \(-0.405113\pi\)
0.293702 + 0.955897i \(0.405113\pi\)
\(80\) −3.23274 −0.361432
\(81\) −11.2227 −1.24696
\(82\) −12.3855 −1.36775
\(83\) 9.91652 1.08848 0.544240 0.838930i \(-0.316818\pi\)
0.544240 + 0.838930i \(0.316818\pi\)
\(84\) 8.82331 0.962702
\(85\) 3.04538 0.330318
\(86\) 2.06612 0.222796
\(87\) 20.0004 2.14426
\(88\) 1.62710 0.173450
\(89\) −18.3369 −1.94371 −0.971855 0.235579i \(-0.924301\pi\)
−0.971855 + 0.235579i \(0.924301\pi\)
\(90\) −4.31453 −0.454792
\(91\) 3.57678 0.374948
\(92\) −1.50859 −0.157281
\(93\) −6.72411 −0.697257
\(94\) −8.12310 −0.837833
\(95\) 13.4610 1.38107
\(96\) 2.08198 0.212491
\(97\) 14.2978 1.45172 0.725859 0.687843i \(-0.241442\pi\)
0.725859 + 0.687843i \(0.241442\pi\)
\(98\) 10.9602 1.10714
\(99\) 2.17159 0.218253
\(100\) 5.45063 0.545063
\(101\) 17.1309 1.70459 0.852294 0.523062i \(-0.175211\pi\)
0.852294 + 0.523062i \(0.175211\pi\)
\(102\) −1.96131 −0.194199
\(103\) 9.53416 0.939429 0.469714 0.882818i \(-0.344357\pi\)
0.469714 + 0.882818i \(0.344357\pi\)
\(104\) 0.843989 0.0827600
\(105\) −28.5235 −2.78361
\(106\) −7.87624 −0.765008
\(107\) −7.46425 −0.721596 −0.360798 0.932644i \(-0.617496\pi\)
−0.360798 + 0.932644i \(0.617496\pi\)
\(108\) −3.46725 −0.333637
\(109\) 12.6731 1.21386 0.606931 0.794754i \(-0.292400\pi\)
0.606931 + 0.794754i \(0.292400\pi\)
\(110\) −5.26001 −0.501522
\(111\) −0.960344 −0.0911519
\(112\) 4.23794 0.400448
\(113\) −3.37605 −0.317592 −0.158796 0.987311i \(-0.550761\pi\)
−0.158796 + 0.987311i \(0.550761\pi\)
\(114\) −8.66927 −0.811952
\(115\) 4.87688 0.454771
\(116\) 9.60642 0.891934
\(117\) 1.12642 0.104137
\(118\) −3.22499 −0.296884
\(119\) −3.99232 −0.365976
\(120\) −6.73050 −0.614408
\(121\) −8.35253 −0.759321
\(122\) −1.92513 −0.174294
\(123\) −25.7863 −2.32507
\(124\) −3.22967 −0.290033
\(125\) −1.45677 −0.130298
\(126\) 5.65611 0.503886
\(127\) −1.35204 −0.119974 −0.0599872 0.998199i \(-0.519106\pi\)
−0.0599872 + 0.998199i \(0.519106\pi\)
\(128\) 1.00000 0.0883883
\(129\) 4.30162 0.378736
\(130\) −2.72840 −0.239297
\(131\) −8.34957 −0.729505 −0.364753 0.931104i \(-0.618846\pi\)
−0.364753 + 0.931104i \(0.618846\pi\)
\(132\) 3.38759 0.294852
\(133\) −17.6466 −1.53016
\(134\) 3.16991 0.273839
\(135\) 11.2087 0.964695
\(136\) −0.942042 −0.0807795
\(137\) −18.8099 −1.60704 −0.803521 0.595276i \(-0.797043\pi\)
−0.803521 + 0.595276i \(0.797043\pi\)
\(138\) −3.14085 −0.267367
\(139\) −12.6716 −1.07479 −0.537394 0.843331i \(-0.680591\pi\)
−0.537394 + 0.843331i \(0.680591\pi\)
\(140\) −13.7002 −1.15788
\(141\) −16.9121 −1.42426
\(142\) −6.48629 −0.544317
\(143\) 1.37326 0.114838
\(144\) 1.33463 0.111220
\(145\) −31.0551 −2.57899
\(146\) 5.90009 0.488295
\(147\) 22.8188 1.88207
\(148\) −0.461265 −0.0379158
\(149\) 19.2109 1.57382 0.786909 0.617069i \(-0.211680\pi\)
0.786909 + 0.617069i \(0.211680\pi\)
\(150\) 11.3481 0.926568
\(151\) −6.95537 −0.566020 −0.283010 0.959117i \(-0.591333\pi\)
−0.283010 + 0.959117i \(0.591333\pi\)
\(152\) −4.16396 −0.337742
\(153\) −1.25728 −0.101645
\(154\) 6.89557 0.555661
\(155\) 10.4407 0.838617
\(156\) 1.75717 0.140686
\(157\) 12.6050 1.00599 0.502995 0.864289i \(-0.332231\pi\)
0.502995 + 0.864289i \(0.332231\pi\)
\(158\) 5.22096 0.415357
\(159\) −16.3982 −1.30046
\(160\) −3.23274 −0.255571
\(161\) −6.39331 −0.503864
\(162\) −11.2227 −0.881735
\(163\) 19.6244 1.53710 0.768550 0.639790i \(-0.220979\pi\)
0.768550 + 0.639790i \(0.220979\pi\)
\(164\) −12.3855 −0.967142
\(165\) −10.9512 −0.852552
\(166\) 9.91652 0.769672
\(167\) 12.1817 0.942647 0.471323 0.881960i \(-0.343776\pi\)
0.471323 + 0.881960i \(0.343776\pi\)
\(168\) 8.82331 0.680733
\(169\) −12.2877 −0.945206
\(170\) 3.04538 0.233570
\(171\) −5.55736 −0.424982
\(172\) 2.06612 0.157540
\(173\) 24.7449 1.88132 0.940660 0.339350i \(-0.110207\pi\)
0.940660 + 0.339350i \(0.110207\pi\)
\(174\) 20.0004 1.51622
\(175\) 23.0995 1.74616
\(176\) 1.62710 0.122648
\(177\) −6.71435 −0.504682
\(178\) −18.3369 −1.37441
\(179\) 22.0363 1.64707 0.823534 0.567267i \(-0.191999\pi\)
0.823534 + 0.567267i \(0.191999\pi\)
\(180\) −4.31453 −0.321586
\(181\) 3.97416 0.295397 0.147699 0.989032i \(-0.452813\pi\)
0.147699 + 0.989032i \(0.452813\pi\)
\(182\) 3.57678 0.265129
\(183\) −4.00809 −0.296287
\(184\) −1.50859 −0.111215
\(185\) 1.49115 0.109632
\(186\) −6.72411 −0.493035
\(187\) −1.53280 −0.112089
\(188\) −8.12310 −0.592438
\(189\) −14.6940 −1.06883
\(190\) 13.4610 0.976564
\(191\) 19.4735 1.40906 0.704528 0.709677i \(-0.251159\pi\)
0.704528 + 0.709677i \(0.251159\pi\)
\(192\) 2.08198 0.150254
\(193\) 16.5416 1.19069 0.595344 0.803471i \(-0.297016\pi\)
0.595344 + 0.803471i \(0.297016\pi\)
\(194\) 14.2978 1.02652
\(195\) −5.68047 −0.406787
\(196\) 10.9602 0.782870
\(197\) −7.38564 −0.526205 −0.263103 0.964768i \(-0.584746\pi\)
−0.263103 + 0.964768i \(0.584746\pi\)
\(198\) 2.17159 0.154328
\(199\) −18.9590 −1.34396 −0.671982 0.740567i \(-0.734557\pi\)
−0.671982 + 0.740567i \(0.734557\pi\)
\(200\) 5.45063 0.385418
\(201\) 6.59969 0.465506
\(202\) 17.1309 1.20533
\(203\) 40.7115 2.85739
\(204\) −1.96131 −0.137319
\(205\) 40.0390 2.79645
\(206\) 9.53416 0.664276
\(207\) −2.01341 −0.139942
\(208\) 0.843989 0.0585201
\(209\) −6.77519 −0.468650
\(210\) −28.5235 −1.96831
\(211\) −17.1052 −1.17757 −0.588787 0.808288i \(-0.700394\pi\)
−0.588787 + 0.808288i \(0.700394\pi\)
\(212\) −7.87624 −0.540942
\(213\) −13.5043 −0.925301
\(214\) −7.46425 −0.510246
\(215\) −6.67924 −0.455520
\(216\) −3.46725 −0.235917
\(217\) −13.6872 −0.929146
\(218\) 12.6731 0.858330
\(219\) 12.2839 0.830066
\(220\) −5.26001 −0.354630
\(221\) −0.795074 −0.0534824
\(222\) −0.960344 −0.0644541
\(223\) −1.00000 −0.0669650
\(224\) 4.23794 0.283160
\(225\) 7.27460 0.484973
\(226\) −3.37605 −0.224571
\(227\) 4.46715 0.296495 0.148248 0.988950i \(-0.452637\pi\)
0.148248 + 0.988950i \(0.452637\pi\)
\(228\) −8.66927 −0.574136
\(229\) −12.5863 −0.831726 −0.415863 0.909427i \(-0.636520\pi\)
−0.415863 + 0.909427i \(0.636520\pi\)
\(230\) 4.87688 0.321572
\(231\) 14.3564 0.944584
\(232\) 9.60642 0.630693
\(233\) −3.20498 −0.209965 −0.104982 0.994474i \(-0.533479\pi\)
−0.104982 + 0.994474i \(0.533479\pi\)
\(234\) 1.12642 0.0736362
\(235\) 26.2599 1.71301
\(236\) −3.22499 −0.209929
\(237\) 10.8699 0.706077
\(238\) −3.99232 −0.258784
\(239\) 3.91975 0.253547 0.126774 0.991932i \(-0.459538\pi\)
0.126774 + 0.991932i \(0.459538\pi\)
\(240\) −6.73050 −0.434452
\(241\) 16.9198 1.08990 0.544950 0.838469i \(-0.316549\pi\)
0.544950 + 0.838469i \(0.316549\pi\)
\(242\) −8.35253 −0.536921
\(243\) −12.9636 −0.831613
\(244\) −1.92513 −0.123244
\(245\) −35.4314 −2.26363
\(246\) −25.7863 −1.64407
\(247\) −3.51433 −0.223612
\(248\) −3.22967 −0.205084
\(249\) 20.6460 1.30839
\(250\) −1.45677 −0.0921344
\(251\) −12.1186 −0.764916 −0.382458 0.923973i \(-0.624922\pi\)
−0.382458 + 0.923973i \(0.624922\pi\)
\(252\) 5.65611 0.356301
\(253\) −2.45463 −0.154321
\(254\) −1.35204 −0.0848348
\(255\) 6.34042 0.397052
\(256\) 1.00000 0.0625000
\(257\) −18.3212 −1.14284 −0.571422 0.820656i \(-0.693608\pi\)
−0.571422 + 0.820656i \(0.693608\pi\)
\(258\) 4.30162 0.267807
\(259\) −1.95482 −0.121466
\(260\) −2.72840 −0.169208
\(261\) 12.8211 0.793604
\(262\) −8.34957 −0.515838
\(263\) 22.4825 1.38633 0.693165 0.720779i \(-0.256216\pi\)
0.693165 + 0.720779i \(0.256216\pi\)
\(264\) 3.38759 0.208492
\(265\) 25.4619 1.56411
\(266\) −17.6466 −1.08198
\(267\) −38.1771 −2.33640
\(268\) 3.16991 0.193633
\(269\) 31.5427 1.92319 0.961597 0.274466i \(-0.0885011\pi\)
0.961597 + 0.274466i \(0.0885011\pi\)
\(270\) 11.2087 0.682142
\(271\) 21.4428 1.30256 0.651280 0.758837i \(-0.274232\pi\)
0.651280 + 0.758837i \(0.274232\pi\)
\(272\) −0.942042 −0.0571197
\(273\) 7.44678 0.450700
\(274\) −18.8099 −1.13635
\(275\) 8.86874 0.534805
\(276\) −3.14085 −0.189057
\(277\) 3.53182 0.212207 0.106103 0.994355i \(-0.466163\pi\)
0.106103 + 0.994355i \(0.466163\pi\)
\(278\) −12.6716 −0.759990
\(279\) −4.31043 −0.258059
\(280\) −13.7002 −0.818743
\(281\) 16.2985 0.972288 0.486144 0.873879i \(-0.338403\pi\)
0.486144 + 0.873879i \(0.338403\pi\)
\(282\) −16.9121 −1.00710
\(283\) 19.2174 1.14236 0.571179 0.820826i \(-0.306486\pi\)
0.571179 + 0.820826i \(0.306486\pi\)
\(284\) −6.48629 −0.384891
\(285\) 28.0255 1.66009
\(286\) 1.37326 0.0812024
\(287\) −52.4889 −3.09832
\(288\) 1.33463 0.0786441
\(289\) −16.1126 −0.947797
\(290\) −31.0551 −1.82362
\(291\) 29.7676 1.74501
\(292\) 5.90009 0.345277
\(293\) −28.4149 −1.66002 −0.830008 0.557751i \(-0.811664\pi\)
−0.830008 + 0.557751i \(0.811664\pi\)
\(294\) 22.8188 1.33082
\(295\) 10.4256 0.606999
\(296\) −0.461265 −0.0268105
\(297\) −5.64158 −0.327358
\(298\) 19.2109 1.11286
\(299\) −1.27323 −0.0736329
\(300\) 11.3481 0.655183
\(301\) 8.75611 0.504694
\(302\) −6.95537 −0.400236
\(303\) 35.6662 2.04897
\(304\) −4.16396 −0.238819
\(305\) 6.22347 0.356355
\(306\) −1.25728 −0.0718741
\(307\) −17.8204 −1.01706 −0.508531 0.861044i \(-0.669811\pi\)
−0.508531 + 0.861044i \(0.669811\pi\)
\(308\) 6.89557 0.392912
\(309\) 19.8499 1.12922
\(310\) 10.4407 0.592992
\(311\) −25.7600 −1.46071 −0.730357 0.683065i \(-0.760646\pi\)
−0.730357 + 0.683065i \(0.760646\pi\)
\(312\) 1.75717 0.0994800
\(313\) −18.5999 −1.05133 −0.525665 0.850692i \(-0.676184\pi\)
−0.525665 + 0.850692i \(0.676184\pi\)
\(314\) 12.6050 0.711342
\(315\) −18.2847 −1.03023
\(316\) 5.22096 0.293702
\(317\) −21.6706 −1.21714 −0.608570 0.793500i \(-0.708257\pi\)
−0.608570 + 0.793500i \(0.708257\pi\)
\(318\) −16.3982 −0.919563
\(319\) 15.6306 0.875148
\(320\) −3.23274 −0.180716
\(321\) −15.5404 −0.867381
\(322\) −6.39331 −0.356285
\(323\) 3.92262 0.218261
\(324\) −11.2227 −0.623481
\(325\) 4.60027 0.255177
\(326\) 19.6244 1.08689
\(327\) 26.3851 1.45910
\(328\) −12.3855 −0.683873
\(329\) −34.4252 −1.89792
\(330\) −10.9512 −0.602845
\(331\) −28.0553 −1.54206 −0.771029 0.636800i \(-0.780258\pi\)
−0.771029 + 0.636800i \(0.780258\pi\)
\(332\) 9.91652 0.544240
\(333\) −0.615621 −0.0337358
\(334\) 12.1817 0.666552
\(335\) −10.2475 −0.559881
\(336\) 8.82331 0.481351
\(337\) 14.8556 0.809237 0.404618 0.914486i \(-0.367404\pi\)
0.404618 + 0.914486i \(0.367404\pi\)
\(338\) −12.2877 −0.668362
\(339\) −7.02886 −0.381755
\(340\) 3.04538 0.165159
\(341\) −5.25501 −0.284575
\(342\) −5.55736 −0.300508
\(343\) 16.7830 0.906197
\(344\) 2.06612 0.111398
\(345\) 10.1536 0.546649
\(346\) 24.7449 1.33029
\(347\) 12.9427 0.694798 0.347399 0.937717i \(-0.387065\pi\)
0.347399 + 0.937717i \(0.387065\pi\)
\(348\) 20.0004 1.07213
\(349\) 15.5050 0.829962 0.414981 0.909830i \(-0.363788\pi\)
0.414981 + 0.909830i \(0.363788\pi\)
\(350\) 23.0995 1.23472
\(351\) −2.92633 −0.156196
\(352\) 1.62710 0.0867249
\(353\) 19.5212 1.03901 0.519505 0.854468i \(-0.326116\pi\)
0.519505 + 0.854468i \(0.326116\pi\)
\(354\) −6.71435 −0.356864
\(355\) 20.9685 1.11289
\(356\) −18.3369 −0.971855
\(357\) −8.31193 −0.439914
\(358\) 22.0363 1.16465
\(359\) 15.2551 0.805134 0.402567 0.915390i \(-0.368118\pi\)
0.402567 + 0.915390i \(0.368118\pi\)
\(360\) −4.31453 −0.227396
\(361\) −1.66146 −0.0874453
\(362\) 3.97416 0.208877
\(363\) −17.3898 −0.912728
\(364\) 3.57678 0.187474
\(365\) −19.0735 −0.998351
\(366\) −4.00809 −0.209506
\(367\) 3.05112 0.159267 0.0796335 0.996824i \(-0.474625\pi\)
0.0796335 + 0.996824i \(0.474625\pi\)
\(368\) −1.50859 −0.0786406
\(369\) −16.5301 −0.860521
\(370\) 1.49115 0.0775213
\(371\) −33.3791 −1.73295
\(372\) −6.72411 −0.348629
\(373\) −8.80327 −0.455816 −0.227908 0.973683i \(-0.573189\pi\)
−0.227908 + 0.973683i \(0.573189\pi\)
\(374\) −1.53280 −0.0792592
\(375\) −3.03297 −0.156622
\(376\) −8.12310 −0.418917
\(377\) 8.10772 0.417569
\(378\) −14.6940 −0.755779
\(379\) 10.7931 0.554405 0.277202 0.960812i \(-0.410593\pi\)
0.277202 + 0.960812i \(0.410593\pi\)
\(380\) 13.4610 0.690535
\(381\) −2.81493 −0.144213
\(382\) 19.4735 0.996352
\(383\) 3.58797 0.183336 0.0916682 0.995790i \(-0.470780\pi\)
0.0916682 + 0.995790i \(0.470780\pi\)
\(384\) 2.08198 0.106246
\(385\) −22.2916 −1.13609
\(386\) 16.5416 0.841944
\(387\) 2.75752 0.140172
\(388\) 14.2978 0.725859
\(389\) 12.1818 0.617640 0.308820 0.951120i \(-0.400066\pi\)
0.308820 + 0.951120i \(0.400066\pi\)
\(390\) −5.68047 −0.287642
\(391\) 1.42115 0.0718708
\(392\) 10.9602 0.553572
\(393\) −17.3836 −0.876888
\(394\) −7.38564 −0.372083
\(395\) −16.8780 −0.849225
\(396\) 2.17159 0.109126
\(397\) −37.8938 −1.90184 −0.950918 0.309442i \(-0.899858\pi\)
−0.950918 + 0.309442i \(0.899858\pi\)
\(398\) −18.9590 −0.950327
\(399\) −36.7399 −1.83929
\(400\) 5.45063 0.272532
\(401\) 8.08258 0.403625 0.201812 0.979424i \(-0.435317\pi\)
0.201812 + 0.979424i \(0.435317\pi\)
\(402\) 6.59969 0.329162
\(403\) −2.72581 −0.135782
\(404\) 17.1309 0.852294
\(405\) 36.2800 1.80277
\(406\) 40.7115 2.02048
\(407\) −0.750526 −0.0372022
\(408\) −1.96131 −0.0970994
\(409\) −3.78638 −0.187224 −0.0936122 0.995609i \(-0.529841\pi\)
−0.0936122 + 0.995609i \(0.529841\pi\)
\(410\) 40.0390 1.97739
\(411\) −39.1619 −1.93171
\(412\) 9.53416 0.469714
\(413\) −13.6673 −0.672525
\(414\) −2.01341 −0.0989539
\(415\) −32.0576 −1.57364
\(416\) 0.843989 0.0413800
\(417\) −26.3819 −1.29193
\(418\) −6.77519 −0.331385
\(419\) 2.72170 0.132964 0.0664819 0.997788i \(-0.478823\pi\)
0.0664819 + 0.997788i \(0.478823\pi\)
\(420\) −28.5235 −1.39180
\(421\) −25.2691 −1.23154 −0.615771 0.787925i \(-0.711155\pi\)
−0.615771 + 0.787925i \(0.711155\pi\)
\(422\) −17.1052 −0.832670
\(423\) −10.8414 −0.527125
\(424\) −7.87624 −0.382504
\(425\) −5.13472 −0.249071
\(426\) −13.5043 −0.654286
\(427\) −8.15862 −0.394823
\(428\) −7.46425 −0.360798
\(429\) 2.85909 0.138038
\(430\) −6.67924 −0.322101
\(431\) −4.38653 −0.211292 −0.105646 0.994404i \(-0.533691\pi\)
−0.105646 + 0.994404i \(0.533691\pi\)
\(432\) −3.46725 −0.166818
\(433\) 24.1448 1.16033 0.580163 0.814500i \(-0.302989\pi\)
0.580163 + 0.814500i \(0.302989\pi\)
\(434\) −13.6872 −0.657005
\(435\) −64.6561 −3.10002
\(436\) 12.6731 0.606931
\(437\) 6.28170 0.300494
\(438\) 12.2839 0.586945
\(439\) −6.58706 −0.314383 −0.157192 0.987568i \(-0.550244\pi\)
−0.157192 + 0.987568i \(0.550244\pi\)
\(440\) −5.26001 −0.250761
\(441\) 14.6278 0.696563
\(442\) −0.795074 −0.0378178
\(443\) −30.2193 −1.43576 −0.717881 0.696166i \(-0.754888\pi\)
−0.717881 + 0.696166i \(0.754888\pi\)
\(444\) −0.960344 −0.0455759
\(445\) 59.2786 2.81007
\(446\) −1.00000 −0.0473514
\(447\) 39.9967 1.89178
\(448\) 4.23794 0.200224
\(449\) −14.9422 −0.705166 −0.352583 0.935781i \(-0.614696\pi\)
−0.352583 + 0.935781i \(0.614696\pi\)
\(450\) 7.27460 0.342928
\(451\) −20.1524 −0.948941
\(452\) −3.37605 −0.158796
\(453\) −14.4809 −0.680373
\(454\) 4.46715 0.209654
\(455\) −11.5628 −0.542073
\(456\) −8.66927 −0.405976
\(457\) 14.6447 0.685051 0.342525 0.939509i \(-0.388718\pi\)
0.342525 + 0.939509i \(0.388718\pi\)
\(458\) −12.5863 −0.588119
\(459\) 3.26630 0.152458
\(460\) 4.87688 0.227386
\(461\) −25.3454 −1.18045 −0.590226 0.807238i \(-0.700962\pi\)
−0.590226 + 0.807238i \(0.700962\pi\)
\(462\) 14.3564 0.667922
\(463\) −19.0759 −0.886534 −0.443267 0.896390i \(-0.646181\pi\)
−0.443267 + 0.896390i \(0.646181\pi\)
\(464\) 9.60642 0.445967
\(465\) 21.7373 1.00804
\(466\) −3.20498 −0.148468
\(467\) 34.2858 1.58656 0.793280 0.608857i \(-0.208372\pi\)
0.793280 + 0.608857i \(0.208372\pi\)
\(468\) 1.12642 0.0520687
\(469\) 13.4339 0.620320
\(470\) 26.2599 1.21128
\(471\) 26.2434 1.20923
\(472\) −3.22499 −0.148442
\(473\) 3.36179 0.154575
\(474\) 10.8699 0.499272
\(475\) −22.6962 −1.04137
\(476\) −3.99232 −0.182988
\(477\) −10.5119 −0.481307
\(478\) 3.91975 0.179285
\(479\) −23.0099 −1.05135 −0.525674 0.850686i \(-0.676187\pi\)
−0.525674 + 0.850686i \(0.676187\pi\)
\(480\) −6.73050 −0.307204
\(481\) −0.389303 −0.0177507
\(482\) 16.9198 0.770676
\(483\) −13.3107 −0.605660
\(484\) −8.35253 −0.379661
\(485\) −46.2210 −2.09879
\(486\) −12.9636 −0.588039
\(487\) 13.9176 0.630665 0.315332 0.948981i \(-0.397884\pi\)
0.315332 + 0.948981i \(0.397884\pi\)
\(488\) −1.92513 −0.0871468
\(489\) 40.8575 1.84764
\(490\) −35.4314 −1.60063
\(491\) 29.1777 1.31677 0.658385 0.752681i \(-0.271240\pi\)
0.658385 + 0.752681i \(0.271240\pi\)
\(492\) −25.7863 −1.16254
\(493\) −9.04966 −0.407576
\(494\) −3.51433 −0.158117
\(495\) −7.02019 −0.315534
\(496\) −3.22967 −0.145017
\(497\) −27.4885 −1.23303
\(498\) 20.6460 0.925169
\(499\) 28.4731 1.27463 0.637315 0.770604i \(-0.280045\pi\)
0.637315 + 0.770604i \(0.280045\pi\)
\(500\) −1.45677 −0.0651488
\(501\) 25.3620 1.13309
\(502\) −12.1186 −0.540877
\(503\) 28.5037 1.27092 0.635458 0.772135i \(-0.280811\pi\)
0.635458 + 0.772135i \(0.280811\pi\)
\(504\) 5.65611 0.251943
\(505\) −55.3798 −2.46437
\(506\) −2.45463 −0.109122
\(507\) −25.5827 −1.13617
\(508\) −1.35204 −0.0599872
\(509\) −18.3677 −0.814135 −0.407067 0.913398i \(-0.633449\pi\)
−0.407067 + 0.913398i \(0.633449\pi\)
\(510\) 6.34042 0.280758
\(511\) 25.0042 1.10612
\(512\) 1.00000 0.0441942
\(513\) 14.4375 0.637431
\(514\) −18.3212 −0.808113
\(515\) −30.8215 −1.35816
\(516\) 4.30162 0.189368
\(517\) −13.2171 −0.581288
\(518\) −1.95482 −0.0858897
\(519\) 51.5184 2.26141
\(520\) −2.72840 −0.119648
\(521\) −25.6718 −1.12470 −0.562352 0.826898i \(-0.690103\pi\)
−0.562352 + 0.826898i \(0.690103\pi\)
\(522\) 12.8211 0.561163
\(523\) −12.3532 −0.540168 −0.270084 0.962837i \(-0.587051\pi\)
−0.270084 + 0.962837i \(0.587051\pi\)
\(524\) −8.34957 −0.364753
\(525\) 48.0926 2.09893
\(526\) 22.4825 0.980283
\(527\) 3.04249 0.132533
\(528\) 3.38759 0.147426
\(529\) −20.7242 −0.901051
\(530\) 25.4619 1.10599
\(531\) −4.30418 −0.186786
\(532\) −17.6466 −0.765078
\(533\) −10.4532 −0.452778
\(534\) −38.1771 −1.65208
\(535\) 24.1300 1.04323
\(536\) 3.16991 0.136919
\(537\) 45.8790 1.97983
\(538\) 31.5427 1.35990
\(539\) 17.8333 0.768136
\(540\) 11.2087 0.482348
\(541\) 6.81882 0.293164 0.146582 0.989199i \(-0.453173\pi\)
0.146582 + 0.989199i \(0.453173\pi\)
\(542\) 21.4428 0.921049
\(543\) 8.27413 0.355077
\(544\) −0.942042 −0.0403897
\(545\) −40.9689 −1.75491
\(546\) 7.44678 0.318693
\(547\) −12.6106 −0.539191 −0.269595 0.962974i \(-0.586890\pi\)
−0.269595 + 0.962974i \(0.586890\pi\)
\(548\) −18.8099 −0.803521
\(549\) −2.56935 −0.109657
\(550\) 8.86874 0.378164
\(551\) −40.0007 −1.70409
\(552\) −3.14085 −0.133683
\(553\) 22.1261 0.940899
\(554\) 3.53182 0.150053
\(555\) 3.10455 0.131781
\(556\) −12.6716 −0.537394
\(557\) 0.665650 0.0282045 0.0141022 0.999901i \(-0.495511\pi\)
0.0141022 + 0.999901i \(0.495511\pi\)
\(558\) −4.31043 −0.182475
\(559\) 1.74378 0.0737542
\(560\) −13.7002 −0.578939
\(561\) −3.19126 −0.134735
\(562\) 16.2985 0.687511
\(563\) 26.5159 1.11751 0.558755 0.829333i \(-0.311279\pi\)
0.558755 + 0.829333i \(0.311279\pi\)
\(564\) −16.9121 −0.712128
\(565\) 10.9139 0.459151
\(566\) 19.2174 0.807769
\(567\) −47.5610 −1.99737
\(568\) −6.48629 −0.272159
\(569\) 42.2037 1.76927 0.884636 0.466283i \(-0.154407\pi\)
0.884636 + 0.466283i \(0.154407\pi\)
\(570\) 28.0255 1.17386
\(571\) 0.974618 0.0407865 0.0203932 0.999792i \(-0.493508\pi\)
0.0203932 + 0.999792i \(0.493508\pi\)
\(572\) 1.37326 0.0574188
\(573\) 40.5435 1.69373
\(574\) −52.4889 −2.19085
\(575\) −8.22275 −0.342913
\(576\) 1.33463 0.0556098
\(577\) −40.8701 −1.70144 −0.850722 0.525615i \(-0.823835\pi\)
−0.850722 + 0.525615i \(0.823835\pi\)
\(578\) −16.1126 −0.670194
\(579\) 34.4392 1.43124
\(580\) −31.0551 −1.28949
\(581\) 42.0257 1.74352
\(582\) 29.7676 1.23391
\(583\) −12.8155 −0.530762
\(584\) 5.90009 0.244147
\(585\) −3.64142 −0.150554
\(586\) −28.4149 −1.17381
\(587\) −12.3589 −0.510105 −0.255053 0.966927i \(-0.582093\pi\)
−0.255053 + 0.966927i \(0.582093\pi\)
\(588\) 22.8188 0.941033
\(589\) 13.4482 0.554124
\(590\) 10.4256 0.429213
\(591\) −15.3767 −0.632515
\(592\) −0.461265 −0.0189579
\(593\) 6.03062 0.247648 0.123824 0.992304i \(-0.460484\pi\)
0.123824 + 0.992304i \(0.460484\pi\)
\(594\) −5.64158 −0.231477
\(595\) 12.9062 0.529101
\(596\) 19.2109 0.786909
\(597\) −39.4721 −1.61549
\(598\) −1.27323 −0.0520663
\(599\) −0.932663 −0.0381076 −0.0190538 0.999818i \(-0.506065\pi\)
−0.0190538 + 0.999818i \(0.506065\pi\)
\(600\) 11.3481 0.463284
\(601\) 14.9218 0.608674 0.304337 0.952564i \(-0.401565\pi\)
0.304337 + 0.952564i \(0.401565\pi\)
\(602\) 8.75611 0.356872
\(603\) 4.23067 0.172286
\(604\) −6.95537 −0.283010
\(605\) 27.0016 1.09777
\(606\) 35.6662 1.44884
\(607\) −13.8044 −0.560301 −0.280151 0.959956i \(-0.590384\pi\)
−0.280151 + 0.959956i \(0.590384\pi\)
\(608\) −4.16396 −0.168871
\(609\) 84.7605 3.43467
\(610\) 6.22347 0.251981
\(611\) −6.85580 −0.277356
\(612\) −1.25728 −0.0508226
\(613\) −39.9303 −1.61277 −0.806385 0.591391i \(-0.798579\pi\)
−0.806385 + 0.591391i \(0.798579\pi\)
\(614\) −17.8204 −0.719172
\(615\) 83.3604 3.36142
\(616\) 6.89557 0.277831
\(617\) −2.07604 −0.0835783 −0.0417892 0.999126i \(-0.513306\pi\)
−0.0417892 + 0.999126i \(0.513306\pi\)
\(618\) 19.8499 0.798481
\(619\) 20.3472 0.817822 0.408911 0.912574i \(-0.365909\pi\)
0.408911 + 0.912574i \(0.365909\pi\)
\(620\) 10.4407 0.419309
\(621\) 5.23066 0.209899
\(622\) −25.7600 −1.03288
\(623\) −77.7109 −3.11342
\(624\) 1.75717 0.0703430
\(625\) −22.5438 −0.901751
\(626\) −18.5999 −0.743403
\(627\) −14.1058 −0.563331
\(628\) 12.6050 0.502995
\(629\) 0.434531 0.0173259
\(630\) −18.2847 −0.728482
\(631\) −38.0428 −1.51446 −0.757230 0.653149i \(-0.773448\pi\)
−0.757230 + 0.653149i \(0.773448\pi\)
\(632\) 5.22096 0.207679
\(633\) −35.6128 −1.41548
\(634\) −21.6706 −0.860649
\(635\) 4.37081 0.173450
\(636\) −16.3982 −0.650229
\(637\) 9.25027 0.366509
\(638\) 15.6306 0.618823
\(639\) −8.65683 −0.342459
\(640\) −3.23274 −0.127785
\(641\) −3.27668 −0.129421 −0.0647106 0.997904i \(-0.520612\pi\)
−0.0647106 + 0.997904i \(0.520612\pi\)
\(642\) −15.5404 −0.613331
\(643\) −45.1564 −1.78079 −0.890397 0.455185i \(-0.849573\pi\)
−0.890397 + 0.455185i \(0.849573\pi\)
\(644\) −6.39331 −0.251932
\(645\) −13.9060 −0.547549
\(646\) 3.92262 0.154334
\(647\) 28.9340 1.13751 0.568757 0.822505i \(-0.307424\pi\)
0.568757 + 0.822505i \(0.307424\pi\)
\(648\) −11.2227 −0.440868
\(649\) −5.24739 −0.205978
\(650\) 4.60027 0.180438
\(651\) −28.4964 −1.11686
\(652\) 19.6244 0.768550
\(653\) −0.601430 −0.0235358 −0.0117679 0.999931i \(-0.503746\pi\)
−0.0117679 + 0.999931i \(0.503746\pi\)
\(654\) 26.3851 1.03174
\(655\) 26.9920 1.05467
\(656\) −12.3855 −0.483571
\(657\) 7.87446 0.307212
\(658\) −34.4252 −1.34204
\(659\) −1.13037 −0.0440328 −0.0220164 0.999758i \(-0.507009\pi\)
−0.0220164 + 0.999758i \(0.507009\pi\)
\(660\) −10.9512 −0.426276
\(661\) 0.496004 0.0192923 0.00964615 0.999953i \(-0.496929\pi\)
0.00964615 + 0.999953i \(0.496929\pi\)
\(662\) −28.0553 −1.09040
\(663\) −1.65533 −0.0642875
\(664\) 9.91652 0.384836
\(665\) 57.0470 2.21219
\(666\) −0.615621 −0.0238548
\(667\) −14.4921 −0.561138
\(668\) 12.1817 0.471323
\(669\) −2.08198 −0.0804939
\(670\) −10.2475 −0.395896
\(671\) −3.13239 −0.120925
\(672\) 8.82331 0.340367
\(673\) −2.19328 −0.0845448 −0.0422724 0.999106i \(-0.513460\pi\)
−0.0422724 + 0.999106i \(0.513460\pi\)
\(674\) 14.8556 0.572217
\(675\) −18.8987 −0.727412
\(676\) −12.2877 −0.472603
\(677\) −12.6302 −0.485417 −0.242708 0.970099i \(-0.578036\pi\)
−0.242708 + 0.970099i \(0.578036\pi\)
\(678\) −7.02886 −0.269942
\(679\) 60.5931 2.32535
\(680\) 3.04538 0.116785
\(681\) 9.30052 0.356397
\(682\) −5.25501 −0.201225
\(683\) 46.0057 1.76036 0.880179 0.474643i \(-0.157423\pi\)
0.880179 + 0.474643i \(0.157423\pi\)
\(684\) −5.55736 −0.212491
\(685\) 60.8077 2.32334
\(686\) 16.7830 0.640778
\(687\) −26.2044 −0.999760
\(688\) 2.06612 0.0787701
\(689\) −6.64746 −0.253248
\(690\) 10.1536 0.386539
\(691\) −40.0066 −1.52192 −0.760961 0.648797i \(-0.775272\pi\)
−0.760961 + 0.648797i \(0.775272\pi\)
\(692\) 24.7449 0.940660
\(693\) 9.20307 0.349596
\(694\) 12.9427 0.491296
\(695\) 40.9639 1.55385
\(696\) 20.0004 0.758112
\(697\) 11.6676 0.441943
\(698\) 15.5050 0.586872
\(699\) −6.67269 −0.252384
\(700\) 23.0995 0.873078
\(701\) −3.96354 −0.149701 −0.0748504 0.997195i \(-0.523848\pi\)
−0.0748504 + 0.997195i \(0.523848\pi\)
\(702\) −2.92633 −0.110447
\(703\) 1.92069 0.0724402
\(704\) 1.62710 0.0613238
\(705\) 54.6725 2.05909
\(706\) 19.5212 0.734691
\(707\) 72.5998 2.73040
\(708\) −6.71435 −0.252341
\(709\) 23.0155 0.864364 0.432182 0.901786i \(-0.357744\pi\)
0.432182 + 0.901786i \(0.357744\pi\)
\(710\) 20.9685 0.786934
\(711\) 6.96807 0.261323
\(712\) −18.3369 −0.687205
\(713\) 4.87224 0.182467
\(714\) −8.31193 −0.311066
\(715\) −4.43939 −0.166024
\(716\) 22.0363 0.823534
\(717\) 8.16083 0.304772
\(718\) 15.2551 0.569316
\(719\) 3.11974 0.116347 0.0581734 0.998306i \(-0.481472\pi\)
0.0581734 + 0.998306i \(0.481472\pi\)
\(720\) −4.31453 −0.160793
\(721\) 40.4052 1.50477
\(722\) −1.66146 −0.0618331
\(723\) 35.2267 1.31009
\(724\) 3.97416 0.147699
\(725\) 52.3611 1.94464
\(726\) −17.3898 −0.645396
\(727\) −46.5659 −1.72703 −0.863517 0.504319i \(-0.831744\pi\)
−0.863517 + 0.504319i \(0.831744\pi\)
\(728\) 3.57678 0.132564
\(729\) 6.67810 0.247337
\(730\) −19.0735 −0.705941
\(731\) −1.94637 −0.0719892
\(732\) −4.00809 −0.148143
\(733\) −12.8098 −0.473140 −0.236570 0.971614i \(-0.576023\pi\)
−0.236570 + 0.971614i \(0.576023\pi\)
\(734\) 3.05112 0.112619
\(735\) −73.7675 −2.72095
\(736\) −1.50859 −0.0556073
\(737\) 5.15777 0.189989
\(738\) −16.5301 −0.608480
\(739\) −11.7528 −0.432332 −0.216166 0.976357i \(-0.569355\pi\)
−0.216166 + 0.976357i \(0.569355\pi\)
\(740\) 1.49115 0.0548158
\(741\) −7.31677 −0.268788
\(742\) −33.3791 −1.22538
\(743\) 8.31456 0.305032 0.152516 0.988301i \(-0.451262\pi\)
0.152516 + 0.988301i \(0.451262\pi\)
\(744\) −6.72411 −0.246518
\(745\) −62.1039 −2.27531
\(746\) −8.80327 −0.322311
\(747\) 13.2349 0.484241
\(748\) −1.53280 −0.0560447
\(749\) −31.6331 −1.15585
\(750\) −3.03297 −0.110748
\(751\) 21.5225 0.785368 0.392684 0.919673i \(-0.371547\pi\)
0.392684 + 0.919673i \(0.371547\pi\)
\(752\) −8.12310 −0.296219
\(753\) −25.2306 −0.919453
\(754\) 8.10772 0.295266
\(755\) 22.4849 0.818310
\(756\) −14.6940 −0.534417
\(757\) 6.72567 0.244449 0.122224 0.992503i \(-0.460997\pi\)
0.122224 + 0.992503i \(0.460997\pi\)
\(758\) 10.7931 0.392023
\(759\) −5.11048 −0.185499
\(760\) 13.4610 0.488282
\(761\) −18.3748 −0.666085 −0.333042 0.942912i \(-0.608075\pi\)
−0.333042 + 0.942912i \(0.608075\pi\)
\(762\) −2.81493 −0.101974
\(763\) 53.7079 1.94436
\(764\) 19.4735 0.704528
\(765\) 4.06447 0.146951
\(766\) 3.58797 0.129638
\(767\) −2.72185 −0.0982805
\(768\) 2.08198 0.0751269
\(769\) 0.646091 0.0232986 0.0116493 0.999932i \(-0.496292\pi\)
0.0116493 + 0.999932i \(0.496292\pi\)
\(770\) −22.2916 −0.803334
\(771\) −38.1443 −1.37373
\(772\) 16.5416 0.595344
\(773\) 8.31989 0.299246 0.149623 0.988743i \(-0.452194\pi\)
0.149623 + 0.988743i \(0.452194\pi\)
\(774\) 2.75752 0.0991169
\(775\) −17.6037 −0.632345
\(776\) 14.2978 0.513260
\(777\) −4.06989 −0.146006
\(778\) 12.1818 0.436738
\(779\) 51.5725 1.84778
\(780\) −5.68047 −0.203394
\(781\) −10.5539 −0.377647
\(782\) 1.42115 0.0508204
\(783\) −33.3079 −1.19033
\(784\) 10.9602 0.391435
\(785\) −40.7488 −1.45439
\(786\) −17.3836 −0.620054
\(787\) −1.45675 −0.0519275 −0.0259637 0.999663i \(-0.508265\pi\)
−0.0259637 + 0.999663i \(0.508265\pi\)
\(788\) −7.38564 −0.263103
\(789\) 46.8081 1.66641
\(790\) −16.8780 −0.600493
\(791\) −14.3075 −0.508716
\(792\) 2.17159 0.0771641
\(793\) −1.62479 −0.0576981
\(794\) −37.8938 −1.34480
\(795\) 53.0110 1.88011
\(796\) −18.9590 −0.671982
\(797\) 9.33351 0.330610 0.165305 0.986243i \(-0.447139\pi\)
0.165305 + 0.986243i \(0.447139\pi\)
\(798\) −36.7399 −1.30058
\(799\) 7.65230 0.270719
\(800\) 5.45063 0.192709
\(801\) −24.4731 −0.864715
\(802\) 8.08258 0.285406
\(803\) 9.60005 0.338779
\(804\) 6.59969 0.232753
\(805\) 20.6679 0.728449
\(806\) −2.72581 −0.0960125
\(807\) 65.6713 2.31174
\(808\) 17.1309 0.602663
\(809\) −1.15995 −0.0407816 −0.0203908 0.999792i \(-0.506491\pi\)
−0.0203908 + 0.999792i \(0.506491\pi\)
\(810\) 36.2800 1.27475
\(811\) 19.7705 0.694237 0.347119 0.937821i \(-0.387160\pi\)
0.347119 + 0.937821i \(0.387160\pi\)
\(812\) 40.7115 1.42869
\(813\) 44.6435 1.56572
\(814\) −0.750526 −0.0263059
\(815\) −63.4406 −2.22223
\(816\) −1.96131 −0.0686597
\(817\) −8.60324 −0.300989
\(818\) −3.78638 −0.132388
\(819\) 4.77369 0.166806
\(820\) 40.0390 1.39822
\(821\) −27.5239 −0.960589 −0.480295 0.877107i \(-0.659470\pi\)
−0.480295 + 0.877107i \(0.659470\pi\)
\(822\) −39.1619 −1.36593
\(823\) −37.9780 −1.32383 −0.661915 0.749579i \(-0.730256\pi\)
−0.661915 + 0.749579i \(0.730256\pi\)
\(824\) 9.53416 0.332138
\(825\) 18.4645 0.642852
\(826\) −13.6673 −0.475547
\(827\) −37.8370 −1.31572 −0.657860 0.753140i \(-0.728538\pi\)
−0.657860 + 0.753140i \(0.728538\pi\)
\(828\) −2.01341 −0.0699710
\(829\) 55.1825 1.91657 0.958283 0.285821i \(-0.0922664\pi\)
0.958283 + 0.285821i \(0.0922664\pi\)
\(830\) −32.0576 −1.11273
\(831\) 7.35318 0.255079
\(832\) 0.843989 0.0292601
\(833\) −10.3249 −0.357738
\(834\) −26.3819 −0.913531
\(835\) −39.3803 −1.36281
\(836\) −6.77519 −0.234325
\(837\) 11.1981 0.387063
\(838\) 2.72170 0.0940196
\(839\) 32.3853 1.11807 0.559033 0.829146i \(-0.311173\pi\)
0.559033 + 0.829146i \(0.311173\pi\)
\(840\) −28.5235 −0.984154
\(841\) 63.2834 2.18219
\(842\) −25.2691 −0.870832
\(843\) 33.9332 1.16872
\(844\) −17.1052 −0.588787
\(845\) 39.7229 1.36651
\(846\) −10.8414 −0.372734
\(847\) −35.3976 −1.21628
\(848\) −7.87624 −0.270471
\(849\) 40.0103 1.37315
\(850\) −5.13472 −0.176120
\(851\) 0.695859 0.0238537
\(852\) −13.5043 −0.462650
\(853\) 42.6423 1.46004 0.730022 0.683423i \(-0.239510\pi\)
0.730022 + 0.683423i \(0.239510\pi\)
\(854\) −8.15862 −0.279182
\(855\) 17.9655 0.614408
\(856\) −7.46425 −0.255123
\(857\) −52.4569 −1.79189 −0.895947 0.444161i \(-0.853502\pi\)
−0.895947 + 0.444161i \(0.853502\pi\)
\(858\) 2.85909 0.0976078
\(859\) 13.4612 0.459291 0.229645 0.973274i \(-0.426243\pi\)
0.229645 + 0.973274i \(0.426243\pi\)
\(860\) −6.67924 −0.227760
\(861\) −109.281 −3.72428
\(862\) −4.38653 −0.149406
\(863\) 1.83135 0.0623399 0.0311700 0.999514i \(-0.490077\pi\)
0.0311700 + 0.999514i \(0.490077\pi\)
\(864\) −3.46725 −0.117958
\(865\) −79.9939 −2.71988
\(866\) 24.1448 0.820474
\(867\) −33.5460 −1.13928
\(868\) −13.6872 −0.464573
\(869\) 8.49504 0.288175
\(870\) −64.6561 −2.19205
\(871\) 2.67537 0.0906515
\(872\) 12.6731 0.429165
\(873\) 19.0823 0.645838
\(874\) 6.28170 0.212482
\(875\) −6.17372 −0.208710
\(876\) 12.2839 0.415033
\(877\) −16.0327 −0.541386 −0.270693 0.962666i \(-0.587253\pi\)
−0.270693 + 0.962666i \(0.587253\pi\)
\(878\) −6.58706 −0.222303
\(879\) −59.1592 −1.99539
\(880\) −5.26001 −0.177315
\(881\) 37.1248 1.25077 0.625383 0.780318i \(-0.284943\pi\)
0.625383 + 0.780318i \(0.284943\pi\)
\(882\) 14.6278 0.492545
\(883\) −9.66118 −0.325125 −0.162562 0.986698i \(-0.551976\pi\)
−0.162562 + 0.986698i \(0.551976\pi\)
\(884\) −0.795074 −0.0267412
\(885\) 21.7058 0.729632
\(886\) −30.2193 −1.01524
\(887\) −9.43129 −0.316672 −0.158336 0.987385i \(-0.550613\pi\)
−0.158336 + 0.987385i \(0.550613\pi\)
\(888\) −0.960344 −0.0322270
\(889\) −5.72989 −0.192174
\(890\) 59.2786 1.98702
\(891\) −18.2604 −0.611747
\(892\) −1.00000 −0.0334825
\(893\) 33.8242 1.13188
\(894\) 39.9967 1.33769
\(895\) −71.2376 −2.38121
\(896\) 4.23794 0.141580
\(897\) −2.65084 −0.0885090
\(898\) −14.9422 −0.498627
\(899\) −31.0256 −1.03476
\(900\) 7.27460 0.242487
\(901\) 7.41975 0.247188
\(902\) −20.1524 −0.671003
\(903\) 18.2300 0.606657
\(904\) −3.37605 −0.112286
\(905\) −12.8475 −0.427064
\(906\) −14.4809 −0.481096
\(907\) −7.22663 −0.239956 −0.119978 0.992777i \(-0.538282\pi\)
−0.119978 + 0.992777i \(0.538282\pi\)
\(908\) 4.46715 0.148248
\(909\) 22.8635 0.758335
\(910\) −11.5628 −0.383303
\(911\) 3.77478 0.125064 0.0625321 0.998043i \(-0.480082\pi\)
0.0625321 + 0.998043i \(0.480082\pi\)
\(912\) −8.66927 −0.287068
\(913\) 16.1352 0.533998
\(914\) 14.6447 0.484404
\(915\) 12.9571 0.428349
\(916\) −12.5863 −0.415863
\(917\) −35.3850 −1.16852
\(918\) 3.26630 0.107804
\(919\) 5.30434 0.174974 0.0874870 0.996166i \(-0.472116\pi\)
0.0874870 + 0.996166i \(0.472116\pi\)
\(920\) 4.87688 0.160786
\(921\) −37.1016 −1.22254
\(922\) −25.3454 −0.834706
\(923\) −5.47436 −0.180191
\(924\) 14.3564 0.472292
\(925\) −2.51419 −0.0826659
\(926\) −19.0759 −0.626874
\(927\) 12.7246 0.417931
\(928\) 9.60642 0.315346
\(929\) 25.8603 0.848450 0.424225 0.905557i \(-0.360547\pi\)
0.424225 + 0.905557i \(0.360547\pi\)
\(930\) 21.7373 0.712795
\(931\) −45.6377 −1.49572
\(932\) −3.20498 −0.104982
\(933\) −53.6317 −1.75582
\(934\) 34.2858 1.12187
\(935\) 4.95515 0.162051
\(936\) 1.12642 0.0368181
\(937\) −14.3585 −0.469072 −0.234536 0.972107i \(-0.575357\pi\)
−0.234536 + 0.972107i \(0.575357\pi\)
\(938\) 13.4339 0.438633
\(939\) −38.7247 −1.26373
\(940\) 26.2599 0.856503
\(941\) −38.8128 −1.26526 −0.632631 0.774453i \(-0.718025\pi\)
−0.632631 + 0.774453i \(0.718025\pi\)
\(942\) 26.2434 0.855055
\(943\) 18.6846 0.608453
\(944\) −3.22499 −0.104964
\(945\) 47.5020 1.54524
\(946\) 3.36179 0.109301
\(947\) 8.59005 0.279139 0.139570 0.990212i \(-0.455428\pi\)
0.139570 + 0.990212i \(0.455428\pi\)
\(948\) 10.8699 0.353039
\(949\) 4.97961 0.161645
\(950\) −22.6962 −0.736362
\(951\) −45.1177 −1.46304
\(952\) −3.99232 −0.129392
\(953\) 46.4293 1.50399 0.751996 0.659167i \(-0.229091\pi\)
0.751996 + 0.659167i \(0.229091\pi\)
\(954\) −10.5119 −0.340335
\(955\) −62.9529 −2.03711
\(956\) 3.91975 0.126774
\(957\) 32.5427 1.05196
\(958\) −23.0099 −0.743415
\(959\) −79.7155 −2.57415
\(960\) −6.73050 −0.217226
\(961\) −20.5692 −0.663523
\(962\) −0.389303 −0.0125516
\(963\) −9.96205 −0.321022
\(964\) 16.9198 0.544950
\(965\) −53.4747 −1.72141
\(966\) −13.3107 −0.428266
\(967\) −29.2131 −0.939431 −0.469716 0.882818i \(-0.655644\pi\)
−0.469716 + 0.882818i \(0.655644\pi\)
\(968\) −8.35253 −0.268461
\(969\) 8.16682 0.262356
\(970\) −46.2210 −1.48407
\(971\) 36.6586 1.17643 0.588216 0.808704i \(-0.299831\pi\)
0.588216 + 0.808704i \(0.299831\pi\)
\(972\) −12.9636 −0.415806
\(973\) −53.7014 −1.72159
\(974\) 13.9176 0.445947
\(975\) 9.57767 0.306731
\(976\) −1.92513 −0.0616221
\(977\) −54.5538 −1.74533 −0.872665 0.488320i \(-0.837610\pi\)
−0.872665 + 0.488320i \(0.837610\pi\)
\(978\) 40.8575 1.30648
\(979\) −29.8361 −0.953565
\(980\) −35.4314 −1.13182
\(981\) 16.9140 0.540021
\(982\) 29.1777 0.931097
\(983\) −0.763825 −0.0243622 −0.0121811 0.999926i \(-0.503877\pi\)
−0.0121811 + 0.999926i \(0.503877\pi\)
\(984\) −25.7863 −0.822036
\(985\) 23.8759 0.760749
\(986\) −9.04966 −0.288200
\(987\) −71.6726 −2.28136
\(988\) −3.51433 −0.111806
\(989\) −3.11692 −0.0991124
\(990\) −7.02019 −0.223116
\(991\) 53.0829 1.68623 0.843117 0.537731i \(-0.180718\pi\)
0.843117 + 0.537731i \(0.180718\pi\)
\(992\) −3.22967 −0.102542
\(993\) −58.4105 −1.85360
\(994\) −27.4885 −0.871884
\(995\) 61.2894 1.94301
\(996\) 20.6460 0.654193
\(997\) −1.97056 −0.0624083 −0.0312041 0.999513i \(-0.509934\pi\)
−0.0312041 + 0.999513i \(0.509934\pi\)
\(998\) 28.4731 0.901299
\(999\) 1.59932 0.0506004
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 446.2.a.e.1.6 7
3.2 odd 2 4014.2.a.w.1.6 7
4.3 odd 2 3568.2.a.l.1.2 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
446.2.a.e.1.6 7 1.1 even 1 trivial
3568.2.a.l.1.2 7 4.3 odd 2
4014.2.a.w.1.6 7 3.2 odd 2