Properties

Label 446.2.a.e
Level $446$
Weight $2$
Character orbit 446.a
Self dual yes
Analytic conductor $3.561$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [446,2,Mod(1,446)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(446, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("446.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 446 = 2 \cdot 223 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 446.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [7,7,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.56132793015\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - x^{6} - 14x^{5} + 12x^{4} + 50x^{3} - 36x^{2} - 38x + 18 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{6}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} + \beta_1 q^{3} + q^{4} - \beta_{3} q^{5} + \beta_1 q^{6} + (\beta_{6} - \beta_{2} + 1) q^{7} + q^{8} + (\beta_{3} + \beta_{2} + 1) q^{9} - \beta_{3} q^{10} + ( - \beta_{6} - \beta_{4} - \beta_1 + 2) q^{11}+ \cdots + (\beta_{6} + 3 \beta_{5} + 2 \beta_{4} + \cdots + 2) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + 7 q^{2} + q^{3} + 7 q^{4} + 2 q^{5} + q^{6} + 6 q^{7} + 7 q^{8} + 8 q^{9} + 2 q^{10} + 9 q^{11} + q^{12} - 2 q^{13} + 6 q^{14} + 6 q^{15} + 7 q^{16} - 7 q^{17} + 8 q^{18} - 2 q^{19} + 2 q^{20}+ \cdots + 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{7} - x^{6} - 14x^{5} + 12x^{4} + 50x^{3} - 36x^{2} - 38x + 18 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -6\nu^{6} + 37\nu^{5} + 92\nu^{4} - 388\nu^{3} - 287\nu^{2} + 703\nu - 98 ) / 239 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 6\nu^{6} - 37\nu^{5} - 92\nu^{4} + 388\nu^{3} + 526\nu^{2} - 703\nu - 858 ) / 239 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 11\nu^{6} - 28\nu^{5} - 89\nu^{4} + 313\nu^{3} - 151\nu^{2} - 771\nu + 817 ) / 239 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -32\nu^{6} + 38\nu^{5} + 411\nu^{4} - 476\nu^{3} - 1212\nu^{2} + 1439\nu + 513 ) / 239 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -47\nu^{6} + 11\nu^{5} + 641\nu^{4} - 12\nu^{3} - 2049\nu^{2} - 269\nu + 985 ) / 239 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + \beta_{2} + 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{6} - 2\beta_{5} - \beta_{4} - \beta_{3} + 7\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{5} + 4\beta_{4} + 10\beta_{3} + 12\beta_{2} + \beta _1 + 25 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 10\beta_{6} - 22\beta_{5} - 12\beta_{4} - 13\beta_{3} + 4\beta_{2} + 55\beta _1 + 2 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -3\beta_{6} + 9\beta_{5} + 52\beta_{4} + 90\beta_{3} + 121\beta_{2} + 19\beta _1 + 188 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.90898
−2.01250
−0.922829
0.409721
1.26499
2.08198
3.08762
1.00000 −2.90898 1.00000 −3.52361 −2.90898 −0.552246 1.00000 5.46214 −3.52361
1.2 1.00000 −2.01250 1.00000 1.52490 −2.01250 0.908231 1.00000 1.05016 1.52490
1.3 1.00000 −0.922829 1.00000 0.437167 −0.922829 3.40247 1.00000 −2.14839 0.437167
1.4 1.00000 0.409721 1.00000 4.32652 0.409721 2.79833 1.00000 −2.83213 4.32652
1.5 1.00000 1.26499 1.00000 1.88711 1.26499 −3.39932 1.00000 −1.39980 1.88711
1.6 1.00000 2.08198 1.00000 −3.23274 2.08198 4.23794 1.00000 1.33463 −3.23274
1.7 1.00000 3.08762 1.00000 0.580657 3.08762 −1.39541 1.00000 6.53337 0.580657
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.7
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(223\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 446.2.a.e 7
3.b odd 2 1 4014.2.a.w 7
4.b odd 2 1 3568.2.a.l 7
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
446.2.a.e 7 1.a even 1 1 trivial
3568.2.a.l 7 4.b odd 2 1
4014.2.a.w 7 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(446))\):

\( T_{3}^{7} - T_{3}^{6} - 14T_{3}^{5} + 12T_{3}^{4} + 50T_{3}^{3} - 36T_{3}^{2} - 38T_{3} + 18 \) Copy content Toggle raw display
\( T_{5}^{7} - 2T_{5}^{6} - 22T_{5}^{5} + 42T_{5}^{4} + 92T_{5}^{3} - 256T_{5}^{2} + 174T_{5} - 36 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{7} \) Copy content Toggle raw display
$3$ \( T^{7} - T^{6} + \cdots + 18 \) Copy content Toggle raw display
$5$ \( T^{7} - 2 T^{6} + \cdots - 36 \) Copy content Toggle raw display
$7$ \( T^{7} - 6 T^{6} + \cdots + 96 \) Copy content Toggle raw display
$11$ \( T^{7} - 9 T^{6} + \cdots + 3494 \) Copy content Toggle raw display
$13$ \( T^{7} + 2 T^{6} + \cdots + 7056 \) Copy content Toggle raw display
$17$ \( T^{7} + 7 T^{6} + \cdots + 1212 \) Copy content Toggle raw display
$19$ \( T^{7} + 2 T^{6} + \cdots - 2304 \) Copy content Toggle raw display
$23$ \( T^{7} - 15 T^{6} + \cdots - 256 \) Copy content Toggle raw display
$29$ \( T^{7} - 9 T^{6} + \cdots + 12096 \) Copy content Toggle raw display
$31$ \( T^{7} + 2 T^{6} + \cdots + 10888 \) Copy content Toggle raw display
$37$ \( T^{7} - 5 T^{6} + \cdots - 114624 \) Copy content Toggle raw display
$41$ \( T^{7} + 33 T^{6} + \cdots - 45248 \) Copy content Toggle raw display
$43$ \( T^{7} - 20 T^{6} + \cdots - 55296 \) Copy content Toggle raw display
$47$ \( T^{7} + 2 T^{6} + \cdots - 536856 \) Copy content Toggle raw display
$53$ \( T^{7} + 13 T^{6} + \cdots - 395712 \) Copy content Toggle raw display
$59$ \( T^{7} - 9 T^{6} + \cdots + 346162 \) Copy content Toggle raw display
$61$ \( T^{7} - 8 T^{6} + \cdots + 14636 \) Copy content Toggle raw display
$67$ \( T^{7} - 29 T^{6} + \cdots - 1778034 \) Copy content Toggle raw display
$71$ \( T^{7} - 424 T^{5} + \cdots - 4460544 \) Copy content Toggle raw display
$73$ \( T^{7} + 37 T^{6} + \cdots - 206064 \) Copy content Toggle raw display
$79$ \( T^{7} - 32 T^{6} + \cdots - 371712 \) Copy content Toggle raw display
$83$ \( T^{7} + 6 T^{6} + \cdots - 263424 \) Copy content Toggle raw display
$89$ \( T^{7} + 17 T^{6} + \cdots + 186084 \) Copy content Toggle raw display
$97$ \( T^{7} - 12 T^{6} + \cdots + 5015808 \) Copy content Toggle raw display
show more
show less