Properties

Label 446.2.a
Level $446$
Weight $2$
Character orbit 446.a
Rep. character $\chi_{446}(1,\cdot)$
Character field $\Q$
Dimension $19$
Newform subspaces $6$
Sturm bound $112$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 446 = 2 \cdot 223 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 446.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 6 \)
Sturm bound: \(112\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\), \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(446))\).

Total New Old
Modular forms 58 19 39
Cusp forms 55 19 36
Eisenstein series 3 0 3

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(223\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(7\)\(1\)\(6\)\(7\)\(1\)\(6\)\(0\)\(0\)\(0\)
\(+\)\(-\)\(-\)\(22\)\(9\)\(13\)\(21\)\(9\)\(12\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(-\)\(15\)\(8\)\(7\)\(14\)\(8\)\(6\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(+\)\(14\)\(1\)\(13\)\(13\)\(1\)\(12\)\(1\)\(0\)\(1\)
Plus space\(+\)\(21\)\(2\)\(19\)\(20\)\(2\)\(18\)\(1\)\(0\)\(1\)
Minus space\(-\)\(37\)\(17\)\(20\)\(35\)\(17\)\(18\)\(2\)\(0\)\(2\)

Trace form

\( 19 q - q^{2} + 2 q^{3} + 19 q^{4} + 2 q^{6} + 4 q^{7} - q^{8} + 27 q^{9} + 2 q^{11} + 2 q^{12} + 4 q^{13} + 4 q^{14} + 16 q^{15} + 19 q^{16} + 2 q^{17} - 13 q^{18} + 12 q^{19} + 12 q^{21} + 6 q^{22} - 4 q^{23}+ \cdots - 58 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(446))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 223
446.2.a.a 446.a 1.a $1$ $3.561$ \(\Q\) None 446.2.a.a \(-1\) \(-3\) \(-4\) \(-4\) $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}-3q^{3}+q^{4}-4q^{5}+3q^{6}-4q^{7}+\cdots\)
446.2.a.b 446.a 1.a $1$ $3.561$ \(\Q\) None 446.2.a.b \(-1\) \(-1\) \(0\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{3}+q^{4}+q^{6}-q^{8}-2q^{9}+\cdots\)
446.2.a.c 446.a 1.a $1$ $3.561$ \(\Q\) None 446.2.a.c \(1\) \(-1\) \(-2\) \(-2\) $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}+q^{4}-2q^{5}-q^{6}-2q^{7}+\cdots\)
446.2.a.d 446.a 1.a $1$ $3.561$ \(\Q\) None 446.2.a.d \(1\) \(2\) \(0\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+2q^{3}+q^{4}+2q^{6}+q^{8}+q^{9}+\cdots\)
446.2.a.e 446.a 1.a $7$ $3.561$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None 446.2.a.e \(7\) \(1\) \(2\) \(6\) $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+\beta _{1}q^{3}+q^{4}-\beta _{3}q^{5}+\beta _{1}q^{6}+\cdots\)
446.2.a.f 446.a 1.a $8$ $3.561$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 446.2.a.f \(-8\) \(4\) \(4\) \(4\) $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+(1-\beta _{1})q^{3}+q^{4}+(1+\beta _{3})q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(446))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(446)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(223))\)\(^{\oplus 2}\)