Properties

Label 444.2.g.a.443.4
Level $444$
Weight $2$
Character 444.443
Analytic conductor $3.545$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [444,2,Mod(443,444)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(444, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("444.443"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 444 = 2^{2} \cdot 3 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 444.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.54535784974\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{3}, \sqrt{-7})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - x^{2} + 2x + 22 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 443.4
Root \(-1.23205 - 1.32288i\) of defining polynomial
Character \(\chi\) \(=\) 444.443
Dual form 444.2.g.a.443.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 1.32288i) q^{2} +1.73205 q^{3} +(-1.50000 - 1.32288i) q^{4} -2.00000 q^{5} +(-0.866025 + 2.29129i) q^{6} -2.64575i q^{7} +(2.50000 - 1.32288i) q^{8} +3.00000 q^{9} +(1.00000 - 2.64575i) q^{10} +1.73205 q^{11} +(-2.59808 - 2.29129i) q^{12} -4.58258i q^{13} +(3.50000 + 1.32288i) q^{14} -3.46410 q^{15} +(0.500000 + 3.96863i) q^{16} +5.00000 q^{17} +(-1.50000 + 3.96863i) q^{18} +1.73205 q^{19} +(3.00000 + 2.64575i) q^{20} -4.58258i q^{21} +(-0.866025 + 2.29129i) q^{22} +2.64575i q^{23} +(4.33013 - 2.29129i) q^{24} -1.00000 q^{25} +(6.06218 + 2.29129i) q^{26} +5.19615 q^{27} +(-3.50000 + 3.96863i) q^{28} +4.00000 q^{29} +(1.73205 - 4.58258i) q^{30} -3.46410 q^{31} +(-5.50000 - 1.32288i) q^{32} +3.00000 q^{33} +(-2.50000 + 6.61438i) q^{34} +5.29150i q^{35} +(-4.50000 - 3.96863i) q^{36} +(4.00000 - 4.58258i) q^{37} +(-0.866025 + 2.29129i) q^{38} -7.93725i q^{39} +(-5.00000 + 2.64575i) q^{40} -9.16515i q^{41} +(6.06218 + 2.29129i) q^{42} -3.46410 q^{43} +(-2.59808 - 2.29129i) q^{44} -6.00000 q^{45} +(-3.50000 - 1.32288i) q^{46} -10.3923 q^{47} +(0.866025 + 6.87386i) q^{48} +(0.500000 - 1.32288i) q^{50} +8.66025 q^{51} +(-6.06218 + 6.87386i) q^{52} +13.7477i q^{53} +(-2.59808 + 6.87386i) q^{54} -3.46410 q^{55} +(-3.50000 - 6.61438i) q^{56} +3.00000 q^{57} +(-2.00000 + 5.29150i) q^{58} +5.29150i q^{59} +(5.19615 + 4.58258i) q^{60} -9.16515i q^{61} +(1.73205 - 4.58258i) q^{62} -7.93725i q^{63} +(4.50000 - 6.61438i) q^{64} +9.16515i q^{65} +(-1.50000 + 3.96863i) q^{66} +10.5830i q^{67} +(-7.50000 - 6.61438i) q^{68} +4.58258i q^{69} +(-7.00000 - 2.64575i) q^{70} -3.46410 q^{71} +(7.50000 - 3.96863i) q^{72} +9.00000 q^{73} +(4.06218 + 7.58279i) q^{74} -1.73205 q^{75} +(-2.59808 - 2.29129i) q^{76} -4.58258i q^{77} +(10.5000 + 3.96863i) q^{78} +13.8564 q^{79} +(-1.00000 - 7.93725i) q^{80} +9.00000 q^{81} +(12.1244 + 4.58258i) q^{82} -8.66025 q^{83} +(-6.06218 + 6.87386i) q^{84} -10.0000 q^{85} +(1.73205 - 4.58258i) q^{86} +6.92820 q^{87} +(4.33013 - 2.29129i) q^{88} -5.00000 q^{89} +(3.00000 - 7.93725i) q^{90} -12.1244 q^{91} +(3.50000 - 3.96863i) q^{92} -6.00000 q^{93} +(5.19615 - 13.7477i) q^{94} -3.46410 q^{95} +(-9.52628 - 2.29129i) q^{96} +5.19615 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} - 6 q^{4} - 8 q^{5} + 10 q^{8} + 12 q^{9} + 4 q^{10} + 14 q^{14} + 2 q^{16} + 20 q^{17} - 6 q^{18} + 12 q^{20} - 4 q^{25} - 14 q^{28} + 16 q^{29} - 22 q^{32} + 12 q^{33} - 10 q^{34} - 18 q^{36}+ \cdots - 24 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/444\mathbb{Z}\right)^\times\).

\(n\) \(149\) \(223\) \(409\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 1.32288i −0.353553 + 0.935414i
\(3\) 1.73205 1.00000
\(4\) −1.50000 1.32288i −0.750000 0.661438i
\(5\) −2.00000 −0.894427 −0.447214 0.894427i \(-0.647584\pi\)
−0.447214 + 0.894427i \(0.647584\pi\)
\(6\) −0.866025 + 2.29129i −0.353553 + 0.935414i
\(7\) 2.64575i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(8\) 2.50000 1.32288i 0.883883 0.467707i
\(9\) 3.00000 1.00000
\(10\) 1.00000 2.64575i 0.316228 0.836660i
\(11\) 1.73205 0.522233 0.261116 0.965307i \(-0.415909\pi\)
0.261116 + 0.965307i \(0.415909\pi\)
\(12\) −2.59808 2.29129i −0.750000 0.661438i
\(13\) 4.58258i 1.27098i −0.772110 0.635489i \(-0.780799\pi\)
0.772110 0.635489i \(-0.219201\pi\)
\(14\) 3.50000 + 1.32288i 0.935414 + 0.353553i
\(15\) −3.46410 −0.894427
\(16\) 0.500000 + 3.96863i 0.125000 + 0.992157i
\(17\) 5.00000 1.21268 0.606339 0.795206i \(-0.292637\pi\)
0.606339 + 0.795206i \(0.292637\pi\)
\(18\) −1.50000 + 3.96863i −0.353553 + 0.935414i
\(19\) 1.73205 0.397360 0.198680 0.980064i \(-0.436335\pi\)
0.198680 + 0.980064i \(0.436335\pi\)
\(20\) 3.00000 + 2.64575i 0.670820 + 0.591608i
\(21\) 4.58258i 1.00000i
\(22\) −0.866025 + 2.29129i −0.184637 + 0.488504i
\(23\) 2.64575i 0.551677i 0.961204 + 0.275839i \(0.0889555\pi\)
−0.961204 + 0.275839i \(0.911044\pi\)
\(24\) 4.33013 2.29129i 0.883883 0.467707i
\(25\) −1.00000 −0.200000
\(26\) 6.06218 + 2.29129i 1.18889 + 0.449359i
\(27\) 5.19615 1.00000
\(28\) −3.50000 + 3.96863i −0.661438 + 0.750000i
\(29\) 4.00000 0.742781 0.371391 0.928477i \(-0.378881\pi\)
0.371391 + 0.928477i \(0.378881\pi\)
\(30\) 1.73205 4.58258i 0.316228 0.836660i
\(31\) −3.46410 −0.622171 −0.311086 0.950382i \(-0.600693\pi\)
−0.311086 + 0.950382i \(0.600693\pi\)
\(32\) −5.50000 1.32288i −0.972272 0.233854i
\(33\) 3.00000 0.522233
\(34\) −2.50000 + 6.61438i −0.428746 + 1.13436i
\(35\) 5.29150i 0.894427i
\(36\) −4.50000 3.96863i −0.750000 0.661438i
\(37\) 4.00000 4.58258i 0.657596 0.753371i
\(38\) −0.866025 + 2.29129i −0.140488 + 0.371696i
\(39\) 7.93725i 1.27098i
\(40\) −5.00000 + 2.64575i −0.790569 + 0.418330i
\(41\) 9.16515i 1.43136i −0.698430 0.715678i \(-0.746118\pi\)
0.698430 0.715678i \(-0.253882\pi\)
\(42\) 6.06218 + 2.29129i 0.935414 + 0.353553i
\(43\) −3.46410 −0.528271 −0.264135 0.964486i \(-0.585087\pi\)
−0.264135 + 0.964486i \(0.585087\pi\)
\(44\) −2.59808 2.29129i −0.391675 0.345425i
\(45\) −6.00000 −0.894427
\(46\) −3.50000 1.32288i −0.516047 0.195047i
\(47\) −10.3923 −1.51587 −0.757937 0.652328i \(-0.773792\pi\)
−0.757937 + 0.652328i \(0.773792\pi\)
\(48\) 0.866025 + 6.87386i 0.125000 + 0.992157i
\(49\) 0 0
\(50\) 0.500000 1.32288i 0.0707107 0.187083i
\(51\) 8.66025 1.21268
\(52\) −6.06218 + 6.87386i −0.840673 + 0.953233i
\(53\) 13.7477i 1.88840i 0.329379 + 0.944198i \(0.393161\pi\)
−0.329379 + 0.944198i \(0.606839\pi\)
\(54\) −2.59808 + 6.87386i −0.353553 + 0.935414i
\(55\) −3.46410 −0.467099
\(56\) −3.50000 6.61438i −0.467707 0.883883i
\(57\) 3.00000 0.397360
\(58\) −2.00000 + 5.29150i −0.262613 + 0.694808i
\(59\) 5.29150i 0.688895i 0.938806 + 0.344447i \(0.111934\pi\)
−0.938806 + 0.344447i \(0.888066\pi\)
\(60\) 5.19615 + 4.58258i 0.670820 + 0.591608i
\(61\) 9.16515i 1.17348i −0.809776 0.586739i \(-0.800412\pi\)
0.809776 0.586739i \(-0.199588\pi\)
\(62\) 1.73205 4.58258i 0.219971 0.581988i
\(63\) 7.93725i 1.00000i
\(64\) 4.50000 6.61438i 0.562500 0.826797i
\(65\) 9.16515i 1.13680i
\(66\) −1.50000 + 3.96863i −0.184637 + 0.488504i
\(67\) 10.5830i 1.29292i 0.762948 + 0.646460i \(0.223751\pi\)
−0.762948 + 0.646460i \(0.776249\pi\)
\(68\) −7.50000 6.61438i −0.909509 0.802111i
\(69\) 4.58258i 0.551677i
\(70\) −7.00000 2.64575i −0.836660 0.316228i
\(71\) −3.46410 −0.411113 −0.205557 0.978645i \(-0.565900\pi\)
−0.205557 + 0.978645i \(0.565900\pi\)
\(72\) 7.50000 3.96863i 0.883883 0.467707i
\(73\) 9.00000 1.05337 0.526685 0.850060i \(-0.323435\pi\)
0.526685 + 0.850060i \(0.323435\pi\)
\(74\) 4.06218 + 7.58279i 0.472219 + 0.881481i
\(75\) −1.73205 −0.200000
\(76\) −2.59808 2.29129i −0.298020 0.262829i
\(77\) 4.58258i 0.522233i
\(78\) 10.5000 + 3.96863i 1.18889 + 0.449359i
\(79\) 13.8564 1.55897 0.779484 0.626422i \(-0.215481\pi\)
0.779484 + 0.626422i \(0.215481\pi\)
\(80\) −1.00000 7.93725i −0.111803 0.887412i
\(81\) 9.00000 1.00000
\(82\) 12.1244 + 4.58258i 1.33891 + 0.506061i
\(83\) −8.66025 −0.950586 −0.475293 0.879827i \(-0.657658\pi\)
−0.475293 + 0.879827i \(0.657658\pi\)
\(84\) −6.06218 + 6.87386i −0.661438 + 0.750000i
\(85\) −10.0000 −1.08465
\(86\) 1.73205 4.58258i 0.186772 0.494152i
\(87\) 6.92820 0.742781
\(88\) 4.33013 2.29129i 0.461593 0.244252i
\(89\) −5.00000 −0.529999 −0.264999 0.964249i \(-0.585372\pi\)
−0.264999 + 0.964249i \(0.585372\pi\)
\(90\) 3.00000 7.93725i 0.316228 0.836660i
\(91\) −12.1244 −1.27098
\(92\) 3.50000 3.96863i 0.364900 0.413758i
\(93\) −6.00000 −0.622171
\(94\) 5.19615 13.7477i 0.535942 1.41797i
\(95\) −3.46410 −0.355409
\(96\) −9.52628 2.29129i −0.972272 0.233854i
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 0 0
\(99\) 5.19615 0.522233
\(100\) 1.50000 + 1.32288i 0.150000 + 0.132288i
\(101\) 9.16515i 0.911967i 0.889988 + 0.455983i \(0.150712\pi\)
−0.889988 + 0.455983i \(0.849288\pi\)
\(102\) −4.33013 + 11.4564i −0.428746 + 1.13436i
\(103\) −13.8564 −1.36531 −0.682656 0.730740i \(-0.739175\pi\)
−0.682656 + 0.730740i \(0.739175\pi\)
\(104\) −6.06218 11.4564i −0.594445 1.12340i
\(105\) 9.16515i 0.894427i
\(106\) −18.1865 6.87386i −1.76643 0.667649i
\(107\) 1.73205 0.167444 0.0837218 0.996489i \(-0.473319\pi\)
0.0837218 + 0.996489i \(0.473319\pi\)
\(108\) −7.79423 6.87386i −0.750000 0.661438i
\(109\) 13.7477i 1.31679i 0.752671 + 0.658397i \(0.228765\pi\)
−0.752671 + 0.658397i \(0.771235\pi\)
\(110\) 1.73205 4.58258i 0.165145 0.436931i
\(111\) 6.92820 7.93725i 0.657596 0.753371i
\(112\) 10.5000 1.32288i 0.992157 0.125000i
\(113\) −14.0000 −1.31701 −0.658505 0.752577i \(-0.728811\pi\)
−0.658505 + 0.752577i \(0.728811\pi\)
\(114\) −1.50000 + 3.96863i −0.140488 + 0.371696i
\(115\) 5.29150i 0.493435i
\(116\) −6.00000 5.29150i −0.557086 0.491304i
\(117\) 13.7477i 1.27098i
\(118\) −7.00000 2.64575i −0.644402 0.243561i
\(119\) 13.2288i 1.21268i
\(120\) −8.66025 + 4.58258i −0.790569 + 0.418330i
\(121\) −8.00000 −0.727273
\(122\) 12.1244 + 4.58258i 1.09769 + 0.414887i
\(123\) 15.8745i 1.43136i
\(124\) 5.19615 + 4.58258i 0.466628 + 0.411527i
\(125\) 12.0000 1.07331
\(126\) 10.5000 + 3.96863i 0.935414 + 0.353553i
\(127\) 7.93725i 0.704317i −0.935940 0.352159i \(-0.885448\pi\)
0.935940 0.352159i \(-0.114552\pi\)
\(128\) 6.50000 + 9.26013i 0.574524 + 0.818488i
\(129\) −6.00000 −0.528271
\(130\) −12.1244 4.58258i −1.06338 0.401918i
\(131\) 5.29150i 0.462321i 0.972916 + 0.231160i \(0.0742522\pi\)
−0.972916 + 0.231160i \(0.925748\pi\)
\(132\) −4.50000 3.96863i −0.391675 0.345425i
\(133\) 4.58258i 0.397360i
\(134\) −14.0000 5.29150i −1.20942 0.457116i
\(135\) −10.3923 −0.894427
\(136\) 12.5000 6.61438i 1.07187 0.567178i
\(137\) 9.16515i 0.783032i −0.920171 0.391516i \(-0.871951\pi\)
0.920171 0.391516i \(-0.128049\pi\)
\(138\) −6.06218 2.29129i −0.516047 0.195047i
\(139\) 5.29150i 0.448819i 0.974495 + 0.224410i \(0.0720454\pi\)
−0.974495 + 0.224410i \(0.927955\pi\)
\(140\) 7.00000 7.93725i 0.591608 0.670820i
\(141\) −18.0000 −1.51587
\(142\) 1.73205 4.58258i 0.145350 0.384561i
\(143\) 7.93725i 0.663747i
\(144\) 1.50000 + 11.9059i 0.125000 + 0.992157i
\(145\) −8.00000 −0.664364
\(146\) −4.50000 + 11.9059i −0.372423 + 0.985338i
\(147\) 0 0
\(148\) −12.0622 + 1.58236i −0.991505 + 0.130069i
\(149\) 9.16515i 0.750838i −0.926855 0.375419i \(-0.877499\pi\)
0.926855 0.375419i \(-0.122501\pi\)
\(150\) 0.866025 2.29129i 0.0707107 0.187083i
\(151\) 7.93725i 0.645925i 0.946412 + 0.322962i \(0.104679\pi\)
−0.946412 + 0.322962i \(0.895321\pi\)
\(152\) 4.33013 2.29129i 0.351220 0.185848i
\(153\) 15.0000 1.21268
\(154\) 6.06218 + 2.29129i 0.488504 + 0.184637i
\(155\) 6.92820 0.556487
\(156\) −10.5000 + 11.9059i −0.840673 + 0.953233i
\(157\) 12.0000 0.957704 0.478852 0.877896i \(-0.341053\pi\)
0.478852 + 0.877896i \(0.341053\pi\)
\(158\) −6.92820 + 18.3303i −0.551178 + 1.45828i
\(159\) 23.8118i 1.88840i
\(160\) 11.0000 + 2.64575i 0.869626 + 0.209165i
\(161\) 7.00000 0.551677
\(162\) −4.50000 + 11.9059i −0.353553 + 0.935414i
\(163\) 8.66025 0.678323 0.339162 0.940728i \(-0.389857\pi\)
0.339162 + 0.940728i \(0.389857\pi\)
\(164\) −12.1244 + 13.7477i −0.946753 + 1.07352i
\(165\) −6.00000 −0.467099
\(166\) 4.33013 11.4564i 0.336083 0.889192i
\(167\) 2.64575i 0.204734i 0.994747 + 0.102367i \(0.0326417\pi\)
−0.994747 + 0.102367i \(0.967358\pi\)
\(168\) −6.06218 11.4564i −0.467707 0.883883i
\(169\) −8.00000 −0.615385
\(170\) 5.00000 13.2288i 0.383482 1.01460i
\(171\) 5.19615 0.397360
\(172\) 5.19615 + 4.58258i 0.396203 + 0.349418i
\(173\) 4.58258i 0.348407i 0.984710 + 0.174203i \(0.0557350\pi\)
−0.984710 + 0.174203i \(0.944265\pi\)
\(174\) −3.46410 + 9.16515i −0.262613 + 0.694808i
\(175\) 2.64575i 0.200000i
\(176\) 0.866025 + 6.87386i 0.0652791 + 0.518137i
\(177\) 9.16515i 0.688895i
\(178\) 2.50000 6.61438i 0.187383 0.495769i
\(179\) 5.29150i 0.395505i 0.980252 + 0.197753i \(0.0633643\pi\)
−0.980252 + 0.197753i \(0.936636\pi\)
\(180\) 9.00000 + 7.93725i 0.670820 + 0.591608i
\(181\) −6.00000 −0.445976 −0.222988 0.974821i \(-0.571581\pi\)
−0.222988 + 0.974821i \(0.571581\pi\)
\(182\) 6.06218 16.0390i 0.449359 1.18889i
\(183\) 15.8745i 1.17348i
\(184\) 3.50000 + 6.61438i 0.258023 + 0.487618i
\(185\) −8.00000 + 9.16515i −0.588172 + 0.673835i
\(186\) 3.00000 7.93725i 0.219971 0.581988i
\(187\) 8.66025 0.633300
\(188\) 15.5885 + 13.7477i 1.13691 + 1.00266i
\(189\) 13.7477i 1.00000i
\(190\) 1.73205 4.58258i 0.125656 0.332455i
\(191\) 18.5203i 1.34008i 0.742325 + 0.670039i \(0.233723\pi\)
−0.742325 + 0.670039i \(0.766277\pi\)
\(192\) 7.79423 11.4564i 0.562500 0.826797i
\(193\) 18.3303i 1.31944i 0.751510 + 0.659722i \(0.229326\pi\)
−0.751510 + 0.659722i \(0.770674\pi\)
\(194\) 0 0
\(195\) 15.8745i 1.13680i
\(196\) 0 0
\(197\) 4.58258i 0.326495i −0.986585 0.163247i \(-0.947803\pi\)
0.986585 0.163247i \(-0.0521969\pi\)
\(198\) −2.59808 + 6.87386i −0.184637 + 0.488504i
\(199\) 24.2487 1.71895 0.859473 0.511182i \(-0.170792\pi\)
0.859473 + 0.511182i \(0.170792\pi\)
\(200\) −2.50000 + 1.32288i −0.176777 + 0.0935414i
\(201\) 18.3303i 1.29292i
\(202\) −12.1244 4.58258i −0.853067 0.322429i
\(203\) 10.5830i 0.742781i
\(204\) −12.9904 11.4564i −0.909509 0.802111i
\(205\) 18.3303i 1.28024i
\(206\) 6.92820 18.3303i 0.482711 1.27713i
\(207\) 7.93725i 0.551677i
\(208\) 18.1865 2.29129i 1.26101 0.158872i
\(209\) 3.00000 0.207514
\(210\) −12.1244 4.58258i −0.836660 0.316228i
\(211\) 15.8745i 1.09285i 0.837509 + 0.546423i \(0.184011\pi\)
−0.837509 + 0.546423i \(0.815989\pi\)
\(212\) 18.1865 20.6216i 1.24906 1.41630i
\(213\) −6.00000 −0.411113
\(214\) −0.866025 + 2.29129i −0.0592003 + 0.156629i
\(215\) 6.92820 0.472500
\(216\) 12.9904 6.87386i 0.883883 0.467707i
\(217\) 9.16515i 0.622171i
\(218\) −18.1865 6.87386i −1.23175 0.465557i
\(219\) 15.5885 1.05337
\(220\) 5.19615 + 4.58258i 0.350325 + 0.308957i
\(221\) 22.9129i 1.54129i
\(222\) 7.03590 + 13.1338i 0.472219 + 0.881481i
\(223\) 15.8745i 1.06304i −0.847047 0.531518i \(-0.821622\pi\)
0.847047 0.531518i \(-0.178378\pi\)
\(224\) −3.50000 + 14.5516i −0.233854 + 0.972272i
\(225\) −3.00000 −0.200000
\(226\) 7.00000 18.5203i 0.465633 1.23195i
\(227\) 21.1660i 1.40484i 0.711764 + 0.702419i \(0.247897\pi\)
−0.711764 + 0.702419i \(0.752103\pi\)
\(228\) −4.50000 3.96863i −0.298020 0.262829i
\(229\) −10.0000 −0.660819 −0.330409 0.943838i \(-0.607187\pi\)
−0.330409 + 0.943838i \(0.607187\pi\)
\(230\) 7.00000 + 2.64575i 0.461566 + 0.174456i
\(231\) 7.93725i 0.522233i
\(232\) 10.0000 5.29150i 0.656532 0.347404i
\(233\) 18.3303i 1.20086i −0.799678 0.600429i \(-0.794996\pi\)
0.799678 0.600429i \(-0.205004\pi\)
\(234\) 18.1865 + 6.87386i 1.18889 + 0.449359i
\(235\) 20.7846 1.35584
\(236\) 7.00000 7.93725i 0.455661 0.516671i
\(237\) 24.0000 1.55897
\(238\) 17.5000 + 6.61438i 1.13436 + 0.428746i
\(239\) 5.29150i 0.342279i −0.985247 0.171139i \(-0.945255\pi\)
0.985247 0.171139i \(-0.0547449\pi\)
\(240\) −1.73205 13.7477i −0.111803 0.887412i
\(241\) 9.16515i 0.590379i 0.955439 + 0.295190i \(0.0953828\pi\)
−0.955439 + 0.295190i \(0.904617\pi\)
\(242\) 4.00000 10.5830i 0.257130 0.680301i
\(243\) 15.5885 1.00000
\(244\) −12.1244 + 13.7477i −0.776182 + 0.880108i
\(245\) 0 0
\(246\) 21.0000 + 7.93725i 1.33891 + 0.506061i
\(247\) 7.93725i 0.505035i
\(248\) −8.66025 + 4.58258i −0.549927 + 0.290994i
\(249\) −15.0000 −0.950586
\(250\) −6.00000 + 15.8745i −0.379473 + 1.00399i
\(251\) 21.1660i 1.33599i 0.744167 + 0.667993i \(0.232847\pi\)
−0.744167 + 0.667993i \(0.767153\pi\)
\(252\) −10.5000 + 11.9059i −0.661438 + 0.750000i
\(253\) 4.58258i 0.288104i
\(254\) 10.5000 + 3.96863i 0.658829 + 0.249014i
\(255\) −17.3205 −1.08465
\(256\) −15.5000 + 3.96863i −0.968750 + 0.248039i
\(257\) 5.00000 0.311891 0.155946 0.987766i \(-0.450158\pi\)
0.155946 + 0.987766i \(0.450158\pi\)
\(258\) 3.00000 7.93725i 0.186772 0.494152i
\(259\) −12.1244 10.5830i −0.753371 0.657596i
\(260\) 12.1244 13.7477i 0.751921 0.852598i
\(261\) 12.0000 0.742781
\(262\) −7.00000 2.64575i −0.432461 0.163455i
\(263\) −13.8564 −0.854423 −0.427211 0.904152i \(-0.640504\pi\)
−0.427211 + 0.904152i \(0.640504\pi\)
\(264\) 7.50000 3.96863i 0.461593 0.244252i
\(265\) 27.4955i 1.68903i
\(266\) 6.06218 + 2.29129i 0.371696 + 0.140488i
\(267\) −8.66025 −0.529999
\(268\) 14.0000 15.8745i 0.855186 0.969690i
\(269\) 22.9129i 1.39702i 0.715599 + 0.698511i \(0.246154\pi\)
−0.715599 + 0.698511i \(0.753846\pi\)
\(270\) 5.19615 13.7477i 0.316228 0.836660i
\(271\) 26.4575i 1.60718i 0.595184 + 0.803590i \(0.297079\pi\)
−0.595184 + 0.803590i \(0.702921\pi\)
\(272\) 2.50000 + 19.8431i 0.151585 + 1.20317i
\(273\) −21.0000 −1.27098
\(274\) 12.1244 + 4.58258i 0.732459 + 0.276844i
\(275\) −1.73205 −0.104447
\(276\) 6.06218 6.87386i 0.364900 0.413758i
\(277\) 4.58258i 0.275340i 0.990478 + 0.137670i \(0.0439614\pi\)
−0.990478 + 0.137670i \(0.956039\pi\)
\(278\) −7.00000 2.64575i −0.419832 0.158682i
\(279\) −10.3923 −0.622171
\(280\) 7.00000 + 13.2288i 0.418330 + 0.790569i
\(281\) 11.0000 0.656205 0.328102 0.944642i \(-0.393591\pi\)
0.328102 + 0.944642i \(0.393591\pi\)
\(282\) 9.00000 23.8118i 0.535942 1.41797i
\(283\) −29.4449 −1.75032 −0.875158 0.483838i \(-0.839242\pi\)
−0.875158 + 0.483838i \(0.839242\pi\)
\(284\) 5.19615 + 4.58258i 0.308335 + 0.271926i
\(285\) −6.00000 −0.355409
\(286\) 10.5000 + 3.96863i 0.620878 + 0.234670i
\(287\) −24.2487 −1.43136
\(288\) −16.5000 3.96863i −0.972272 0.233854i
\(289\) 8.00000 0.470588
\(290\) 4.00000 10.5830i 0.234888 0.621455i
\(291\) 0 0
\(292\) −13.5000 11.9059i −0.790028 0.696739i
\(293\) 4.58258i 0.267717i −0.991000 0.133858i \(-0.957263\pi\)
0.991000 0.133858i \(-0.0427368\pi\)
\(294\) 0 0
\(295\) 10.5830i 0.616166i
\(296\) 3.93782 16.7479i 0.228881 0.973454i
\(297\) 9.00000 0.522233
\(298\) 12.1244 + 4.58258i 0.702345 + 0.265461i
\(299\) 12.1244 0.701170
\(300\) 2.59808 + 2.29129i 0.150000 + 0.132288i
\(301\) 9.16515i 0.528271i
\(302\) −10.5000 3.96863i −0.604207 0.228369i
\(303\) 15.8745i 0.911967i
\(304\) 0.866025 + 6.87386i 0.0496700 + 0.394243i
\(305\) 18.3303i 1.04959i
\(306\) −7.50000 + 19.8431i −0.428746 + 1.13436i
\(307\) 31.7490i 1.81201i −0.423265 0.906006i \(-0.639116\pi\)
0.423265 0.906006i \(-0.360884\pi\)
\(308\) −6.06218 + 6.87386i −0.345425 + 0.391675i
\(309\) −24.0000 −1.36531
\(310\) −3.46410 + 9.16515i −0.196748 + 0.520546i
\(311\) 5.29150i 0.300054i 0.988682 + 0.150027i \(0.0479360\pi\)
−0.988682 + 0.150027i \(0.952064\pi\)
\(312\) −10.5000 19.8431i −0.594445 1.12340i
\(313\) 27.4955i 1.55413i −0.629417 0.777067i \(-0.716706\pi\)
0.629417 0.777067i \(-0.283294\pi\)
\(314\) −6.00000 + 15.8745i −0.338600 + 0.895850i
\(315\) 15.8745i 0.894427i
\(316\) −20.7846 18.3303i −1.16923 1.03116i
\(317\) 9.16515i 0.514766i 0.966309 + 0.257383i \(0.0828602\pi\)
−0.966309 + 0.257383i \(0.917140\pi\)
\(318\) −31.5000 11.9059i −1.76643 0.667649i
\(319\) 6.92820 0.387905
\(320\) −9.00000 + 13.2288i −0.503115 + 0.739510i
\(321\) 3.00000 0.167444
\(322\) −3.50000 + 9.26013i −0.195047 + 0.516047i
\(323\) 8.66025 0.481869
\(324\) −13.5000 11.9059i −0.750000 0.661438i
\(325\) 4.58258i 0.254196i
\(326\) −4.33013 + 11.4564i −0.239824 + 0.634513i
\(327\) 23.8118i 1.31679i
\(328\) −12.1244 22.9129i −0.669456 1.26515i
\(329\) 27.4955i 1.51587i
\(330\) 3.00000 7.93725i 0.165145 0.436931i
\(331\) 10.3923 0.571213 0.285606 0.958347i \(-0.407805\pi\)
0.285606 + 0.958347i \(0.407805\pi\)
\(332\) 12.9904 + 11.4564i 0.712940 + 0.628754i
\(333\) 12.0000 13.7477i 0.657596 0.753371i
\(334\) −3.50000 1.32288i −0.191511 0.0723845i
\(335\) 21.1660i 1.15642i
\(336\) 18.1865 2.29129i 0.992157 0.125000i
\(337\) 19.0000 1.03500 0.517498 0.855684i \(-0.326864\pi\)
0.517498 + 0.855684i \(0.326864\pi\)
\(338\) 4.00000 10.5830i 0.217571 0.575640i
\(339\) −24.2487 −1.31701
\(340\) 15.0000 + 13.2288i 0.813489 + 0.717430i
\(341\) −6.00000 −0.324918
\(342\) −2.59808 + 6.87386i −0.140488 + 0.371696i
\(343\) 18.5203i 1.00000i
\(344\) −8.66025 + 4.58258i −0.466930 + 0.247076i
\(345\) 9.16515i 0.493435i
\(346\) −6.06218 2.29129i −0.325905 0.123180i
\(347\) 5.29150i 0.284063i −0.989862 0.142031i \(-0.954637\pi\)
0.989862 0.142031i \(-0.0453634\pi\)
\(348\) −10.3923 9.16515i −0.557086 0.491304i
\(349\) 18.0000 0.963518 0.481759 0.876304i \(-0.339998\pi\)
0.481759 + 0.876304i \(0.339998\pi\)
\(350\) −3.50000 1.32288i −0.187083 0.0707107i
\(351\) 23.8118i 1.27098i
\(352\) −9.52628 2.29129i −0.507752 0.122126i
\(353\) 2.00000 0.106449 0.0532246 0.998583i \(-0.483050\pi\)
0.0532246 + 0.998583i \(0.483050\pi\)
\(354\) −12.1244 4.58258i −0.644402 0.243561i
\(355\) 6.92820 0.367711
\(356\) 7.50000 + 6.61438i 0.397499 + 0.350561i
\(357\) 22.9129i 1.21268i
\(358\) −7.00000 2.64575i −0.369961 0.139832i
\(359\) −27.7128 −1.46263 −0.731313 0.682042i \(-0.761092\pi\)
−0.731313 + 0.682042i \(0.761092\pi\)
\(360\) −15.0000 + 7.93725i −0.790569 + 0.418330i
\(361\) −16.0000 −0.842105
\(362\) 3.00000 7.93725i 0.157676 0.417173i
\(363\) −13.8564 −0.727273
\(364\) 18.1865 + 16.0390i 0.953233 + 0.840673i
\(365\) −18.0000 −0.942163
\(366\) 21.0000 + 7.93725i 1.09769 + 0.414887i
\(367\) 23.8118i 1.24296i 0.783429 + 0.621482i \(0.213469\pi\)
−0.783429 + 0.621482i \(0.786531\pi\)
\(368\) −10.5000 + 1.32288i −0.547350 + 0.0689597i
\(369\) 27.4955i 1.43136i
\(370\) −8.12436 15.1656i −0.422365 0.788421i
\(371\) 36.3731 1.88840
\(372\) 9.00000 + 7.93725i 0.466628 + 0.411527i
\(373\) −12.0000 −0.621336 −0.310668 0.950518i \(-0.600553\pi\)
−0.310668 + 0.950518i \(0.600553\pi\)
\(374\) −4.33013 + 11.4564i −0.223906 + 0.592398i
\(375\) 20.7846 1.07331
\(376\) −25.9808 + 13.7477i −1.33986 + 0.708985i
\(377\) 18.3303i 0.944059i
\(378\) 18.1865 + 6.87386i 0.935414 + 0.353553i
\(379\) 10.5830i 0.543612i −0.962352 0.271806i \(-0.912379\pi\)
0.962352 0.271806i \(-0.0876210\pi\)
\(380\) 5.19615 + 4.58258i 0.266557 + 0.235081i
\(381\) 13.7477i 0.704317i
\(382\) −24.5000 9.26013i −1.25353 0.473789i
\(383\) 34.3948i 1.75749i −0.477291 0.878745i \(-0.658381\pi\)
0.477291 0.878745i \(-0.341619\pi\)
\(384\) 11.2583 + 16.0390i 0.574524 + 0.818488i
\(385\) 9.16515i 0.467099i
\(386\) −24.2487 9.16515i −1.23423 0.466494i
\(387\) −10.3923 −0.528271
\(388\) 0 0
\(389\) 32.0000 1.62246 0.811232 0.584724i \(-0.198797\pi\)
0.811232 + 0.584724i \(0.198797\pi\)
\(390\) −21.0000 7.93725i −1.06338 0.401918i
\(391\) 13.2288i 0.669007i
\(392\) 0 0
\(393\) 9.16515i 0.462321i
\(394\) 6.06218 + 2.29129i 0.305408 + 0.115433i
\(395\) −27.7128 −1.39438
\(396\) −7.79423 6.87386i −0.391675 0.345425i
\(397\) 30.0000 1.50566 0.752828 0.658217i \(-0.228689\pi\)
0.752828 + 0.658217i \(0.228689\pi\)
\(398\) −12.1244 + 32.0780i −0.607739 + 1.60793i
\(399\) 7.93725i 0.397360i
\(400\) −0.500000 3.96863i −0.0250000 0.198431i
\(401\) 13.0000 0.649189 0.324595 0.945853i \(-0.394772\pi\)
0.324595 + 0.945853i \(0.394772\pi\)
\(402\) −24.2487 9.16515i −1.20942 0.457116i
\(403\) 15.8745i 0.790766i
\(404\) 12.1244 13.7477i 0.603209 0.683975i
\(405\) −18.0000 −0.894427
\(406\) 14.0000 + 5.29150i 0.694808 + 0.262613i
\(407\) 6.92820 7.93725i 0.343418 0.393435i
\(408\) 21.6506 11.4564i 1.07187 0.567178i
\(409\) 27.4955i 1.35956i −0.733415 0.679781i \(-0.762075\pi\)
0.733415 0.679781i \(-0.237925\pi\)
\(410\) −24.2487 9.16515i −1.19756 0.452635i
\(411\) 15.8745i 0.783032i
\(412\) 20.7846 + 18.3303i 1.02398 + 0.903069i
\(413\) 14.0000 0.688895
\(414\) −10.5000 3.96863i −0.516047 0.195047i
\(415\) 17.3205 0.850230
\(416\) −6.06218 + 25.2042i −0.297223 + 1.23574i
\(417\) 9.16515i 0.448819i
\(418\) −1.50000 + 3.96863i −0.0733674 + 0.194112i
\(419\) 39.8372 1.94617 0.973087 0.230440i \(-0.0740166\pi\)
0.973087 + 0.230440i \(0.0740166\pi\)
\(420\) 12.1244 13.7477i 0.591608 0.670820i
\(421\) 9.16515i 0.446682i 0.974740 + 0.223341i \(0.0716964\pi\)
−0.974740 + 0.223341i \(0.928304\pi\)
\(422\) −21.0000 7.93725i −1.02226 0.386379i
\(423\) −31.1769 −1.51587
\(424\) 18.1865 + 34.3693i 0.883216 + 1.66912i
\(425\) −5.00000 −0.242536
\(426\) 3.00000 7.93725i 0.145350 0.384561i
\(427\) −24.2487 −1.17348
\(428\) −2.59808 2.29129i −0.125583 0.110754i
\(429\) 13.7477i 0.663747i
\(430\) −3.46410 + 9.16515i −0.167054 + 0.441983i
\(431\) 34.3948i 1.65674i −0.560183 0.828369i \(-0.689269\pi\)
0.560183 0.828369i \(-0.310731\pi\)
\(432\) 2.59808 + 20.6216i 0.125000 + 0.992157i
\(433\) 3.00000 0.144171 0.0720854 0.997398i \(-0.477035\pi\)
0.0720854 + 0.997398i \(0.477035\pi\)
\(434\) −12.1244 4.58258i −0.581988 0.219971i
\(435\) −13.8564 −0.664364
\(436\) 18.1865 20.6216i 0.870977 0.987595i
\(437\) 4.58258i 0.219214i
\(438\) −7.79423 + 20.6216i −0.372423 + 0.985338i
\(439\) −10.3923 −0.495998 −0.247999 0.968760i \(-0.579773\pi\)
−0.247999 + 0.968760i \(0.579773\pi\)
\(440\) −8.66025 + 4.58258i −0.412861 + 0.218466i
\(441\) 0 0
\(442\) 30.3109 + 11.4564i 1.44174 + 0.544927i
\(443\) 3.46410 0.164584 0.0822922 0.996608i \(-0.473776\pi\)
0.0822922 + 0.996608i \(0.473776\pi\)
\(444\) −20.8923 + 2.74073i −0.991505 + 0.130069i
\(445\) 10.0000 0.474045
\(446\) 21.0000 + 7.93725i 0.994379 + 0.375840i
\(447\) 15.8745i 0.750838i
\(448\) −17.5000 11.9059i −0.826797 0.562500i
\(449\) −38.0000 −1.79333 −0.896665 0.442709i \(-0.854018\pi\)
−0.896665 + 0.442709i \(0.854018\pi\)
\(450\) 1.50000 3.96863i 0.0707107 0.187083i
\(451\) 15.8745i 0.747501i
\(452\) 21.0000 + 18.5203i 0.987757 + 0.871120i
\(453\) 13.7477i 0.645925i
\(454\) −28.0000 10.5830i −1.31411 0.496685i
\(455\) 24.2487 1.13680
\(456\) 7.50000 3.96863i 0.351220 0.185848i
\(457\) 18.3303i 0.857455i 0.903434 + 0.428728i \(0.141038\pi\)
−0.903434 + 0.428728i \(0.858962\pi\)
\(458\) 5.00000 13.2288i 0.233635 0.618139i
\(459\) 25.9808 1.21268
\(460\) −7.00000 + 7.93725i −0.326377 + 0.370076i
\(461\) −10.0000 −0.465746 −0.232873 0.972507i \(-0.574813\pi\)
−0.232873 + 0.972507i \(0.574813\pi\)
\(462\) 10.5000 + 3.96863i 0.488504 + 0.184637i
\(463\) 6.92820 0.321981 0.160990 0.986956i \(-0.448531\pi\)
0.160990 + 0.986956i \(0.448531\pi\)
\(464\) 2.00000 + 15.8745i 0.0928477 + 0.736956i
\(465\) 12.0000 0.556487
\(466\) 24.2487 + 9.16515i 1.12330 + 0.424567i
\(467\) 37.0405i 1.71403i 0.515291 + 0.857015i \(0.327684\pi\)
−0.515291 + 0.857015i \(0.672316\pi\)
\(468\) −18.1865 + 20.6216i −0.840673 + 0.953233i
\(469\) 28.0000 1.29292
\(470\) −10.3923 + 27.4955i −0.479361 + 1.26827i
\(471\) 20.7846 0.957704
\(472\) 7.00000 + 13.2288i 0.322201 + 0.608903i
\(473\) −6.00000 −0.275880
\(474\) −12.0000 + 31.7490i −0.551178 + 1.45828i
\(475\) −1.73205 −0.0794719
\(476\) −17.5000 + 19.8431i −0.802111 + 0.909509i
\(477\) 41.2432i 1.88840i
\(478\) 7.00000 + 2.64575i 0.320173 + 0.121014i
\(479\) 13.2288i 0.604437i −0.953239 0.302219i \(-0.902273\pi\)
0.953239 0.302219i \(-0.0977273\pi\)
\(480\) 19.0526 + 4.58258i 0.869626 + 0.209165i
\(481\) −21.0000 18.3303i −0.957518 0.835790i
\(482\) −12.1244 4.58258i −0.552249 0.208731i
\(483\) 12.1244 0.551677
\(484\) 12.0000 + 10.5830i 0.545455 + 0.481046i
\(485\) 0 0
\(486\) −7.79423 + 20.6216i −0.353553 + 0.935414i
\(487\) −34.6410 −1.56973 −0.784867 0.619664i \(-0.787269\pi\)
−0.784867 + 0.619664i \(0.787269\pi\)
\(488\) −12.1244 22.9129i −0.548844 1.03722i
\(489\) 15.0000 0.678323
\(490\) 0 0
\(491\) −19.0526 −0.859830 −0.429915 0.902869i \(-0.641456\pi\)
−0.429915 + 0.902869i \(0.641456\pi\)
\(492\) −21.0000 + 23.8118i −0.946753 + 1.07352i
\(493\) 20.0000 0.900755
\(494\) 10.5000 + 3.96863i 0.472417 + 0.178557i
\(495\) −10.3923 −0.467099
\(496\) −1.73205 13.7477i −0.0777714 0.617291i
\(497\) 9.16515i 0.411113i
\(498\) 7.50000 19.8431i 0.336083 0.889192i
\(499\) 1.73205 0.0775372 0.0387686 0.999248i \(-0.487656\pi\)
0.0387686 + 0.999248i \(0.487656\pi\)
\(500\) −18.0000 15.8745i −0.804984 0.709930i
\(501\) 4.58258i 0.204734i
\(502\) −28.0000 10.5830i −1.24970 0.472343i
\(503\) 5.29150i 0.235936i 0.993017 + 0.117968i \(0.0376381\pi\)
−0.993017 + 0.117968i \(0.962362\pi\)
\(504\) −10.5000 19.8431i −0.467707 0.883883i
\(505\) 18.3303i 0.815688i
\(506\) −6.06218 2.29129i −0.269497 0.101860i
\(507\) −13.8564 −0.615385
\(508\) −10.5000 + 11.9059i −0.465862 + 0.528238i
\(509\) 13.7477i 0.609357i −0.952455 0.304679i \(-0.901451\pi\)
0.952455 0.304679i \(-0.0985491\pi\)
\(510\) 8.66025 22.9129i 0.383482 1.01460i
\(511\) 23.8118i 1.05337i
\(512\) 2.50000 22.4889i 0.110485 0.993878i
\(513\) 9.00000 0.397360
\(514\) −2.50000 + 6.61438i −0.110270 + 0.291748i
\(515\) 27.7128 1.22117
\(516\) 9.00000 + 7.93725i 0.396203 + 0.349418i
\(517\) −18.0000 −0.791639
\(518\) 20.0622 10.7475i 0.881481 0.472219i
\(519\) 7.93725i 0.348407i
\(520\) 12.1244 + 22.9129i 0.531688 + 1.00480i
\(521\) 27.4955i 1.20460i −0.798271 0.602299i \(-0.794252\pi\)
0.798271 0.602299i \(-0.205748\pi\)
\(522\) −6.00000 + 15.8745i −0.262613 + 0.694808i
\(523\) −10.3923 −0.454424 −0.227212 0.973845i \(-0.572961\pi\)
−0.227212 + 0.973845i \(0.572961\pi\)
\(524\) 7.00000 7.93725i 0.305796 0.346741i
\(525\) 4.58258i 0.200000i
\(526\) 6.92820 18.3303i 0.302084 0.799239i
\(527\) −17.3205 −0.754493
\(528\) 1.50000 + 11.9059i 0.0652791 + 0.518137i
\(529\) 16.0000 0.695652
\(530\) 36.3731 + 13.7477i 1.57995 + 0.597163i
\(531\) 15.8745i 0.688895i
\(532\) −6.06218 + 6.87386i −0.262829 + 0.298020i
\(533\) −42.0000 −1.81922
\(534\) 4.33013 11.4564i 0.187383 0.495769i
\(535\) −3.46410 −0.149766
\(536\) 14.0000 + 26.4575i 0.604708 + 1.14279i
\(537\) 9.16515i 0.395505i
\(538\) −30.3109 11.4564i −1.30680 0.493922i
\(539\) 0 0
\(540\) 15.5885 + 13.7477i 0.670820 + 0.591608i
\(541\) 32.0780i 1.37914i 0.724218 + 0.689571i \(0.242201\pi\)
−0.724218 + 0.689571i \(0.757799\pi\)
\(542\) −35.0000 13.2288i −1.50338 0.568224i
\(543\) −10.3923 −0.445976
\(544\) −27.5000 6.61438i −1.17905 0.283589i
\(545\) 27.4955i 1.17778i
\(546\) 10.5000 27.7804i 0.449359 1.18889i
\(547\) 43.3013 1.85143 0.925714 0.378224i \(-0.123465\pi\)
0.925714 + 0.378224i \(0.123465\pi\)
\(548\) −12.1244 + 13.7477i −0.517927 + 0.587274i
\(549\) 27.4955i 1.17348i
\(550\) 0.866025 2.29129i 0.0369274 0.0977008i
\(551\) 6.92820 0.295151
\(552\) 6.06218 + 11.4564i 0.258023 + 0.487618i
\(553\) 36.6606i 1.55897i
\(554\) −6.06218 2.29129i −0.257557 0.0973475i
\(555\) −13.8564 + 15.8745i −0.588172 + 0.673835i
\(556\) 7.00000 7.93725i 0.296866 0.336615i
\(557\) −28.0000 −1.18640 −0.593199 0.805056i \(-0.702135\pi\)
−0.593199 + 0.805056i \(0.702135\pi\)
\(558\) 5.19615 13.7477i 0.219971 0.581988i
\(559\) 15.8745i 0.671420i
\(560\) −21.0000 + 2.64575i −0.887412 + 0.111803i
\(561\) 15.0000 0.633300
\(562\) −5.50000 + 14.5516i −0.232003 + 0.613824i
\(563\) 37.0405i 1.56107i −0.625111 0.780536i \(-0.714946\pi\)
0.625111 0.780536i \(-0.285054\pi\)
\(564\) 27.0000 + 23.8118i 1.13691 + 1.00266i
\(565\) 28.0000 1.17797
\(566\) 14.7224 38.9519i 0.618830 1.63727i
\(567\) 23.8118i 1.00000i
\(568\) −8.66025 + 4.58258i −0.363376 + 0.192281i
\(569\) 7.00000 0.293455 0.146728 0.989177i \(-0.453126\pi\)
0.146728 + 0.989177i \(0.453126\pi\)
\(570\) 3.00000 7.93725i 0.125656 0.332455i
\(571\) 5.29150i 0.221442i 0.993852 + 0.110721i \(0.0353161\pi\)
−0.993852 + 0.110721i \(0.964684\pi\)
\(572\) −10.5000 + 11.9059i −0.439027 + 0.497810i
\(573\) 32.0780i 1.34008i
\(574\) 12.1244 32.0780i 0.506061 1.33891i
\(575\) 2.64575i 0.110335i
\(576\) 13.5000 19.8431i 0.562500 0.826797i
\(577\) 45.8258i 1.90775i −0.300202 0.953876i \(-0.597054\pi\)
0.300202 0.953876i \(-0.402946\pi\)
\(578\) −4.00000 + 10.5830i −0.166378 + 0.440195i
\(579\) 31.7490i 1.31944i
\(580\) 12.0000 + 10.5830i 0.498273 + 0.439435i
\(581\) 22.9129i 0.950586i
\(582\) 0 0
\(583\) 23.8118i 0.986182i
\(584\) 22.5000 11.9059i 0.931057 0.492669i
\(585\) 27.4955i 1.13680i
\(586\) 6.06218 + 2.29129i 0.250426 + 0.0946522i
\(587\) 42.3320i 1.74723i −0.486618 0.873615i \(-0.661770\pi\)
0.486618 0.873615i \(-0.338230\pi\)
\(588\) 0 0
\(589\) −6.00000 −0.247226
\(590\) 14.0000 + 5.29150i 0.576371 + 0.217848i
\(591\) 7.93725i 0.326495i
\(592\) 20.1865 + 13.5832i 0.829661 + 0.558267i
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) −4.50000 + 11.9059i −0.184637 + 0.488504i
\(595\) 26.4575i 1.08465i
\(596\) −12.1244 + 13.7477i −0.496633 + 0.563129i
\(597\) 42.0000 1.71895
\(598\) −6.06218 + 16.0390i −0.247901 + 0.655884i
\(599\) 17.3205 0.707697 0.353848 0.935303i \(-0.384873\pi\)
0.353848 + 0.935303i \(0.384873\pi\)
\(600\) −4.33013 + 2.29129i −0.176777 + 0.0935414i
\(601\) −39.0000 −1.59084 −0.795422 0.606057i \(-0.792751\pi\)
−0.795422 + 0.606057i \(0.792751\pi\)
\(602\) −12.1244 4.58258i −0.494152 0.186772i
\(603\) 31.7490i 1.29292i
\(604\) 10.5000 11.9059i 0.427239 0.484443i
\(605\) 16.0000 0.650493
\(606\) −21.0000 7.93725i −0.853067 0.322429i
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) −9.52628 2.29129i −0.386342 0.0929240i
\(609\) 18.3303i 0.742781i
\(610\) −24.2487 9.16515i −0.981802 0.371086i
\(611\) 47.6235i 1.92664i
\(612\) −22.5000 19.8431i −0.909509 0.802111i
\(613\) −14.0000 −0.565455 −0.282727 0.959200i \(-0.591239\pi\)
−0.282727 + 0.959200i \(0.591239\pi\)
\(614\) 42.0000 + 15.8745i 1.69498 + 0.640643i
\(615\) 31.7490i 1.28024i
\(616\) −6.06218 11.4564i −0.244252 0.461593i
\(617\) 9.16515i 0.368975i 0.982835 + 0.184488i \(0.0590625\pi\)
−0.982835 + 0.184488i \(0.940937\pi\)
\(618\) 12.0000 31.7490i 0.482711 1.27713i
\(619\) 31.7490i 1.27610i −0.769995 0.638050i \(-0.779741\pi\)
0.769995 0.638050i \(-0.220259\pi\)
\(620\) −10.3923 9.16515i −0.417365 0.368081i
\(621\) 13.7477i 0.551677i
\(622\) −7.00000 2.64575i −0.280674 0.106085i
\(623\) 13.2288i 0.529999i
\(624\) 31.5000 3.96863i 1.26101 0.158872i
\(625\) −19.0000 −0.760000
\(626\) 36.3731 + 13.7477i 1.45376 + 0.549470i
\(627\) 5.19615 0.207514
\(628\) −18.0000 15.8745i −0.718278 0.633462i
\(629\) 20.0000 22.9129i 0.797452 0.913596i
\(630\) −21.0000 7.93725i −0.836660 0.316228i
\(631\) −41.5692 −1.65484 −0.827422 0.561580i \(-0.810194\pi\)
−0.827422 + 0.561580i \(0.810194\pi\)
\(632\) 34.6410 18.3303i 1.37795 0.729140i
\(633\) 27.4955i 1.09285i
\(634\) −12.1244 4.58258i −0.481520 0.181997i
\(635\) 15.8745i 0.629961i
\(636\) 31.5000 35.7176i 1.24906 1.41630i
\(637\) 0 0
\(638\) −3.46410 + 9.16515i −0.137145 + 0.362852i
\(639\) −10.3923 −0.411113
\(640\) −13.0000 18.5203i −0.513870 0.732078i
\(641\) 36.6606i 1.44801i −0.689796 0.724003i \(-0.742300\pi\)
0.689796 0.724003i \(-0.257700\pi\)
\(642\) −1.50000 + 3.96863i −0.0592003 + 0.156629i
\(643\) −12.1244 −0.478138 −0.239069 0.971003i \(-0.576842\pi\)
−0.239069 + 0.971003i \(0.576842\pi\)
\(644\) −10.5000 9.26013i −0.413758 0.364900i
\(645\) 12.0000 0.472500
\(646\) −4.33013 + 11.4564i −0.170367 + 0.450748i
\(647\) 34.3948i 1.35220i 0.736811 + 0.676099i \(0.236331\pi\)
−0.736811 + 0.676099i \(0.763669\pi\)
\(648\) 22.5000 11.9059i 0.883883 0.467707i
\(649\) 9.16515i 0.359764i
\(650\) −6.06218 2.29129i −0.237778 0.0898717i
\(651\) 15.8745i 0.622171i
\(652\) −12.9904 11.4564i −0.508743 0.448669i
\(653\) −28.0000 −1.09572 −0.547862 0.836569i \(-0.684558\pi\)
−0.547862 + 0.836569i \(0.684558\pi\)
\(654\) −31.5000 11.9059i −1.23175 0.465557i
\(655\) 10.5830i 0.413512i
\(656\) 36.3731 4.58258i 1.42013 0.178920i
\(657\) 27.0000 1.05337
\(658\) −36.3731 13.7477i −1.41797 0.535942i
\(659\) −3.46410 −0.134942 −0.0674711 0.997721i \(-0.521493\pi\)
−0.0674711 + 0.997721i \(0.521493\pi\)
\(660\) 9.00000 + 7.93725i 0.350325 + 0.308957i
\(661\) 22.9129i 0.891208i 0.895230 + 0.445604i \(0.147011\pi\)
−0.895230 + 0.445604i \(0.852989\pi\)
\(662\) −5.19615 + 13.7477i −0.201954 + 0.534321i
\(663\) 39.6863i 1.54129i
\(664\) −21.6506 + 11.4564i −0.840208 + 0.444596i
\(665\) 9.16515i 0.355409i
\(666\) 12.1865 + 22.7484i 0.472219 + 0.881481i
\(667\) 10.5830i 0.409776i
\(668\) 3.50000 3.96863i 0.135419 0.153551i
\(669\) 27.4955i 1.06304i
\(670\) 28.0000 + 10.5830i 1.08173 + 0.408857i
\(671\) 15.8745i 0.612829i
\(672\) −6.06218 + 25.2042i −0.233854 + 0.972272i
\(673\) −21.0000 −0.809491 −0.404745 0.914429i \(-0.632640\pi\)
−0.404745 + 0.914429i \(0.632640\pi\)
\(674\) −9.50000 + 25.1346i −0.365926 + 0.968150i
\(675\) −5.19615 −0.200000
\(676\) 12.0000 + 10.5830i 0.461538 + 0.407039i
\(677\) 22.9129i 0.880613i −0.897847 0.440307i \(-0.854870\pi\)
0.897847 0.440307i \(-0.145130\pi\)
\(678\) 12.1244 32.0780i 0.465633 1.23195i
\(679\) 0 0
\(680\) −25.0000 + 13.2288i −0.958706 + 0.507300i
\(681\) 36.6606i 1.40484i
\(682\) 3.00000 7.93725i 0.114876 0.303933i
\(683\) 10.5830i 0.404947i −0.979288 0.202474i \(-0.935102\pi\)
0.979288 0.202474i \(-0.0648981\pi\)
\(684\) −7.79423 6.87386i −0.298020 0.262829i
\(685\) 18.3303i 0.700365i
\(686\) 24.5000 + 9.26013i 0.935414 + 0.353553i
\(687\) −17.3205 −0.660819
\(688\) −1.73205 13.7477i −0.0660338 0.524127i
\(689\) 63.0000 2.40011
\(690\) 12.1244 + 4.58258i 0.461566 + 0.174456i
\(691\) 5.29150i 0.201298i −0.994922 0.100649i \(-0.967908\pi\)
0.994922 0.100649i \(-0.0320920\pi\)
\(692\) 6.06218 6.87386i 0.230449 0.261305i
\(693\) 13.7477i 0.522233i
\(694\) 7.00000 + 2.64575i 0.265716 + 0.100431i
\(695\) 10.5830i 0.401436i
\(696\) 17.3205 9.16515i 0.656532 0.347404i
\(697\) 45.8258i 1.73577i
\(698\) −9.00000 + 23.8118i −0.340655 + 0.901288i
\(699\) 31.7490i 1.20086i
\(700\) 3.50000 3.96863i 0.132288 0.150000i
\(701\) 28.0000 1.05755 0.528773 0.848763i \(-0.322652\pi\)
0.528773 + 0.848763i \(0.322652\pi\)
\(702\) 31.5000 + 11.9059i 1.18889 + 0.449359i
\(703\) 6.92820 7.93725i 0.261302 0.299359i
\(704\) 7.79423 11.4564i 0.293756 0.431781i
\(705\) 36.0000 1.35584
\(706\) −1.00000 + 2.64575i −0.0376355 + 0.0995742i
\(707\) 24.2487 0.911967
\(708\) 12.1244 13.7477i 0.455661 0.516671i
\(709\) 13.7477i 0.516307i −0.966104 0.258153i \(-0.916886\pi\)
0.966104 0.258153i \(-0.0831140\pi\)
\(710\) −3.46410 + 9.16515i −0.130005 + 0.343962i
\(711\) 41.5692 1.55897
\(712\) −12.5000 + 6.61438i −0.468457 + 0.247884i
\(713\) 9.16515i 0.343238i
\(714\) 30.3109 + 11.4564i 1.13436 + 0.428746i
\(715\) 15.8745i 0.593673i
\(716\) 7.00000 7.93725i 0.261602 0.296629i
\(717\) 9.16515i 0.342279i
\(718\) 13.8564 36.6606i 0.517116 1.36816i
\(719\) −13.8564 −0.516757 −0.258378 0.966044i \(-0.583188\pi\)
−0.258378 + 0.966044i \(0.583188\pi\)
\(720\) −3.00000 23.8118i −0.111803 0.887412i
\(721\) 36.6606i 1.36531i
\(722\) 8.00000 21.1660i 0.297729 0.787717i
\(723\) 15.8745i 0.590379i
\(724\) 9.00000 + 7.93725i 0.334482 + 0.294986i
\(725\) −4.00000 −0.148556
\(726\) 6.92820 18.3303i 0.257130 0.680301i
\(727\) −10.3923 −0.385429 −0.192715 0.981255i \(-0.561729\pi\)
−0.192715 + 0.981255i \(0.561729\pi\)
\(728\) −30.3109 + 16.0390i −1.12340 + 0.594445i
\(729\) 27.0000 1.00000
\(730\) 9.00000 23.8118i 0.333105 0.881313i
\(731\) −17.3205 −0.640622
\(732\) −21.0000 + 23.8118i −0.776182 + 0.880108i
\(733\) 26.0000 0.960332 0.480166 0.877178i \(-0.340576\pi\)
0.480166 + 0.877178i \(0.340576\pi\)
\(734\) −31.5000 11.9059i −1.16269 0.439454i
\(735\) 0 0
\(736\) 3.50000 14.5516i 0.129012 0.536380i
\(737\) 18.3303i 0.675205i
\(738\) 36.3731 + 13.7477i 1.33891 + 0.506061i
\(739\) 31.7490i 1.16791i 0.811787 + 0.583953i \(0.198495\pi\)
−0.811787 + 0.583953i \(0.801505\pi\)
\(740\) 24.1244 3.16472i 0.886829 0.116337i
\(741\) 13.7477i 0.505035i
\(742\) −18.1865 + 48.1170i −0.667649 + 1.76643i
\(743\) 41.5692 1.52503 0.762513 0.646972i \(-0.223965\pi\)
0.762513 + 0.646972i \(0.223965\pi\)
\(744\) −15.0000 + 7.93725i −0.549927 + 0.290994i
\(745\) 18.3303i 0.671570i
\(746\) 6.00000 15.8745i 0.219676 0.581207i
\(747\) −25.9808 −0.950586
\(748\) −12.9904 11.4564i −0.474975 0.418889i
\(749\) 4.58258i 0.167444i
\(750\) −10.3923 + 27.4955i −0.379473 + 1.00399i
\(751\) 37.0405i 1.35163i −0.737072 0.675814i \(-0.763792\pi\)
0.737072 0.675814i \(-0.236208\pi\)
\(752\) −5.19615 41.2432i −0.189484 1.50398i
\(753\) 36.6606i 1.33599i
\(754\) 24.2487 + 9.16515i 0.883086 + 0.333775i
\(755\) 15.8745i 0.577732i
\(756\) −18.1865 + 20.6216i −0.661438 + 0.750000i
\(757\) 32.0780i 1.16590i −0.812510 0.582948i \(-0.801899\pi\)
0.812510 0.582948i \(-0.198101\pi\)
\(758\) 14.0000 + 5.29150i 0.508503 + 0.192196i
\(759\) 7.93725i 0.288104i
\(760\) −8.66025 + 4.58258i −0.314140 + 0.166227i
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 18.1865 + 6.87386i 0.658829 + 0.249014i
\(763\) 36.3731 1.31679
\(764\) 24.5000 27.7804i 0.886379 1.00506i
\(765\) −30.0000 −1.08465
\(766\) 45.5000 + 17.1974i 1.64398 + 0.621367i
\(767\) 24.2487 0.875570
\(768\) −26.8468 + 6.87386i −0.968750 + 0.248039i
\(769\) 36.6606i 1.32202i 0.750379 + 0.661008i \(0.229871\pi\)
−0.750379 + 0.661008i \(0.770129\pi\)
\(770\) −12.1244 4.58258i −0.436931 0.165145i
\(771\) 8.66025 0.311891
\(772\) 24.2487 27.4955i 0.872730 0.989583i
\(773\) 4.58258i 0.164824i −0.996598 0.0824119i \(-0.973738\pi\)
0.996598 0.0824119i \(-0.0262623\pi\)
\(774\) 5.19615 13.7477i 0.186772 0.494152i
\(775\) 3.46410 0.124434
\(776\) 0 0
\(777\) −21.0000 18.3303i −0.753371 0.657596i
\(778\) −16.0000 + 42.3320i −0.573628 + 1.51768i
\(779\) 15.8745i 0.568763i
\(780\) 21.0000 23.8118i 0.751921 0.852598i
\(781\) −6.00000 −0.214697
\(782\) −17.5000 6.61438i −0.625799 0.236530i
\(783\) 20.7846 0.742781
\(784\) 0 0
\(785\) −24.0000 −0.856597
\(786\) −12.1244 4.58258i −0.432461 0.163455i
\(787\) 15.8745i 0.565865i −0.959140 0.282933i \(-0.908693\pi\)
0.959140 0.282933i \(-0.0913073\pi\)
\(788\) −6.06218 + 6.87386i −0.215956 + 0.244871i
\(789\) −24.0000 −0.854423
\(790\) 13.8564 36.6606i 0.492989 1.30433i
\(791\) 37.0405i 1.31701i
\(792\) 12.9904 6.87386i 0.461593 0.244252i
\(793\) −42.0000 −1.49146
\(794\) −15.0000 + 39.6863i −0.532330 + 1.40841i
\(795\) 47.6235i 1.68903i
\(796\) −36.3731 32.0780i −1.28921 1.13698i
\(797\) −22.0000 −0.779280 −0.389640 0.920967i \(-0.627401\pi\)
−0.389640 + 0.920967i \(0.627401\pi\)
\(798\) 10.5000 + 3.96863i 0.371696 + 0.140488i
\(799\) −51.9615 −1.83827
\(800\) 5.50000 + 1.32288i 0.194454 + 0.0467707i
\(801\) −15.0000 −0.529999
\(802\) −6.50000 + 17.1974i −0.229523 + 0.607261i
\(803\) 15.5885 0.550105
\(804\) 24.2487 27.4955i 0.855186 0.969690i
\(805\) −14.0000 −0.493435
\(806\) −21.0000 7.93725i −0.739693 0.279578i
\(807\) 39.6863i 1.39702i
\(808\) 12.1244 + 22.9129i 0.426533 + 0.806072i
\(809\) −13.0000 −0.457056 −0.228528 0.973537i \(-0.573391\pi\)
−0.228528 + 0.973537i \(0.573391\pi\)
\(810\) 9.00000 23.8118i 0.316228 0.836660i
\(811\) 42.3320i 1.48648i 0.669026 + 0.743239i \(0.266712\pi\)
−0.669026 + 0.743239i \(0.733288\pi\)
\(812\) −14.0000 + 15.8745i −0.491304 + 0.557086i
\(813\) 45.8258i 1.60718i
\(814\) 7.03590 + 13.1338i 0.246608 + 0.460339i
\(815\) −17.3205 −0.606711
\(816\) 4.33013 + 34.3693i 0.151585 + 1.20317i
\(817\) −6.00000 −0.209913
\(818\) 36.3731 + 13.7477i 1.27175 + 0.480678i
\(819\) −36.3731 −1.27098
\(820\) 24.2487 27.4955i 0.846802 0.960183i
\(821\) 32.0780i 1.11953i 0.828651 + 0.559765i \(0.189109\pi\)
−0.828651 + 0.559765i \(0.810891\pi\)
\(822\) 21.0000 + 7.93725i 0.732459 + 0.276844i
\(823\) 39.6863i 1.38338i 0.722196 + 0.691688i \(0.243133\pi\)
−0.722196 + 0.691688i \(0.756867\pi\)
\(824\) −34.6410 + 18.3303i −1.20678 + 0.638566i
\(825\) −3.00000 −0.104447
\(826\) −7.00000 + 18.5203i −0.243561 + 0.644402i
\(827\) 37.0405i 1.28803i −0.765015 0.644013i \(-0.777268\pi\)
0.765015 0.644013i \(-0.222732\pi\)
\(828\) 10.5000 11.9059i 0.364900 0.413758i
\(829\) 32.0780i 1.11412i 0.830474 + 0.557058i \(0.188070\pi\)
−0.830474 + 0.557058i \(0.811930\pi\)
\(830\) −8.66025 + 22.9129i −0.300602 + 0.795318i
\(831\) 7.93725i 0.275340i
\(832\) −30.3109 20.6216i −1.05084 0.714925i
\(833\) 0 0
\(834\) −12.1244 4.58258i −0.419832 0.158682i
\(835\) 5.29150i 0.183120i
\(836\) −4.50000 3.96863i −0.155636 0.137258i
\(837\) −18.0000 −0.622171
\(838\) −19.9186 + 52.6996i −0.688076 + 1.82048i
\(839\) 20.7846 0.717564 0.358782 0.933421i \(-0.383192\pi\)
0.358782 + 0.933421i \(0.383192\pi\)
\(840\) 12.1244 + 22.9129i 0.418330 + 0.790569i
\(841\) −13.0000 −0.448276
\(842\) −12.1244 4.58258i −0.417833 0.157926i
\(843\) 19.0526 0.656205
\(844\) 21.0000 23.8118i 0.722850 0.819635i
\(845\) 16.0000 0.550417
\(846\) 15.5885 41.2432i 0.535942 1.41797i
\(847\) 21.1660i 0.727273i
\(848\) −54.5596 + 6.87386i −1.87358 + 0.236049i
\(849\) −51.0000 −1.75032
\(850\) 2.50000 6.61438i 0.0857493 0.226871i
\(851\) 12.1244 + 10.5830i 0.415618 + 0.362781i
\(852\) 9.00000 + 7.93725i 0.308335 + 0.271926i
\(853\) 13.7477i 0.470713i −0.971909 0.235357i \(-0.924374\pi\)
0.971909 0.235357i \(-0.0756258\pi\)
\(854\) 12.1244 32.0780i 0.414887 1.09769i
\(855\) −10.3923 −0.355409
\(856\) 4.33013 2.29129i 0.148001 0.0783146i
\(857\) −37.0000 −1.26390 −0.631948 0.775011i \(-0.717744\pi\)
−0.631948 + 0.775011i \(0.717744\pi\)
\(858\) 18.1865 + 6.87386i 0.620878 + 0.234670i
\(859\) 12.1244 0.413678 0.206839 0.978375i \(-0.433682\pi\)
0.206839 + 0.978375i \(0.433682\pi\)
\(860\) −10.3923 9.16515i −0.354375 0.312529i
\(861\) −42.0000 −1.43136
\(862\) 45.5000 + 17.1974i 1.54974 + 0.585745i
\(863\) −10.3923 −0.353758 −0.176879 0.984233i \(-0.556600\pi\)
−0.176879 + 0.984233i \(0.556600\pi\)
\(864\) −28.5788 6.87386i −0.972272 0.233854i
\(865\) 9.16515i 0.311624i
\(866\) −1.50000 + 3.96863i −0.0509721 + 0.134859i
\(867\) 13.8564 0.470588
\(868\) 12.1244 13.7477i 0.411527 0.466628i
\(869\) 24.0000 0.814144
\(870\) 6.92820 18.3303i 0.234888 0.621455i
\(871\) 48.4974 1.64327
\(872\) 18.1865 + 34.3693i 0.615874 + 1.16389i
\(873\) 0 0
\(874\) −6.06218 2.29129i −0.205056 0.0775040i
\(875\) 31.7490i 1.07331i
\(876\) −23.3827 20.6216i −0.790028 0.696739i
\(877\) −30.0000 −1.01303 −0.506514 0.862232i \(-0.669066\pi\)
−0.506514 + 0.862232i \(0.669066\pi\)
\(878\) 5.19615 13.7477i 0.175362 0.463963i
\(879\) 7.93725i 0.267717i
\(880\) −1.73205 13.7477i −0.0583874 0.463436i
\(881\) 27.4955i 0.926345i 0.886268 + 0.463173i \(0.153289\pi\)
−0.886268 + 0.463173i \(0.846711\pi\)
\(882\) 0 0
\(883\) 29.4449 0.990899 0.495449 0.868637i \(-0.335003\pi\)
0.495449 + 0.868637i \(0.335003\pi\)
\(884\) −30.3109 + 34.3693i −1.01947 + 1.15597i
\(885\) 18.3303i 0.616166i
\(886\) −1.73205 + 4.58258i −0.0581894 + 0.153955i
\(887\) 31.1769 1.04682 0.523409 0.852081i \(-0.324660\pi\)
0.523409 + 0.852081i \(0.324660\pi\)
\(888\) 6.82051 29.0083i 0.228881 0.973454i
\(889\) −21.0000 −0.704317
\(890\) −5.00000 + 13.2288i −0.167600 + 0.443429i
\(891\) 15.5885 0.522233
\(892\) −21.0000 + 23.8118i −0.703132 + 0.797277i
\(893\) −18.0000 −0.602347
\(894\) 21.0000 + 7.93725i 0.702345 + 0.265461i
\(895\) 10.5830i 0.353751i
\(896\) 24.5000 17.1974i 0.818488 0.574524i
\(897\) 21.0000 0.701170
\(898\) 19.0000 50.2693i 0.634038 1.67751i
\(899\) −13.8564 −0.462137
\(900\) 4.50000 + 3.96863i 0.150000 + 0.132288i
\(901\) 68.7386i 2.29002i
\(902\) 21.0000 + 7.93725i 0.699224 + 0.264282i
\(903\) 15.8745i 0.528271i
\(904\) −35.0000 + 18.5203i −1.16408 + 0.615975i
\(905\) 12.0000 0.398893
\(906\) −18.1865 6.87386i −0.604207 0.228369i
\(907\) −29.4449 −0.977701 −0.488850 0.872368i \(-0.662584\pi\)
−0.488850 + 0.872368i \(0.662584\pi\)
\(908\) 28.0000 31.7490i 0.929213 1.05363i
\(909\) 27.4955i 0.911967i
\(910\) −12.1244 + 32.0780i −0.401918 + 1.06338i
\(911\) 26.4575i 0.876577i −0.898834 0.438288i \(-0.855585\pi\)
0.898834 0.438288i \(-0.144415\pi\)
\(912\) 1.50000 + 11.9059i 0.0496700 + 0.394243i
\(913\) −15.0000 −0.496428
\(914\) −24.2487 9.16515i −0.802076 0.303156i
\(915\) 31.7490i 1.04959i
\(916\) 15.0000 + 13.2288i 0.495614 + 0.437090i
\(917\) 14.0000 0.462321
\(918\) −12.9904 + 34.3693i −0.428746 + 1.13436i
\(919\) 20.7846 0.685621 0.342811 0.939405i \(-0.388621\pi\)
0.342811 + 0.939405i \(0.388621\pi\)
\(920\) −7.00000 13.2288i −0.230783 0.436139i
\(921\) 54.9909i 1.81201i
\(922\) 5.00000 13.2288i 0.164666 0.435666i
\(923\) 15.8745i 0.522516i
\(924\) −10.5000 + 11.9059i −0.345425 + 0.391675i
\(925\) −4.00000 + 4.58258i −0.131519 + 0.150674i
\(926\) −3.46410 + 9.16515i −0.113837 + 0.301186i
\(927\) −41.5692 −1.36531
\(928\) −22.0000 5.29150i −0.722185 0.173702i
\(929\) 27.4955i 0.902097i 0.892500 + 0.451048i \(0.148950\pi\)
−0.892500 + 0.451048i \(0.851050\pi\)
\(930\) −6.00000 + 15.8745i −0.196748 + 0.520546i
\(931\) 0 0
\(932\) −24.2487 + 27.4955i −0.794293 + 0.900644i
\(933\) 9.16515i 0.300054i
\(934\) −49.0000 18.5203i −1.60333 0.606001i
\(935\) −17.3205 −0.566441
\(936\) −18.1865 34.3693i −0.594445 1.12340i
\(937\) −10.0000 −0.326686 −0.163343 0.986569i \(-0.552228\pi\)
−0.163343 + 0.986569i \(0.552228\pi\)
\(938\) −14.0000 + 37.0405i −0.457116 + 1.20942i
\(939\) 47.6235i 1.55413i
\(940\) −31.1769 27.4955i −1.01688 0.896803i
\(941\) 9.16515i 0.298775i 0.988779 + 0.149388i \(0.0477302\pi\)
−0.988779 + 0.149388i \(0.952270\pi\)
\(942\) −10.3923 + 27.4955i −0.338600 + 0.895850i
\(943\) 24.2487 0.789647
\(944\) −21.0000 + 2.64575i −0.683492 + 0.0861119i
\(945\) 27.4955i 0.894427i
\(946\) 3.00000 7.93725i 0.0975384 0.258062i
\(947\) 5.29150i 0.171951i −0.996297 0.0859754i \(-0.972599\pi\)
0.996297 0.0859754i \(-0.0274006\pi\)
\(948\) −36.0000 31.7490i −1.16923 1.03116i
\(949\) 41.2432i 1.33881i
\(950\) 0.866025 2.29129i 0.0280976 0.0743392i
\(951\) 15.8745i 0.514766i
\(952\) −17.5000 33.0719i −0.567178 1.07187i
\(953\) 54.9909i 1.78133i 0.454660 + 0.890665i \(0.349761\pi\)
−0.454660 + 0.890665i \(0.650239\pi\)
\(954\) −54.5596 20.6216i −1.76643 0.667649i
\(955\) 37.0405i 1.19860i
\(956\) −7.00000 + 7.93725i −0.226396 + 0.256709i
\(957\) 12.0000 0.387905
\(958\) 17.5000 + 6.61438i 0.565399 + 0.213701i
\(959\) −24.2487 −0.783032
\(960\) −15.5885 + 22.9129i −0.503115 + 0.739510i
\(961\) −19.0000 −0.612903
\(962\) 34.7487 18.6152i 1.12034 0.600179i
\(963\) 5.19615 0.167444
\(964\) 12.1244 13.7477i 0.390499 0.442784i
\(965\) 36.6606i 1.18015i
\(966\) −6.06218 + 16.0390i −0.195047 + 0.516047i
\(967\) 31.1769 1.00258 0.501291 0.865279i \(-0.332859\pi\)
0.501291 + 0.865279i \(0.332859\pi\)
\(968\) −20.0000 + 10.5830i −0.642824 + 0.340151i
\(969\) 15.0000 0.481869
\(970\) 0 0
\(971\) −38.1051 −1.22285 −0.611426 0.791302i \(-0.709404\pi\)
−0.611426 + 0.791302i \(0.709404\pi\)
\(972\) −23.3827 20.6216i −0.750000 0.661438i
\(973\) 14.0000 0.448819
\(974\) 17.3205 45.8258i 0.554985 1.46835i
\(975\) 7.93725i 0.254196i
\(976\) 36.3731 4.58258i 1.16427 0.146685i
\(977\) 13.0000 0.415907 0.207953 0.978139i \(-0.433320\pi\)
0.207953 + 0.978139i \(0.433320\pi\)
\(978\) −7.50000 + 19.8431i −0.239824 + 0.634513i
\(979\) −8.66025 −0.276783
\(980\) 0 0
\(981\) 41.2432i 1.31679i
\(982\) 9.52628 25.2042i 0.303996 0.804297i
\(983\) −6.92820 −0.220975 −0.110488 0.993877i \(-0.535241\pi\)
−0.110488 + 0.993877i \(0.535241\pi\)
\(984\) −21.0000 39.6863i −0.669456 1.26515i
\(985\) 9.16515i 0.292026i
\(986\) −10.0000 + 26.4575i −0.318465 + 0.842579i
\(987\) 47.6235i 1.51587i
\(988\) −10.5000 + 11.9059i −0.334050 + 0.378777i
\(989\) 9.16515i 0.291435i
\(990\) 5.19615 13.7477i 0.165145 0.436931i
\(991\) −13.8564 −0.440163 −0.220082 0.975481i \(-0.570632\pi\)
−0.220082 + 0.975481i \(0.570632\pi\)
\(992\) 19.0526 + 4.58258i 0.604919 + 0.145497i
\(993\) 18.0000 0.571213
\(994\) −12.1244 4.58258i −0.384561 0.145350i
\(995\) −48.4974 −1.53747
\(996\) 22.5000 + 19.8431i 0.712940 + 0.628754i
\(997\) 32.0780i 1.01592i −0.861380 0.507961i \(-0.830400\pi\)
0.861380 0.507961i \(-0.169600\pi\)
\(998\) −0.866025 + 2.29129i −0.0274136 + 0.0725294i
\(999\) 20.7846 23.8118i 0.657596 0.753371i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 444.2.g.a.443.4 yes 4
3.2 odd 2 444.2.g.b.443.1 yes 4
4.3 odd 2 inner 444.2.g.a.443.1 4
12.11 even 2 444.2.g.b.443.4 yes 4
37.36 even 2 444.2.g.b.443.2 yes 4
111.110 odd 2 inner 444.2.g.a.443.3 yes 4
148.147 odd 2 444.2.g.b.443.3 yes 4
444.443 even 2 inner 444.2.g.a.443.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
444.2.g.a.443.1 4 4.3 odd 2 inner
444.2.g.a.443.2 yes 4 444.443 even 2 inner
444.2.g.a.443.3 yes 4 111.110 odd 2 inner
444.2.g.a.443.4 yes 4 1.1 even 1 trivial
444.2.g.b.443.1 yes 4 3.2 odd 2
444.2.g.b.443.2 yes 4 37.36 even 2
444.2.g.b.443.3 yes 4 148.147 odd 2
444.2.g.b.443.4 yes 4 12.11 even 2