L(s) = 1 | + (−0.5 + 1.32i)2-s + 1.73·3-s + (−1.50 − 1.32i)4-s − 2·5-s + (−0.866 + 2.29i)6-s − 2.64i·7-s + (2.50 − 1.32i)8-s + 2.99·9-s + (1 − 2.64i)10-s + 1.73·11-s + (−2.59 − 2.29i)12-s − 4.58i·13-s + (3.50 + 1.32i)14-s − 3.46·15-s + (0.500 + 3.96i)16-s + 5·17-s + ⋯ |
L(s) = 1 | + (−0.353 + 0.935i)2-s + 1.00·3-s + (−0.750 − 0.661i)4-s − 0.894·5-s + (−0.353 + 0.935i)6-s − 0.999i·7-s + (0.883 − 0.467i)8-s + 0.999·9-s + (0.316 − 0.836i)10-s + 0.522·11-s + (−0.749 − 0.661i)12-s − 1.27i·13-s + (0.935 + 0.353i)14-s − 0.894·15-s + (0.125 + 0.992i)16-s + 1.21·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 444 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.991 - 0.130i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 444 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.991 - 0.130i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.37175 + 0.0895921i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.37175 + 0.0895921i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 - 1.32i)T \) |
| 3 | \( 1 - 1.73T \) |
| 37 | \( 1 + (-4 + 4.58i)T \) |
good | 5 | \( 1 + 2T + 5T^{2} \) |
| 7 | \( 1 + 2.64iT - 7T^{2} \) |
| 11 | \( 1 - 1.73T + 11T^{2} \) |
| 13 | \( 1 + 4.58iT - 13T^{2} \) |
| 17 | \( 1 - 5T + 17T^{2} \) |
| 19 | \( 1 - 1.73T + 19T^{2} \) |
| 23 | \( 1 - 2.64iT - 23T^{2} \) |
| 29 | \( 1 - 4T + 29T^{2} \) |
| 31 | \( 1 + 3.46T + 31T^{2} \) |
| 41 | \( 1 + 9.16iT - 41T^{2} \) |
| 43 | \( 1 + 3.46T + 43T^{2} \) |
| 47 | \( 1 + 10.3T + 47T^{2} \) |
| 53 | \( 1 - 13.7iT - 53T^{2} \) |
| 59 | \( 1 - 5.29iT - 59T^{2} \) |
| 61 | \( 1 + 9.16iT - 61T^{2} \) |
| 67 | \( 1 - 10.5iT - 67T^{2} \) |
| 71 | \( 1 + 3.46T + 71T^{2} \) |
| 73 | \( 1 - 9T + 73T^{2} \) |
| 79 | \( 1 - 13.8T + 79T^{2} \) |
| 83 | \( 1 + 8.66T + 83T^{2} \) |
| 89 | \( 1 + 5T + 89T^{2} \) |
| 97 | \( 1 - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.74696595935847494321063150306, −10.02253127526084546712467865045, −9.173071474102844922303392784635, −7.976470378098627828228136103341, −7.74669951575557378723892157516, −6.91233841949818088864544294423, −5.46500310483274352148260363931, −4.14526590795806474826433952722, −3.41933303187025742582987850779, −1.02466463393458552628768295002,
1.64037809551906628826303055811, 2.94629111260902061534028494665, 3.83955061595626595731518339034, 4.85559875788224515695139946442, 6.71402471687749042014481399163, 7.943358202225609909430796999182, 8.418420262981741253942001695208, 9.396292262218265264182515423860, 9.888542693547246233829576286172, 11.33113044217958357347309549913