Properties

Label 444.2.g.a
Level $444$
Weight $2$
Character orbit 444.g
Analytic conductor $3.545$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [444,2,Mod(443,444)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(444, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("444.443"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 444 = 2^{2} \cdot 3 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 444.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.54535784974\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{3}, \sqrt{-7})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - x^{2} + 2x + 22 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{2} - 1) q^{2} - \beta_{3} q^{3} + ( - \beta_{2} - 1) q^{4} - 2 q^{5} + (\beta_{3} + \beta_1) q^{6} + ( - 2 \beta_{2} + 1) q^{7} + ( - \beta_{2} + 3) q^{8} + 3 q^{9} + ( - 2 \beta_{2} + 2) q^{10}+ \cdots - 3 \beta_{3} q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} - 6 q^{4} - 8 q^{5} + 10 q^{8} + 12 q^{9} + 4 q^{10} + 14 q^{14} + 2 q^{16} + 20 q^{17} - 6 q^{18} + 12 q^{20} - 4 q^{25} - 14 q^{28} + 16 q^{29} - 22 q^{32} + 12 q^{33} - 10 q^{34} - 18 q^{36}+ \cdots - 24 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{3} - x^{2} + 2x + 22 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} + 8\nu^{2} - 16\nu - 6 ) / 19 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -2\nu^{3} + 3\nu^{2} - 6\nu + 12 ) / 19 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -2\nu^{3} + 3\nu^{2} + 13\nu - 7 ) / 19 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_{3} - \beta_{2} + 1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 2\beta_{3} - \beta_{2} + 2\beta _1 + 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -8\beta_{2} + 3\beta _1 + 6 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/444\mathbb{Z}\right)^\times\).

\(n\) \(149\) \(223\) \(409\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
443.1
2.23205 + 1.32288i
−1.23205 + 1.32288i
2.23205 1.32288i
−1.23205 1.32288i
−0.500000 1.32288i −1.73205 −1.50000 + 1.32288i −2.00000 0.866025 + 2.29129i 2.64575i 2.50000 + 1.32288i 3.00000 1.00000 + 2.64575i
443.2 −0.500000 1.32288i 1.73205 −1.50000 + 1.32288i −2.00000 −0.866025 2.29129i 2.64575i 2.50000 + 1.32288i 3.00000 1.00000 + 2.64575i
443.3 −0.500000 + 1.32288i −1.73205 −1.50000 1.32288i −2.00000 0.866025 2.29129i 2.64575i 2.50000 1.32288i 3.00000 1.00000 2.64575i
443.4 −0.500000 + 1.32288i 1.73205 −1.50000 1.32288i −2.00000 −0.866025 + 2.29129i 2.64575i 2.50000 1.32288i 3.00000 1.00000 2.64575i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
111.d odd 2 1 inner
444.g even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 444.2.g.a 4
3.b odd 2 1 444.2.g.b yes 4
4.b odd 2 1 inner 444.2.g.a 4
12.b even 2 1 444.2.g.b yes 4
37.b even 2 1 444.2.g.b yes 4
111.d odd 2 1 inner 444.2.g.a 4
148.b odd 2 1 444.2.g.b yes 4
444.g even 2 1 inner 444.2.g.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
444.2.g.a 4 1.a even 1 1 trivial
444.2.g.a 4 4.b odd 2 1 inner
444.2.g.a 4 111.d odd 2 1 inner
444.2.g.a 4 444.g even 2 1 inner
444.2.g.b yes 4 3.b odd 2 1
444.2.g.b yes 4 12.b even 2 1
444.2.g.b yes 4 37.b even 2 1
444.2.g.b yes 4 148.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5} + 2 \) acting on \(S_{2}^{\mathrm{new}}(444, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + T + 2)^{2} \) Copy content Toggle raw display
$3$ \( (T^{2} - 3)^{2} \) Copy content Toggle raw display
$5$ \( (T + 2)^{4} \) Copy content Toggle raw display
$7$ \( (T^{2} + 7)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} - 3)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} + 21)^{2} \) Copy content Toggle raw display
$17$ \( (T - 5)^{4} \) Copy content Toggle raw display
$19$ \( (T^{2} - 3)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} + 7)^{2} \) Copy content Toggle raw display
$29$ \( (T - 4)^{4} \) Copy content Toggle raw display
$31$ \( (T^{2} - 12)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} - 8 T + 37)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} + 84)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} - 12)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} - 108)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} + 189)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} + 28)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + 84)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} + 112)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} - 12)^{2} \) Copy content Toggle raw display
$73$ \( (T - 9)^{4} \) Copy content Toggle raw display
$79$ \( (T^{2} - 192)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} - 75)^{2} \) Copy content Toggle raw display
$89$ \( (T + 5)^{4} \) Copy content Toggle raw display
$97$ \( T^{4} \) Copy content Toggle raw display
show more
show less