Properties

Label 444.2.e.a.73.3
Level $444$
Weight $2$
Character 444.73
Analytic conductor $3.545$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [444,2,Mod(73,444)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(444, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("444.73"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 444 = 2^{2} \cdot 3 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 444.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.54535784974\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{5})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 6x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 73.3
Root \(-0.874032i\) of defining polynomial
Character \(\chi\) \(=\) 444.73
Dual form 444.2.e.a.73.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{3} +0.540182i q^{5} -1.23607 q^{7} +1.00000 q^{9} +2.47214 q^{11} +4.57649i q^{13} -0.540182i q^{15} +3.36861i q^{17} -1.74806i q^{19} +1.23607 q^{21} +8.61280i q^{23} +4.70820 q^{25} -1.00000 q^{27} +7.94510i q^{29} -6.32456i q^{31} -2.47214 q^{33} -0.667701i q^{35} +(-2.23607 + 5.65685i) q^{37} -4.57649i q^{39} +2.00000 q^{41} -2.82843i q^{43} +0.540182i q^{45} +4.00000 q^{47} -5.47214 q^{49} -3.36861i q^{51} +10.9443 q^{53} +1.33540i q^{55} +1.74806i q^{57} +2.28825i q^{59} -5.65685i q^{61} -1.23607 q^{63} -2.47214 q^{65} -7.70820 q^{67} -8.61280i q^{69} -8.94427 q^{71} +3.23607 q^{73} -4.70820 q^{75} -3.05573 q^{77} -9.56564i q^{79} +1.00000 q^{81} +1.52786 q^{83} -1.81966 q^{85} -7.94510i q^{87} -8.61280i q^{89} -5.65685i q^{91} +6.32456i q^{93} +0.944272 q^{95} -13.7295i q^{97} +2.47214 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{3} + 4 q^{7} + 4 q^{9} - 8 q^{11} - 4 q^{21} - 8 q^{25} - 4 q^{27} + 8 q^{33} + 8 q^{41} + 16 q^{47} - 4 q^{49} + 8 q^{53} + 4 q^{63} + 8 q^{65} - 4 q^{67} + 4 q^{73} + 8 q^{75} - 48 q^{77} + 4 q^{81}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/444\mathbb{Z}\right)^\times\).

\(n\) \(149\) \(223\) \(409\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350
\(4\) 0 0
\(5\) 0.540182i 0.241577i 0.992678 + 0.120788i \(0.0385422\pi\)
−0.992678 + 0.120788i \(0.961458\pi\)
\(6\) 0 0
\(7\) −1.23607 −0.467190 −0.233595 0.972334i \(-0.575049\pi\)
−0.233595 + 0.972334i \(0.575049\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 2.47214 0.745377 0.372689 0.927957i \(-0.378436\pi\)
0.372689 + 0.927957i \(0.378436\pi\)
\(12\) 0 0
\(13\) 4.57649i 1.26929i 0.772804 + 0.634645i \(0.218854\pi\)
−0.772804 + 0.634645i \(0.781146\pi\)
\(14\) 0 0
\(15\) 0.540182i 0.139474i
\(16\) 0 0
\(17\) 3.36861i 0.817008i 0.912757 + 0.408504i \(0.133949\pi\)
−0.912757 + 0.408504i \(0.866051\pi\)
\(18\) 0 0
\(19\) 1.74806i 0.401033i −0.979690 0.200517i \(-0.935738\pi\)
0.979690 0.200517i \(-0.0642621\pi\)
\(20\) 0 0
\(21\) 1.23607 0.269732
\(22\) 0 0
\(23\) 8.61280i 1.79589i 0.440104 + 0.897947i \(0.354941\pi\)
−0.440104 + 0.897947i \(0.645059\pi\)
\(24\) 0 0
\(25\) 4.70820 0.941641
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) 7.94510i 1.47537i 0.675146 + 0.737684i \(0.264081\pi\)
−0.675146 + 0.737684i \(0.735919\pi\)
\(30\) 0 0
\(31\) 6.32456i 1.13592i −0.823055 0.567962i \(-0.807732\pi\)
0.823055 0.567962i \(-0.192268\pi\)
\(32\) 0 0
\(33\) −2.47214 −0.430344
\(34\) 0 0
\(35\) 0.667701i 0.112862i
\(36\) 0 0
\(37\) −2.23607 + 5.65685i −0.367607 + 0.929981i
\(38\) 0 0
\(39\) 4.57649i 0.732825i
\(40\) 0 0
\(41\) 2.00000 0.312348 0.156174 0.987730i \(-0.450084\pi\)
0.156174 + 0.987730i \(0.450084\pi\)
\(42\) 0 0
\(43\) 2.82843i 0.431331i −0.976467 0.215666i \(-0.930808\pi\)
0.976467 0.215666i \(-0.0691921\pi\)
\(44\) 0 0
\(45\) 0.540182i 0.0805255i
\(46\) 0 0
\(47\) 4.00000 0.583460 0.291730 0.956501i \(-0.405769\pi\)
0.291730 + 0.956501i \(0.405769\pi\)
\(48\) 0 0
\(49\) −5.47214 −0.781734
\(50\) 0 0
\(51\) 3.36861i 0.471700i
\(52\) 0 0
\(53\) 10.9443 1.50331 0.751656 0.659556i \(-0.229256\pi\)
0.751656 + 0.659556i \(0.229256\pi\)
\(54\) 0 0
\(55\) 1.33540i 0.180066i
\(56\) 0 0
\(57\) 1.74806i 0.231537i
\(58\) 0 0
\(59\) 2.28825i 0.297904i 0.988844 + 0.148952i \(0.0475900\pi\)
−0.988844 + 0.148952i \(0.952410\pi\)
\(60\) 0 0
\(61\) 5.65685i 0.724286i −0.932123 0.362143i \(-0.882045\pi\)
0.932123 0.362143i \(-0.117955\pi\)
\(62\) 0 0
\(63\) −1.23607 −0.155730
\(64\) 0 0
\(65\) −2.47214 −0.306631
\(66\) 0 0
\(67\) −7.70820 −0.941707 −0.470853 0.882211i \(-0.656054\pi\)
−0.470853 + 0.882211i \(0.656054\pi\)
\(68\) 0 0
\(69\) 8.61280i 1.03686i
\(70\) 0 0
\(71\) −8.94427 −1.06149 −0.530745 0.847532i \(-0.678088\pi\)
−0.530745 + 0.847532i \(0.678088\pi\)
\(72\) 0 0
\(73\) 3.23607 0.378753 0.189377 0.981905i \(-0.439353\pi\)
0.189377 + 0.981905i \(0.439353\pi\)
\(74\) 0 0
\(75\) −4.70820 −0.543657
\(76\) 0 0
\(77\) −3.05573 −0.348233
\(78\) 0 0
\(79\) 9.56564i 1.07622i −0.842875 0.538110i \(-0.819139\pi\)
0.842875 0.538110i \(-0.180861\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 1.52786 0.167705 0.0838524 0.996478i \(-0.473278\pi\)
0.0838524 + 0.996478i \(0.473278\pi\)
\(84\) 0 0
\(85\) −1.81966 −0.197370
\(86\) 0 0
\(87\) 7.94510i 0.851804i
\(88\) 0 0
\(89\) 8.61280i 0.912955i −0.889735 0.456478i \(-0.849111\pi\)
0.889735 0.456478i \(-0.150889\pi\)
\(90\) 0 0
\(91\) 5.65685i 0.592999i
\(92\) 0 0
\(93\) 6.32456i 0.655826i
\(94\) 0 0
\(95\) 0.944272 0.0968803
\(96\) 0 0
\(97\) 13.7295i 1.39402i −0.717063 0.697008i \(-0.754514\pi\)
0.717063 0.697008i \(-0.245486\pi\)
\(98\) 0 0
\(99\) 2.47214 0.248459
\(100\) 0 0
\(101\) −9.41641 −0.936968 −0.468484 0.883472i \(-0.655200\pi\)
−0.468484 + 0.883472i \(0.655200\pi\)
\(102\) 0 0
\(103\) 10.9010i 1.07411i −0.843547 0.537056i \(-0.819536\pi\)
0.843547 0.537056i \(-0.180464\pi\)
\(104\) 0 0
\(105\) 0.667701i 0.0651610i
\(106\) 0 0
\(107\) 2.47214 0.238990 0.119495 0.992835i \(-0.461872\pi\)
0.119495 + 0.992835i \(0.461872\pi\)
\(108\) 0 0
\(109\) 13.7295i 1.31505i 0.753435 + 0.657523i \(0.228396\pi\)
−0.753435 + 0.657523i \(0.771604\pi\)
\(110\) 0 0
\(111\) 2.23607 5.65685i 0.212238 0.536925i
\(112\) 0 0
\(113\) 1.62054i 0.152448i −0.997091 0.0762240i \(-0.975714\pi\)
0.997091 0.0762240i \(-0.0242864\pi\)
\(114\) 0 0
\(115\) −4.65248 −0.433846
\(116\) 0 0
\(117\) 4.57649i 0.423097i
\(118\) 0 0
\(119\) 4.16383i 0.381698i
\(120\) 0 0
\(121\) −4.88854 −0.444413
\(122\) 0 0
\(123\) −2.00000 −0.180334
\(124\) 0 0
\(125\) 5.24419i 0.469055i
\(126\) 0 0
\(127\) 12.0000 1.06483 0.532414 0.846484i \(-0.321285\pi\)
0.532414 + 0.846484i \(0.321285\pi\)
\(128\) 0 0
\(129\) 2.82843i 0.249029i
\(130\) 0 0
\(131\) 0.127520i 0.0111414i 0.999984 + 0.00557072i \(0.00177322\pi\)
−0.999984 + 0.00557072i \(0.998227\pi\)
\(132\) 0 0
\(133\) 2.16073i 0.187359i
\(134\) 0 0
\(135\) 0.540182i 0.0464914i
\(136\) 0 0
\(137\) −0.472136 −0.0403373 −0.0201686 0.999797i \(-0.506420\pi\)
−0.0201686 + 0.999797i \(0.506420\pi\)
\(138\) 0 0
\(139\) 7.70820 0.653801 0.326901 0.945059i \(-0.393996\pi\)
0.326901 + 0.945059i \(0.393996\pi\)
\(140\) 0 0
\(141\) −4.00000 −0.336861
\(142\) 0 0
\(143\) 11.3137i 0.946100i
\(144\) 0 0
\(145\) −4.29180 −0.356414
\(146\) 0 0
\(147\) 5.47214 0.451334
\(148\) 0 0
\(149\) 8.47214 0.694064 0.347032 0.937853i \(-0.387189\pi\)
0.347032 + 0.937853i \(0.387189\pi\)
\(150\) 0 0
\(151\) −20.9443 −1.70442 −0.852210 0.523199i \(-0.824738\pi\)
−0.852210 + 0.523199i \(0.824738\pi\)
\(152\) 0 0
\(153\) 3.36861i 0.272336i
\(154\) 0 0
\(155\) 3.41641 0.274412
\(156\) 0 0
\(157\) 24.1803 1.92980 0.964901 0.262615i \(-0.0845850\pi\)
0.964901 + 0.262615i \(0.0845850\pi\)
\(158\) 0 0
\(159\) −10.9443 −0.867937
\(160\) 0 0
\(161\) 10.6460i 0.839023i
\(162\) 0 0
\(163\) 10.6460i 0.833860i 0.908939 + 0.416930i \(0.136894\pi\)
−0.908939 + 0.416930i \(0.863106\pi\)
\(164\) 0 0
\(165\) 1.33540i 0.103961i
\(166\) 0 0
\(167\) 5.78437i 0.447608i −0.974634 0.223804i \(-0.928152\pi\)
0.974634 0.223804i \(-0.0718476\pi\)
\(168\) 0 0
\(169\) −7.94427 −0.611098
\(170\) 0 0
\(171\) 1.74806i 0.133678i
\(172\) 0 0
\(173\) 11.5279 0.876447 0.438224 0.898866i \(-0.355608\pi\)
0.438224 + 0.898866i \(0.355608\pi\)
\(174\) 0 0
\(175\) −5.81966 −0.439925
\(176\) 0 0
\(177\) 2.28825i 0.171995i
\(178\) 0 0
\(179\) 13.1893i 0.985814i 0.870082 + 0.492907i \(0.164066\pi\)
−0.870082 + 0.492907i \(0.835934\pi\)
\(180\) 0 0
\(181\) 7.23607 0.537853 0.268926 0.963161i \(-0.413331\pi\)
0.268926 + 0.963161i \(0.413331\pi\)
\(182\) 0 0
\(183\) 5.65685i 0.418167i
\(184\) 0 0
\(185\) −3.05573 1.20788i −0.224662 0.0888053i
\(186\) 0 0
\(187\) 8.32766i 0.608979i
\(188\) 0 0
\(189\) 1.23607 0.0899107
\(190\) 0 0
\(191\) 5.78437i 0.418543i −0.977858 0.209271i \(-0.932891\pi\)
0.977858 0.209271i \(-0.0671092\pi\)
\(192\) 0 0
\(193\) 11.3137i 0.814379i 0.913344 + 0.407189i \(0.133491\pi\)
−0.913344 + 0.407189i \(0.866509\pi\)
\(194\) 0 0
\(195\) 2.47214 0.177033
\(196\) 0 0
\(197\) −17.4164 −1.24087 −0.620434 0.784259i \(-0.713043\pi\)
−0.620434 + 0.784259i \(0.713043\pi\)
\(198\) 0 0
\(199\) 2.82843i 0.200502i 0.994962 + 0.100251i \(0.0319646\pi\)
−0.994962 + 0.100251i \(0.968035\pi\)
\(200\) 0 0
\(201\) 7.70820 0.543695
\(202\) 0 0
\(203\) 9.82068i 0.689277i
\(204\) 0 0
\(205\) 1.08036i 0.0754558i
\(206\) 0 0
\(207\) 8.61280i 0.598631i
\(208\) 0 0
\(209\) 4.32145i 0.298921i
\(210\) 0 0
\(211\) 17.8885 1.23150 0.615749 0.787942i \(-0.288854\pi\)
0.615749 + 0.787942i \(0.288854\pi\)
\(212\) 0 0
\(213\) 8.94427 0.612851
\(214\) 0 0
\(215\) 1.52786 0.104199
\(216\) 0 0
\(217\) 7.81758i 0.530692i
\(218\) 0 0
\(219\) −3.23607 −0.218673
\(220\) 0 0
\(221\) −15.4164 −1.03702
\(222\) 0 0
\(223\) −3.05573 −0.204627 −0.102313 0.994752i \(-0.532624\pi\)
−0.102313 + 0.994752i \(0.532624\pi\)
\(224\) 0 0
\(225\) 4.70820 0.313880
\(226\) 0 0
\(227\) 13.1893i 0.875404i 0.899120 + 0.437702i \(0.144208\pi\)
−0.899120 + 0.437702i \(0.855792\pi\)
\(228\) 0 0
\(229\) −0.472136 −0.0311996 −0.0155998 0.999878i \(-0.504966\pi\)
−0.0155998 + 0.999878i \(0.504966\pi\)
\(230\) 0 0
\(231\) 3.05573 0.201052
\(232\) 0 0
\(233\) −16.4721 −1.07913 −0.539563 0.841945i \(-0.681410\pi\)
−0.539563 + 0.841945i \(0.681410\pi\)
\(234\) 0 0
\(235\) 2.16073i 0.140950i
\(236\) 0 0
\(237\) 9.56564i 0.621355i
\(238\) 0 0
\(239\) 19.9265i 1.28894i 0.764630 + 0.644469i \(0.222922\pi\)
−0.764630 + 0.644469i \(0.777078\pi\)
\(240\) 0 0
\(241\) 3.24109i 0.208777i −0.994537 0.104388i \(-0.966711\pi\)
0.994537 0.104388i \(-0.0332885\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) 2.95595i 0.188849i
\(246\) 0 0
\(247\) 8.00000 0.509028
\(248\) 0 0
\(249\) −1.52786 −0.0968244
\(250\) 0 0
\(251\) 7.27740i 0.459345i −0.973268 0.229673i \(-0.926234\pi\)
0.973268 0.229673i \(-0.0737656\pi\)
\(252\) 0 0
\(253\) 21.2920i 1.33862i
\(254\) 0 0
\(255\) 1.81966 0.113952
\(256\) 0 0
\(257\) 27.9991i 1.74654i −0.487239 0.873269i \(-0.661996\pi\)
0.487239 0.873269i \(-0.338004\pi\)
\(258\) 0 0
\(259\) 2.76393 6.99226i 0.171742 0.434478i
\(260\) 0 0
\(261\) 7.94510i 0.491789i
\(262\) 0 0
\(263\) 27.4164 1.69057 0.845284 0.534317i \(-0.179431\pi\)
0.845284 + 0.534317i \(0.179431\pi\)
\(264\) 0 0
\(265\) 5.91189i 0.363165i
\(266\) 0 0
\(267\) 8.61280i 0.527095i
\(268\) 0 0
\(269\) 31.8885 1.94428 0.972139 0.234403i \(-0.0753137\pi\)
0.972139 + 0.234403i \(0.0753137\pi\)
\(270\) 0 0
\(271\) −1.81966 −0.110536 −0.0552682 0.998472i \(-0.517601\pi\)
−0.0552682 + 0.998472i \(0.517601\pi\)
\(272\) 0 0
\(273\) 5.65685i 0.342368i
\(274\) 0 0
\(275\) 11.6393 0.701877
\(276\) 0 0
\(277\) 8.07262i 0.485037i −0.970147 0.242518i \(-0.922027\pi\)
0.970147 0.242518i \(-0.0779735\pi\)
\(278\) 0 0
\(279\) 6.32456i 0.378641i
\(280\) 0 0
\(281\) 21.0069i 1.25316i −0.779355 0.626582i \(-0.784453\pi\)
0.779355 0.626582i \(-0.215547\pi\)
\(282\) 0 0
\(283\) 24.3755i 1.44897i 0.689290 + 0.724486i \(0.257923\pi\)
−0.689290 + 0.724486i \(0.742077\pi\)
\(284\) 0 0
\(285\) −0.944272 −0.0559338
\(286\) 0 0
\(287\) −2.47214 −0.145926
\(288\) 0 0
\(289\) 5.65248 0.332499
\(290\) 0 0
\(291\) 13.7295i 0.804836i
\(292\) 0 0
\(293\) −26.0000 −1.51894 −0.759468 0.650545i \(-0.774541\pi\)
−0.759468 + 0.650545i \(0.774541\pi\)
\(294\) 0 0
\(295\) −1.23607 −0.0719667
\(296\) 0 0
\(297\) −2.47214 −0.143448
\(298\) 0 0
\(299\) −39.4164 −2.27951
\(300\) 0 0
\(301\) 3.49613i 0.201513i
\(302\) 0 0
\(303\) 9.41641 0.540958
\(304\) 0 0
\(305\) 3.05573 0.174970
\(306\) 0 0
\(307\) −20.9443 −1.19535 −0.597676 0.801737i \(-0.703909\pi\)
−0.597676 + 0.801737i \(0.703909\pi\)
\(308\) 0 0
\(309\) 10.9010i 0.620139i
\(310\) 0 0
\(311\) 6.19704i 0.351402i 0.984444 + 0.175701i \(0.0562191\pi\)
−0.984444 + 0.175701i \(0.943781\pi\)
\(312\) 0 0
\(313\) 7.81758i 0.441876i −0.975288 0.220938i \(-0.929088\pi\)
0.975288 0.220938i \(-0.0709118\pi\)
\(314\) 0 0
\(315\) 0.667701i 0.0376207i
\(316\) 0 0
\(317\) 2.94427 0.165367 0.0826834 0.996576i \(-0.473651\pi\)
0.0826834 + 0.996576i \(0.473651\pi\)
\(318\) 0 0
\(319\) 19.6414i 1.09971i
\(320\) 0 0
\(321\) −2.47214 −0.137981
\(322\) 0 0
\(323\) 5.88854 0.327647
\(324\) 0 0
\(325\) 21.5471i 1.19522i
\(326\) 0 0
\(327\) 13.7295i 0.759242i
\(328\) 0 0
\(329\) −4.94427 −0.272587
\(330\) 0 0
\(331\) 25.7109i 1.41320i −0.707614 0.706599i \(-0.750229\pi\)
0.707614 0.706599i \(-0.249771\pi\)
\(332\) 0 0
\(333\) −2.23607 + 5.65685i −0.122536 + 0.309994i
\(334\) 0 0
\(335\) 4.16383i 0.227494i
\(336\) 0 0
\(337\) 4.47214 0.243613 0.121806 0.992554i \(-0.461131\pi\)
0.121806 + 0.992554i \(0.461131\pi\)
\(338\) 0 0
\(339\) 1.62054i 0.0880159i
\(340\) 0 0
\(341\) 15.6352i 0.846691i
\(342\) 0 0
\(343\) 15.4164 0.832408
\(344\) 0 0
\(345\) 4.65248 0.250481
\(346\) 0 0
\(347\) 26.2511i 1.40923i −0.709589 0.704615i \(-0.751120\pi\)
0.709589 0.704615i \(-0.248880\pi\)
\(348\) 0 0
\(349\) 7.81966 0.418577 0.209288 0.977854i \(-0.432885\pi\)
0.209288 + 0.977854i \(0.432885\pi\)
\(350\) 0 0
\(351\) 4.57649i 0.244275i
\(352\) 0 0
\(353\) 26.2511i 1.39720i −0.715511 0.698602i \(-0.753806\pi\)
0.715511 0.698602i \(-0.246194\pi\)
\(354\) 0 0
\(355\) 4.83153i 0.256431i
\(356\) 0 0
\(357\) 4.16383i 0.220373i
\(358\) 0 0
\(359\) 25.8885 1.36635 0.683173 0.730257i \(-0.260600\pi\)
0.683173 + 0.730257i \(0.260600\pi\)
\(360\) 0 0
\(361\) 15.9443 0.839172
\(362\) 0 0
\(363\) 4.88854 0.256582
\(364\) 0 0
\(365\) 1.74806i 0.0914979i
\(366\) 0 0
\(367\) −12.0000 −0.626395 −0.313197 0.949688i \(-0.601400\pi\)
−0.313197 + 0.949688i \(0.601400\pi\)
\(368\) 0 0
\(369\) 2.00000 0.104116
\(370\) 0 0
\(371\) −13.5279 −0.702332
\(372\) 0 0
\(373\) −14.6525 −0.758676 −0.379338 0.925258i \(-0.623848\pi\)
−0.379338 + 0.925258i \(0.623848\pi\)
\(374\) 0 0
\(375\) 5.24419i 0.270809i
\(376\) 0 0
\(377\) −36.3607 −1.87267
\(378\) 0 0
\(379\) 13.8197 0.709868 0.354934 0.934891i \(-0.384503\pi\)
0.354934 + 0.934891i \(0.384503\pi\)
\(380\) 0 0
\(381\) −12.0000 −0.614779
\(382\) 0 0
\(383\) 27.5865i 1.40960i 0.709405 + 0.704801i \(0.248964\pi\)
−0.709405 + 0.704801i \(0.751036\pi\)
\(384\) 0 0
\(385\) 1.65065i 0.0841248i
\(386\) 0 0
\(387\) 2.82843i 0.143777i
\(388\) 0 0
\(389\) 2.70091i 0.136941i −0.997653 0.0684707i \(-0.978188\pi\)
0.997653 0.0684707i \(-0.0218120\pi\)
\(390\) 0 0
\(391\) −29.0132 −1.46726
\(392\) 0 0
\(393\) 0.127520i 0.00643251i
\(394\) 0 0
\(395\) 5.16718 0.259989
\(396\) 0 0
\(397\) −19.2361 −0.965431 −0.482715 0.875777i \(-0.660349\pi\)
−0.482715 + 0.875777i \(0.660349\pi\)
\(398\) 0 0
\(399\) 2.16073i 0.108172i
\(400\) 0 0
\(401\) 25.9960i 1.29818i −0.760712 0.649090i \(-0.775150\pi\)
0.760712 0.649090i \(-0.224850\pi\)
\(402\) 0 0
\(403\) 28.9443 1.44182
\(404\) 0 0
\(405\) 0.540182i 0.0268418i
\(406\) 0 0
\(407\) −5.52786 + 13.9845i −0.274006 + 0.693187i
\(408\) 0 0
\(409\) 32.0354i 1.58405i −0.610488 0.792025i \(-0.709027\pi\)
0.610488 0.792025i \(-0.290973\pi\)
\(410\) 0 0
\(411\) 0.472136 0.0232887
\(412\) 0 0
\(413\) 2.82843i 0.139178i
\(414\) 0 0
\(415\) 0.825324i 0.0405136i
\(416\) 0 0
\(417\) −7.70820 −0.377472
\(418\) 0 0
\(419\) −12.0000 −0.586238 −0.293119 0.956076i \(-0.594693\pi\)
−0.293119 + 0.956076i \(0.594693\pi\)
\(420\) 0 0
\(421\) 17.2256i 0.839524i −0.907634 0.419762i \(-0.862113\pi\)
0.907634 0.419762i \(-0.137887\pi\)
\(422\) 0 0
\(423\) 4.00000 0.194487
\(424\) 0 0
\(425\) 15.8601i 0.769328i
\(426\) 0 0
\(427\) 6.99226i 0.338379i
\(428\) 0 0
\(429\) 11.3137i 0.546231i
\(430\) 0 0
\(431\) 12.1089i 0.583267i −0.956530 0.291633i \(-0.905801\pi\)
0.956530 0.291633i \(-0.0941987\pi\)
\(432\) 0 0
\(433\) 3.81966 0.183561 0.0917806 0.995779i \(-0.470744\pi\)
0.0917806 + 0.995779i \(0.470744\pi\)
\(434\) 0 0
\(435\) 4.29180 0.205776
\(436\) 0 0
\(437\) 15.0557 0.720213
\(438\) 0 0
\(439\) 34.6088i 1.65179i −0.563825 0.825895i \(-0.690671\pi\)
0.563825 0.825895i \(-0.309329\pi\)
\(440\) 0 0
\(441\) −5.47214 −0.260578
\(442\) 0 0
\(443\) −35.4164 −1.68268 −0.841342 0.540503i \(-0.818234\pi\)
−0.841342 + 0.540503i \(0.818234\pi\)
\(444\) 0 0
\(445\) 4.65248 0.220549
\(446\) 0 0
\(447\) −8.47214 −0.400718
\(448\) 0 0
\(449\) 10.3609i 0.488959i −0.969654 0.244480i \(-0.921383\pi\)
0.969654 0.244480i \(-0.0786172\pi\)
\(450\) 0 0
\(451\) 4.94427 0.232817
\(452\) 0 0
\(453\) 20.9443 0.984048
\(454\) 0 0
\(455\) 3.05573 0.143255
\(456\) 0 0
\(457\) 32.0354i 1.49855i −0.662256 0.749277i \(-0.730401\pi\)
0.662256 0.749277i \(-0.269599\pi\)
\(458\) 0 0
\(459\) 3.36861i 0.157233i
\(460\) 0 0
\(461\) 25.8384i 1.20341i −0.798717 0.601707i \(-0.794487\pi\)
0.798717 0.601707i \(-0.205513\pi\)
\(462\) 0 0
\(463\) 25.4558i 1.18303i 0.806293 + 0.591517i \(0.201471\pi\)
−0.806293 + 0.591517i \(0.798529\pi\)
\(464\) 0 0
\(465\) −3.41641 −0.158432
\(466\) 0 0
\(467\) 34.3237i 1.58831i −0.607715 0.794155i \(-0.707914\pi\)
0.607715 0.794155i \(-0.292086\pi\)
\(468\) 0 0
\(469\) 9.52786 0.439956
\(470\) 0 0
\(471\) −24.1803 −1.11417
\(472\) 0 0
\(473\) 6.99226i 0.321504i
\(474\) 0 0
\(475\) 8.23024i 0.377629i
\(476\) 0 0
\(477\) 10.9443 0.501104
\(478\) 0 0
\(479\) 42.1413i 1.92548i 0.270422 + 0.962742i \(0.412837\pi\)
−0.270422 + 0.962742i \(0.587163\pi\)
\(480\) 0 0
\(481\) −25.8885 10.2333i −1.18042 0.466600i
\(482\) 0 0
\(483\) 10.6460i 0.484410i
\(484\) 0 0
\(485\) 7.41641 0.336762
\(486\) 0 0
\(487\) 8.74032i 0.396062i 0.980196 + 0.198031i \(0.0634546\pi\)
−0.980196 + 0.198031i \(0.936545\pi\)
\(488\) 0 0
\(489\) 10.6460i 0.481429i
\(490\) 0 0
\(491\) 35.4164 1.59832 0.799160 0.601118i \(-0.205278\pi\)
0.799160 + 0.601118i \(0.205278\pi\)
\(492\) 0 0
\(493\) −26.7639 −1.20539
\(494\) 0 0
\(495\) 1.33540i 0.0600219i
\(496\) 0 0
\(497\) 11.0557 0.495917
\(498\) 0 0
\(499\) 4.16383i 0.186399i −0.995647 0.0931993i \(-0.970291\pi\)
0.995647 0.0931993i \(-0.0297094\pi\)
\(500\) 0 0
\(501\) 5.78437i 0.258427i
\(502\) 0 0
\(503\) 4.44897i 0.198370i 0.995069 + 0.0991849i \(0.0316235\pi\)
−0.995069 + 0.0991849i \(0.968376\pi\)
\(504\) 0 0
\(505\) 5.08657i 0.226349i
\(506\) 0 0
\(507\) 7.94427 0.352818
\(508\) 0 0
\(509\) 9.05573 0.401388 0.200694 0.979654i \(-0.435680\pi\)
0.200694 + 0.979654i \(0.435680\pi\)
\(510\) 0 0
\(511\) −4.00000 −0.176950
\(512\) 0 0
\(513\) 1.74806i 0.0771789i
\(514\) 0 0
\(515\) 5.88854 0.259480
\(516\) 0 0
\(517\) 9.88854 0.434898
\(518\) 0 0
\(519\) −11.5279 −0.506017
\(520\) 0 0
\(521\) −14.5836 −0.638919 −0.319459 0.947600i \(-0.603501\pi\)
−0.319459 + 0.947600i \(0.603501\pi\)
\(522\) 0 0
\(523\) 11.9814i 0.523910i 0.965080 + 0.261955i \(0.0843673\pi\)
−0.965080 + 0.261955i \(0.915633\pi\)
\(524\) 0 0
\(525\) 5.81966 0.253991
\(526\) 0 0
\(527\) 21.3050 0.928058
\(528\) 0 0
\(529\) −51.1803 −2.22523
\(530\) 0 0
\(531\) 2.28825i 0.0993014i
\(532\) 0 0
\(533\) 9.15298i 0.396460i
\(534\) 0 0
\(535\) 1.33540i 0.0577345i
\(536\) 0 0
\(537\) 13.1893i 0.569160i
\(538\) 0 0
\(539\) −13.5279 −0.582686
\(540\) 0 0
\(541\) 11.5687i 0.497379i 0.968583 + 0.248690i \(0.0799999\pi\)
−0.968583 + 0.248690i \(0.920000\pi\)
\(542\) 0 0
\(543\) −7.23607 −0.310529
\(544\) 0 0
\(545\) −7.41641 −0.317684
\(546\) 0 0
\(547\) 18.9737i 0.811255i 0.914038 + 0.405628i \(0.132947\pi\)
−0.914038 + 0.405628i \(0.867053\pi\)
\(548\) 0 0
\(549\) 5.65685i 0.241429i
\(550\) 0 0
\(551\) 13.8885 0.591672
\(552\) 0 0
\(553\) 11.8238i 0.502799i
\(554\) 0 0
\(555\) 3.05573 + 1.20788i 0.129708 + 0.0512718i
\(556\) 0 0
\(557\) 25.9960i 1.10149i 0.834675 + 0.550743i \(0.185656\pi\)
−0.834675 + 0.550743i \(0.814344\pi\)
\(558\) 0 0
\(559\) 12.9443 0.547484
\(560\) 0 0
\(561\) 8.32766i 0.351594i
\(562\) 0 0
\(563\) 26.9188i 1.13449i 0.823549 + 0.567245i \(0.191991\pi\)
−0.823549 + 0.567245i \(0.808009\pi\)
\(564\) 0 0
\(565\) 0.875388 0.0368279
\(566\) 0 0
\(567\) −1.23607 −0.0519100
\(568\) 0 0
\(569\) 39.3128i 1.64808i 0.566532 + 0.824040i \(0.308285\pi\)
−0.566532 + 0.824040i \(0.691715\pi\)
\(570\) 0 0
\(571\) 23.7082 0.992157 0.496079 0.868278i \(-0.334773\pi\)
0.496079 + 0.868278i \(0.334773\pi\)
\(572\) 0 0
\(573\) 5.78437i 0.241646i
\(574\) 0 0
\(575\) 40.5508i 1.69109i
\(576\) 0 0
\(577\) 28.7943i 1.19872i 0.800478 + 0.599362i \(0.204579\pi\)
−0.800478 + 0.599362i \(0.795421\pi\)
\(578\) 0 0
\(579\) 11.3137i 0.470182i
\(580\) 0 0
\(581\) −1.88854 −0.0783500
\(582\) 0 0
\(583\) 27.0557 1.12053
\(584\) 0 0
\(585\) −2.47214 −0.102210
\(586\) 0 0
\(587\) 29.9048i 1.23430i −0.786844 0.617152i \(-0.788286\pi\)
0.786844 0.617152i \(-0.211714\pi\)
\(588\) 0 0
\(589\) −11.0557 −0.455543
\(590\) 0 0
\(591\) 17.4164 0.716415
\(592\) 0 0
\(593\) 0.111456 0.00457696 0.00228848 0.999997i \(-0.499272\pi\)
0.00228848 + 0.999997i \(0.499272\pi\)
\(594\) 0 0
\(595\) 2.24922 0.0922092
\(596\) 0 0
\(597\) 2.82843i 0.115760i
\(598\) 0 0
\(599\) −14.4721 −0.591315 −0.295658 0.955294i \(-0.595539\pi\)
−0.295658 + 0.955294i \(0.595539\pi\)
\(600\) 0 0
\(601\) 31.2361 1.27415 0.637073 0.770804i \(-0.280145\pi\)
0.637073 + 0.770804i \(0.280145\pi\)
\(602\) 0 0
\(603\) −7.70820 −0.313902
\(604\) 0 0
\(605\) 2.64070i 0.107360i
\(606\) 0 0
\(607\) 38.3600i 1.55698i −0.627654 0.778492i \(-0.715985\pi\)
0.627654 0.778492i \(-0.284015\pi\)
\(608\) 0 0
\(609\) 9.82068i 0.397954i
\(610\) 0 0
\(611\) 18.3060i 0.740580i
\(612\) 0 0
\(613\) 42.7214 1.72550 0.862750 0.505631i \(-0.168740\pi\)
0.862750 + 0.505631i \(0.168740\pi\)
\(614\) 0 0
\(615\) 1.08036i 0.0435644i
\(616\) 0 0
\(617\) 35.8885 1.44482 0.722409 0.691466i \(-0.243035\pi\)
0.722409 + 0.691466i \(0.243035\pi\)
\(618\) 0 0
\(619\) −28.0000 −1.12542 −0.562708 0.826656i \(-0.690240\pi\)
−0.562708 + 0.826656i \(0.690240\pi\)
\(620\) 0 0
\(621\) 8.61280i 0.345620i
\(622\) 0 0
\(623\) 10.6460i 0.426523i
\(624\) 0 0
\(625\) 20.7082 0.828328
\(626\) 0 0
\(627\) 4.32145i 0.172582i
\(628\) 0 0
\(629\) −19.0557 7.53244i −0.759802 0.300338i
\(630\) 0 0
\(631\) 0.412662i 0.0164278i 0.999966 + 0.00821391i \(0.00261460\pi\)
−0.999966 + 0.00821391i \(0.997385\pi\)
\(632\) 0 0
\(633\) −17.8885 −0.711006
\(634\) 0 0
\(635\) 6.48218i 0.257237i
\(636\) 0 0
\(637\) 25.0432i 0.992247i
\(638\) 0 0
\(639\) −8.94427 −0.353830
\(640\) 0 0
\(641\) −6.58359 −0.260036 −0.130018 0.991512i \(-0.541504\pi\)
−0.130018 + 0.991512i \(0.541504\pi\)
\(642\) 0 0
\(643\) 32.1931i 1.26957i 0.772689 + 0.634785i \(0.218911\pi\)
−0.772689 + 0.634785i \(0.781089\pi\)
\(644\) 0 0
\(645\) −1.52786 −0.0601596
\(646\) 0 0
\(647\) 16.8430i 0.662168i 0.943601 + 0.331084i \(0.107414\pi\)
−0.943601 + 0.331084i \(0.892586\pi\)
\(648\) 0 0
\(649\) 5.65685i 0.222051i
\(650\) 0 0
\(651\) 7.81758i 0.306395i
\(652\) 0 0
\(653\) 23.8353i 0.932747i 0.884588 + 0.466374i \(0.154440\pi\)
−0.884588 + 0.466374i \(0.845560\pi\)
\(654\) 0 0
\(655\) −0.0688837 −0.00269151
\(656\) 0 0
\(657\) 3.23607 0.126251
\(658\) 0 0
\(659\) 21.5279 0.838607 0.419303 0.907846i \(-0.362274\pi\)
0.419303 + 0.907846i \(0.362274\pi\)
\(660\) 0 0
\(661\) 13.9845i 0.543935i 0.962307 + 0.271967i \(0.0876742\pi\)
−0.962307 + 0.271967i \(0.912326\pi\)
\(662\) 0 0
\(663\) 15.4164 0.598724
\(664\) 0 0
\(665\) −1.16718 −0.0452615
\(666\) 0 0
\(667\) −68.4296 −2.64960
\(668\) 0 0
\(669\) 3.05573 0.118141
\(670\) 0 0
\(671\) 13.9845i 0.539866i
\(672\) 0 0
\(673\) 2.29180 0.0883422 0.0441711 0.999024i \(-0.485935\pi\)
0.0441711 + 0.999024i \(0.485935\pi\)
\(674\) 0 0
\(675\) −4.70820 −0.181219
\(676\) 0 0
\(677\) 2.94427 0.113158 0.0565788 0.998398i \(-0.481981\pi\)
0.0565788 + 0.998398i \(0.481981\pi\)
\(678\) 0 0
\(679\) 16.9706i 0.651270i
\(680\) 0 0
\(681\) 13.1893i 0.505415i
\(682\) 0 0
\(683\) 11.1862i 0.428028i −0.976831 0.214014i \(-0.931346\pi\)
0.976831 0.214014i \(-0.0686538\pi\)
\(684\) 0 0
\(685\) 0.255039i 0.00974454i
\(686\) 0 0
\(687\) 0.472136 0.0180131
\(688\) 0 0
\(689\) 50.0864i 1.90814i
\(690\) 0 0
\(691\) −20.6525 −0.785657 −0.392829 0.919612i \(-0.628503\pi\)
−0.392829 + 0.919612i \(0.628503\pi\)
\(692\) 0 0
\(693\) −3.05573 −0.116078
\(694\) 0 0
\(695\) 4.16383i 0.157943i
\(696\) 0 0
\(697\) 6.73722i 0.255190i
\(698\) 0 0
\(699\) 16.4721 0.623033
\(700\) 0 0
\(701\) 40.2356i 1.51968i 0.650112 + 0.759838i \(0.274722\pi\)
−0.650112 + 0.759838i \(0.725278\pi\)
\(702\) 0 0
\(703\) 9.88854 + 3.90879i 0.372953 + 0.147423i
\(704\) 0 0
\(705\) 2.16073i 0.0813777i
\(706\) 0 0
\(707\) 11.6393 0.437742
\(708\) 0 0
\(709\) 42.0137i 1.57786i −0.614484 0.788930i \(-0.710636\pi\)
0.614484 0.788930i \(-0.289364\pi\)
\(710\) 0 0
\(711\) 9.56564i 0.358740i
\(712\) 0 0
\(713\) 54.4721 2.04000
\(714\) 0 0
\(715\) −6.11146 −0.228556
\(716\) 0 0
\(717\) 19.9265i 0.744169i
\(718\) 0 0
\(719\) 39.4164 1.46998 0.734992 0.678076i \(-0.237186\pi\)
0.734992 + 0.678076i \(0.237186\pi\)
\(720\) 0 0
\(721\) 13.4744i 0.501814i
\(722\) 0 0
\(723\) 3.24109i 0.120537i
\(724\) 0 0
\(725\) 37.4072i 1.38927i
\(726\) 0 0
\(727\) 30.2874i 1.12330i −0.827376 0.561648i \(-0.810167\pi\)
0.827376 0.561648i \(-0.189833\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 9.52786 0.352401
\(732\) 0 0
\(733\) −2.94427 −0.108749 −0.0543746 0.998521i \(-0.517317\pi\)
−0.0543746 + 0.998521i \(0.517317\pi\)
\(734\) 0 0
\(735\) 2.95595i 0.109032i
\(736\) 0 0
\(737\) −19.0557 −0.701927
\(738\) 0 0
\(739\) −0.944272 −0.0347356 −0.0173678 0.999849i \(-0.505529\pi\)
−0.0173678 + 0.999849i \(0.505529\pi\)
\(740\) 0 0
\(741\) −8.00000 −0.293887
\(742\) 0 0
\(743\) −40.9443 −1.50210 −0.751050 0.660246i \(-0.770452\pi\)
−0.751050 + 0.660246i \(0.770452\pi\)
\(744\) 0 0
\(745\) 4.57649i 0.167670i
\(746\) 0 0
\(747\) 1.52786 0.0559016
\(748\) 0 0
\(749\) −3.05573 −0.111654
\(750\) 0 0
\(751\) −3.70820 −0.135314 −0.0676571 0.997709i \(-0.521552\pi\)
−0.0676571 + 0.997709i \(0.521552\pi\)
\(752\) 0 0
\(753\) 7.27740i 0.265203i
\(754\) 0 0
\(755\) 11.3137i 0.411748i
\(756\) 0 0
\(757\) 39.8530i 1.44848i 0.689547 + 0.724241i \(0.257810\pi\)
−0.689547 + 0.724241i \(0.742190\pi\)
\(758\) 0 0
\(759\) 21.2920i 0.772851i
\(760\) 0 0
\(761\) 20.4721 0.742114 0.371057 0.928610i \(-0.378995\pi\)
0.371057 + 0.928610i \(0.378995\pi\)
\(762\) 0 0
\(763\) 16.9706i 0.614376i
\(764\) 0 0
\(765\) −1.81966 −0.0657900
\(766\) 0 0
\(767\) −10.4721 −0.378127
\(768\) 0 0
\(769\) 49.2610i 1.77640i −0.459458 0.888199i \(-0.651956\pi\)
0.459458 0.888199i \(-0.348044\pi\)
\(770\) 0 0
\(771\) 27.9991i 1.00836i
\(772\) 0 0
\(773\) 10.3607 0.372648 0.186324 0.982488i \(-0.440343\pi\)
0.186324 + 0.982488i \(0.440343\pi\)
\(774\) 0 0
\(775\) 29.7773i 1.06963i
\(776\) 0 0
\(777\) −2.76393 + 6.99226i −0.0991555 + 0.250846i
\(778\) 0 0
\(779\) 3.49613i 0.125262i
\(780\) 0 0
\(781\) −22.1115 −0.791210
\(782\) 0 0
\(783\) 7.94510i 0.283935i
\(784\) 0 0
\(785\) 13.0618i 0.466195i
\(786\) 0 0
\(787\) 22.8328 0.813902 0.406951 0.913450i \(-0.366592\pi\)
0.406951 + 0.913450i \(0.366592\pi\)
\(788\) 0 0
\(789\) −27.4164 −0.976050
\(790\) 0 0
\(791\) 2.00310i 0.0712222i
\(792\) 0 0
\(793\) 25.8885 0.919329
\(794\) 0 0
\(795\) 5.91189i 0.209673i
\(796\) 0 0
\(797\) 22.5973i 0.800438i 0.916420 + 0.400219i \(0.131066\pi\)
−0.916420 + 0.400219i \(0.868934\pi\)
\(798\) 0 0
\(799\) 13.4744i 0.476691i
\(800\) 0 0
\(801\) 8.61280i 0.304318i
\(802\) 0 0
\(803\) 8.00000 0.282314
\(804\) 0 0
\(805\) 5.75078 0.202688
\(806\) 0 0
\(807\) −31.8885 −1.12253
\(808\) 0 0
\(809\) 17.2557i 0.606678i 0.952883 + 0.303339i \(0.0981015\pi\)
−0.952883 + 0.303339i \(0.901898\pi\)
\(810\) 0 0
\(811\) 11.3475 0.398465 0.199233 0.979952i \(-0.436155\pi\)
0.199233 + 0.979952i \(0.436155\pi\)
\(812\) 0 0
\(813\) 1.81966 0.0638183
\(814\) 0 0
\(815\) −5.75078 −0.201441
\(816\) 0 0
\(817\) −4.94427 −0.172978
\(818\) 0 0
\(819\) 5.65685i 0.197666i
\(820\) 0 0
\(821\) −28.4721 −0.993684 −0.496842 0.867841i \(-0.665507\pi\)
−0.496842 + 0.867841i \(0.665507\pi\)
\(822\) 0 0
\(823\) 17.8885 0.623555 0.311778 0.950155i \(-0.399076\pi\)
0.311778 + 0.950155i \(0.399076\pi\)
\(824\) 0 0
\(825\) −11.6393 −0.405229
\(826\) 0 0
\(827\) 41.4736i 1.44218i −0.692843 0.721089i \(-0.743642\pi\)
0.692843 0.721089i \(-0.256358\pi\)
\(828\) 0 0
\(829\) 19.3863i 0.673315i −0.941627 0.336657i \(-0.890704\pi\)
0.941627 0.336657i \(-0.109296\pi\)
\(830\) 0 0
\(831\) 8.07262i 0.280036i
\(832\) 0 0
\(833\) 18.4335i 0.638682i
\(834\) 0 0
\(835\) 3.12461 0.108132
\(836\) 0 0
\(837\) 6.32456i 0.218609i
\(838\) 0 0
\(839\) 29.3050 1.01172 0.505860 0.862616i \(-0.331175\pi\)
0.505860 + 0.862616i \(0.331175\pi\)
\(840\) 0 0
\(841\) −34.1246 −1.17671
\(842\) 0 0
\(843\) 21.0069i 0.723515i
\(844\) 0 0
\(845\) 4.29135i 0.147627i
\(846\) 0 0
\(847\) 6.04257 0.207625
\(848\) 0 0
\(849\) 24.3755i 0.836564i
\(850\) 0 0
\(851\) −48.7214 19.2588i −1.67015 0.660183i
\(852\) 0 0
\(853\) 23.1375i 0.792213i 0.918205 + 0.396106i \(0.129639\pi\)
−0.918205 + 0.396106i \(0.870361\pi\)
\(854\) 0 0
\(855\) 0.944272 0.0322934
\(856\) 0 0
\(857\) 47.3855i 1.61866i 0.587357 + 0.809328i \(0.300169\pi\)
−0.587357 + 0.809328i \(0.699831\pi\)
\(858\) 0 0
\(859\) 16.3029i 0.556246i −0.960545 0.278123i \(-0.910288\pi\)
0.960545 0.278123i \(-0.0897124\pi\)
\(860\) 0 0
\(861\) 2.47214 0.0842502
\(862\) 0 0
\(863\) −36.3607 −1.23773 −0.618866 0.785497i \(-0.712408\pi\)
−0.618866 + 0.785497i \(0.712408\pi\)
\(864\) 0 0
\(865\) 6.22714i 0.211729i
\(866\) 0 0
\(867\) −5.65248 −0.191968
\(868\) 0 0
\(869\) 23.6476i 0.802189i
\(870\) 0 0
\(871\) 35.2765i 1.19530i
\(872\) 0 0
\(873\) 13.7295i 0.464672i
\(874\) 0 0
\(875\) 6.48218i 0.219138i
\(876\) 0 0
\(877\) 19.2361 0.649556 0.324778 0.945790i \(-0.394710\pi\)
0.324778 + 0.945790i \(0.394710\pi\)
\(878\) 0 0
\(879\) 26.0000 0.876958
\(880\) 0 0
\(881\) 52.4721 1.76783 0.883916 0.467646i \(-0.154898\pi\)
0.883916 + 0.467646i \(0.154898\pi\)
\(882\) 0 0
\(883\) 29.2070i 0.982894i 0.870907 + 0.491447i \(0.163532\pi\)
−0.870907 + 0.491447i \(0.836468\pi\)
\(884\) 0 0
\(885\) 1.23607 0.0415500
\(886\) 0 0
\(887\) −46.4721 −1.56038 −0.780191 0.625542i \(-0.784878\pi\)
−0.780191 + 0.625542i \(0.784878\pi\)
\(888\) 0 0
\(889\) −14.8328 −0.497477
\(890\) 0 0
\(891\) 2.47214 0.0828197
\(892\) 0 0
\(893\) 6.99226i 0.233987i
\(894\) 0 0
\(895\) −7.12461 −0.238150
\(896\) 0 0
\(897\) 39.4164 1.31608
\(898\) 0 0
\(899\) 50.2492 1.67591
\(900\) 0 0
\(901\) 36.8670i 1.22822i
\(902\) 0 0
\(903\) 3.49613i 0.116344i
\(904\) 0 0
\(905\) 3.90879i 0.129933i
\(906\) 0 0
\(907\) 39.4404i 1.30960i −0.755804 0.654798i \(-0.772754\pi\)
0.755804 0.654798i \(-0.227246\pi\)
\(908\) 0 0
\(909\) −9.41641 −0.312323
\(910\) 0 0
\(911\) 11.6963i 0.387515i −0.981049 0.193757i \(-0.937933\pi\)
0.981049 0.193757i \(-0.0620674\pi\)
\(912\) 0 0
\(913\) 3.77709 0.125003
\(914\) 0 0
\(915\) −3.05573 −0.101019
\(916\) 0 0
\(917\) 0.157623i 0.00520516i
\(918\) 0 0
\(919\) 23.0401i 0.760022i −0.924982 0.380011i \(-0.875920\pi\)
0.924982 0.380011i \(-0.124080\pi\)
\(920\) 0 0
\(921\) 20.9443 0.690137
\(922\) 0 0
\(923\) 40.9334i 1.34734i
\(924\) 0 0
\(925\) −10.5279 + 26.6336i −0.346154 + 0.875708i
\(926\) 0 0
\(927\) 10.9010i 0.358037i
\(928\) 0 0
\(929\) −15.8885 −0.521286 −0.260643 0.965435i \(-0.583935\pi\)
−0.260643 + 0.965435i \(0.583935\pi\)
\(930\) 0 0
\(931\) 9.56564i 0.313501i
\(932\) 0 0
\(933\) 6.19704i 0.202882i
\(934\) 0 0
\(935\) −4.49845 −0.147115
\(936\) 0 0
\(937\) −34.3607 −1.12251 −0.561257 0.827641i \(-0.689682\pi\)
−0.561257 + 0.827641i \(0.689682\pi\)
\(938\) 0 0
\(939\) 7.81758i 0.255117i
\(940\) 0 0
\(941\) 18.3607 0.598541 0.299271 0.954168i \(-0.403257\pi\)
0.299271 + 0.954168i \(0.403257\pi\)
\(942\) 0 0
\(943\) 17.2256i 0.560943i
\(944\) 0 0
\(945\) 0.667701i 0.0217203i
\(946\) 0 0
\(947\) 23.1676i 0.752846i −0.926448 0.376423i \(-0.877154\pi\)
0.926448 0.376423i \(-0.122846\pi\)
\(948\) 0 0
\(949\) 14.8098i 0.480748i
\(950\) 0 0
\(951\) −2.94427 −0.0954746
\(952\) 0 0
\(953\) 7.52786 0.243851 0.121926 0.992539i \(-0.461093\pi\)
0.121926 + 0.992539i \(0.461093\pi\)
\(954\) 0 0
\(955\) 3.12461 0.101110
\(956\) 0 0
\(957\) 19.6414i 0.634915i
\(958\) 0 0
\(959\) 0.583592 0.0188452
\(960\) 0 0
\(961\) −9.00000 −0.290323
\(962\) 0 0
\(963\) 2.47214 0.0796635
\(964\) 0 0
\(965\) −6.11146 −0.196735
\(966\) 0 0
\(967\) 11.9814i 0.385296i −0.981268 0.192648i \(-0.938292\pi\)
0.981268 0.192648i \(-0.0617076\pi\)
\(968\) 0 0
\(969\) −5.88854 −0.189167
\(970\) 0 0
\(971\) −58.2492 −1.86931 −0.934653 0.355560i \(-0.884290\pi\)
−0.934653 + 0.355560i \(0.884290\pi\)
\(972\) 0 0
\(973\) −9.52786 −0.305449
\(974\) 0 0
\(975\) 21.5471i 0.690058i
\(976\) 0 0
\(977\) 31.0826i 0.994420i 0.867630 + 0.497210i \(0.165642\pi\)
−0.867630 + 0.497210i \(0.834358\pi\)
\(978\) 0 0
\(979\) 21.2920i 0.680496i
\(980\) 0 0
\(981\) 13.7295i 0.438348i
\(982\) 0 0
\(983\) −39.7771 −1.26869 −0.634346 0.773049i \(-0.718731\pi\)
−0.634346 + 0.773049i \(0.718731\pi\)
\(984\) 0 0
\(985\) 9.40802i 0.299764i
\(986\) 0 0
\(987\) 4.94427 0.157378
\(988\) 0 0
\(989\) 24.3607 0.774625
\(990\) 0 0
\(991\) 5.49923i 0.174689i 0.996178 + 0.0873444i \(0.0278381\pi\)
−0.996178 + 0.0873444i \(0.972162\pi\)
\(992\) 0 0
\(993\) 25.7109i 0.815910i
\(994\) 0 0
\(995\) −1.52786 −0.0484365
\(996\) 0 0
\(997\) 42.2688i 1.33867i −0.742963 0.669333i \(-0.766580\pi\)
0.742963 0.669333i \(-0.233420\pi\)
\(998\) 0 0
\(999\) 2.23607 5.65685i 0.0707461 0.178975i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 444.2.e.a.73.3 yes 4
3.2 odd 2 1332.2.e.e.73.2 4
4.3 odd 2 1776.2.h.f.961.3 4
12.11 even 2 5328.2.h.g.2737.2 4
37.36 even 2 inner 444.2.e.a.73.2 4
111.110 odd 2 1332.2.e.e.73.3 4
148.147 odd 2 1776.2.h.f.961.2 4
444.443 even 2 5328.2.h.g.2737.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
444.2.e.a.73.2 4 37.36 even 2 inner
444.2.e.a.73.3 yes 4 1.1 even 1 trivial
1332.2.e.e.73.2 4 3.2 odd 2
1332.2.e.e.73.3 4 111.110 odd 2
1776.2.h.f.961.2 4 148.147 odd 2
1776.2.h.f.961.3 4 4.3 odd 2
5328.2.h.g.2737.2 4 12.11 even 2
5328.2.h.g.2737.3 4 444.443 even 2