Defining parameters
Level: | \( N \) | \(=\) | \( 444 = 2^{2} \cdot 3 \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 444.e (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 37 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(152\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(444, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 82 | 8 | 74 |
Cusp forms | 70 | 8 | 62 |
Eisenstein series | 12 | 0 | 12 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(444, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
444.2.e.a | $4$ | $3.545$ | \(\Q(\sqrt{-2}, \sqrt{5})\) | None | \(0\) | \(-4\) | \(0\) | \(4\) | \(q-q^{3}-\beta _{1}q^{5}+(1-\beta _{3})q^{7}+q^{9}+(-2+\cdots)q^{11}+\cdots\) |
444.2.e.b | $4$ | $3.545$ | 4.0.32448.1 | None | \(0\) | \(4\) | \(0\) | \(-4\) | \(q+q^{3}+\beta _{1}q^{5}+(-1+\beta _{2})q^{7}+q^{9}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(444, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(444, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(37, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(74, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(111, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(148, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(222, [\chi])\)\(^{\oplus 2}\)