Properties

Label 441.2.w.a.62.15
Level $441$
Weight $2$
Character 441.62
Analytic conductor $3.521$
Analytic rank $0$
Dimension $120$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [441,2,Mod(62,441)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("441.62"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(441, base_ring=CyclotomicField(14)) chi = DirichletCharacter(H, H._module([7, 11])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 441 = 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 441.w (of order \(14\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.52140272914\)
Analytic rank: \(0\)
Dimension: \(120\)
Relative dimension: \(20\) over \(\Q(\zeta_{14})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{14}]$

Embedding invariants

Embedding label 62.15
Character \(\chi\) \(=\) 441.62
Dual form 441.2.w.a.377.15

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.61687 - 0.369040i) q^{2} +(0.676145 - 0.325614i) q^{4} +(1.24446 + 1.56050i) q^{5} +(0.123672 + 2.64286i) q^{7} +(-1.62019 + 1.29205i) q^{8} +(2.58801 + 2.06387i) q^{10} +(2.40273 - 0.548408i) q^{11} +(1.35794 - 0.309940i) q^{13} +(1.17528 + 4.22752i) q^{14} +(-3.07863 + 3.86047i) q^{16} +(-0.767970 - 0.369835i) q^{17} -4.70463i q^{19} +(1.34955 + 0.649911i) q^{20} +(3.68252 - 1.77341i) q^{22} +(2.52474 + 5.24267i) q^{23} +(0.226121 - 0.990699i) q^{25} +(2.08123 - 1.00227i) q^{26} +(0.944173 + 1.74669i) q^{28} +(0.0840694 - 0.174572i) q^{29} -7.85760i q^{31} +(-1.75480 + 3.64388i) q^{32} +(-1.37819 - 0.314564i) q^{34} +(-3.97027 + 3.48191i) q^{35} +(-2.46389 - 1.18655i) q^{37} +(-1.73620 - 7.60678i) q^{38} +(-4.03250 - 0.920391i) q^{40} +(-4.44530 - 5.57423i) q^{41} +(7.98148 - 10.0085i) q^{43} +(1.44603 - 1.15317i) q^{44} +(6.01693 + 7.54500i) q^{46} +(0.467248 + 2.04715i) q^{47} +(-6.96941 + 0.653696i) q^{49} -1.68528i q^{50} +(0.817242 - 0.651729i) q^{52} +(4.06653 + 8.44425i) q^{53} +(3.84588 + 3.06699i) q^{55} +(-3.61509 - 4.12213i) q^{56} +(0.0715054 - 0.313285i) q^{58} +(-8.03149 + 10.0712i) q^{59} +(-0.510260 + 1.05957i) q^{61} +(-2.89977 - 12.7047i) q^{62} +(0.704949 - 3.08858i) q^{64} +(2.17355 + 1.73335i) q^{65} +2.43390 q^{67} -0.639683 q^{68} +(-5.13445 + 7.09499i) q^{70} +(1.39482 + 2.89637i) q^{71} +(-9.99800 - 2.28198i) q^{73} +(-4.42168 - 1.00922i) q^{74} +(-1.53190 - 3.18101i) q^{76} +(1.74652 + 6.28226i) q^{77} -6.60146 q^{79} -9.85548 q^{80} +(-9.24459 - 7.37232i) q^{82} +(3.17998 - 13.9324i) q^{83} +(-0.378578 - 1.65866i) q^{85} +(9.21150 - 19.1279i) q^{86} +(-3.18430 + 3.99298i) q^{88} +(0.346714 - 1.51906i) q^{89} +(0.987068 + 3.55051i) q^{91} +(3.41418 + 2.72272i) q^{92} +(1.51096 + 3.13754i) q^{94} +(7.34156 - 5.85470i) q^{95} +0.726497i q^{97} +(-11.0274 + 3.62894i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 120 q + 24 q^{4} - 32 q^{16} - 44 q^{22} - 4 q^{25} - 56 q^{28} + 112 q^{34} - 76 q^{37} + 28 q^{40} + 8 q^{43} - 40 q^{46} - 84 q^{49} - 140 q^{52} + 12 q^{58} - 84 q^{61} + 24 q^{64} + 16 q^{67} + 112 q^{70}+ \cdots - 112 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/441\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(344\)
\(\chi(n)\) \(e\left(\frac{11}{14}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.61687 0.369040i 1.14330 0.260951i 0.391396 0.920222i \(-0.371992\pi\)
0.751905 + 0.659271i \(0.229135\pi\)
\(3\) 0 0
\(4\) 0.676145 0.325614i 0.338073 0.162807i
\(5\) 1.24446 + 1.56050i 0.556537 + 0.697876i 0.977913 0.209010i \(-0.0670242\pi\)
−0.421376 + 0.906886i \(0.638453\pi\)
\(6\) 0 0
\(7\) 0.123672 + 2.64286i 0.0467437 + 0.998907i
\(8\) −1.62019 + 1.29205i −0.572822 + 0.456810i
\(9\) 0 0
\(10\) 2.58801 + 2.06387i 0.818401 + 0.652653i
\(11\) 2.40273 0.548408i 0.724451 0.165351i 0.155633 0.987815i \(-0.450258\pi\)
0.568817 + 0.822464i \(0.307401\pi\)
\(12\) 0 0
\(13\) 1.35794 0.309940i 0.376624 0.0859620i −0.0300184 0.999549i \(-0.509557\pi\)
0.406643 + 0.913587i \(0.366699\pi\)
\(14\) 1.17528 + 4.22752i 0.314108 + 1.12985i
\(15\) 0 0
\(16\) −3.07863 + 3.86047i −0.769656 + 0.965119i
\(17\) −0.767970 0.369835i −0.186260 0.0896982i 0.338429 0.940992i \(-0.390104\pi\)
−0.524690 + 0.851294i \(0.675819\pi\)
\(18\) 0 0
\(19\) 4.70463i 1.07932i −0.841884 0.539658i \(-0.818554\pi\)
0.841884 0.539658i \(-0.181446\pi\)
\(20\) 1.34955 + 0.649911i 0.301769 + 0.145324i
\(21\) 0 0
\(22\) 3.68252 1.77341i 0.785117 0.378092i
\(23\) 2.52474 + 5.24267i 0.526444 + 1.09317i 0.979454 + 0.201667i \(0.0646359\pi\)
−0.453010 + 0.891506i \(0.649650\pi\)
\(24\) 0 0
\(25\) 0.226121 0.990699i 0.0452241 0.198140i
\(26\) 2.08123 1.00227i 0.408163 0.196561i
\(27\) 0 0
\(28\) 0.944173 + 1.74669i 0.178432 + 0.330093i
\(29\) 0.0840694 0.174572i 0.0156113 0.0324172i −0.893017 0.450022i \(-0.851416\pi\)
0.908629 + 0.417605i \(0.137130\pi\)
\(30\) 0 0
\(31\) 7.85760i 1.41127i −0.708577 0.705633i \(-0.750663\pi\)
0.708577 0.705633i \(-0.249337\pi\)
\(32\) −1.75480 + 3.64388i −0.310208 + 0.644153i
\(33\) 0 0
\(34\) −1.37819 0.314564i −0.236358 0.0539472i
\(35\) −3.97027 + 3.48191i −0.671098 + 0.588550i
\(36\) 0 0
\(37\) −2.46389 1.18655i −0.405061 0.195067i 0.220249 0.975444i \(-0.429313\pi\)
−0.625310 + 0.780377i \(0.715027\pi\)
\(38\) −1.73620 7.60678i −0.281649 1.23398i
\(39\) 0 0
\(40\) −4.03250 0.920391i −0.637594 0.145527i
\(41\) −4.44530 5.57423i −0.694239 0.870548i 0.302339 0.953200i \(-0.402232\pi\)
−0.996578 + 0.0826521i \(0.973661\pi\)
\(42\) 0 0
\(43\) 7.98148 10.0085i 1.21716 1.52628i 0.438636 0.898665i \(-0.355462\pi\)
0.778528 0.627610i \(-0.215967\pi\)
\(44\) 1.44603 1.15317i 0.217997 0.173846i
\(45\) 0 0
\(46\) 6.01693 + 7.54500i 0.887149 + 1.11245i
\(47\) 0.467248 + 2.04715i 0.0681552 + 0.298607i 0.997505 0.0705924i \(-0.0224890\pi\)
−0.929350 + 0.369200i \(0.879632\pi\)
\(48\) 0 0
\(49\) −6.96941 + 0.653696i −0.995630 + 0.0933851i
\(50\) 1.68528i 0.238335i
\(51\) 0 0
\(52\) 0.817242 0.651729i 0.113331 0.0903785i
\(53\) 4.06653 + 8.44425i 0.558581 + 1.15991i 0.968783 + 0.247911i \(0.0797442\pi\)
−0.410201 + 0.911995i \(0.634542\pi\)
\(54\) 0 0
\(55\) 3.84588 + 3.06699i 0.518579 + 0.413553i
\(56\) −3.61509 4.12213i −0.483087 0.550843i
\(57\) 0 0
\(58\) 0.0715054 0.313285i 0.00938911 0.0411364i
\(59\) −8.03149 + 10.0712i −1.04561 + 1.31115i −0.0968013 + 0.995304i \(0.530861\pi\)
−0.948809 + 0.315850i \(0.897710\pi\)
\(60\) 0 0
\(61\) −0.510260 + 1.05957i −0.0653321 + 0.135664i −0.931078 0.364821i \(-0.881130\pi\)
0.865746 + 0.500484i \(0.166845\pi\)
\(62\) −2.89977 12.7047i −0.368271 1.61350i
\(63\) 0 0
\(64\) 0.704949 3.08858i 0.0881186 0.386073i
\(65\) 2.17355 + 1.73335i 0.269596 + 0.214996i
\(66\) 0 0
\(67\) 2.43390 0.297348 0.148674 0.988886i \(-0.452499\pi\)
0.148674 + 0.988886i \(0.452499\pi\)
\(68\) −0.639683 −0.0775730
\(69\) 0 0
\(70\) −5.13445 + 7.09499i −0.613685 + 0.848014i
\(71\) 1.39482 + 2.89637i 0.165534 + 0.343736i 0.967192 0.254048i \(-0.0817622\pi\)
−0.801657 + 0.597784i \(0.796048\pi\)
\(72\) 0 0
\(73\) −9.99800 2.28198i −1.17018 0.267085i −0.407095 0.913386i \(-0.633458\pi\)
−0.763083 + 0.646301i \(0.776315\pi\)
\(74\) −4.42168 1.00922i −0.514010 0.117319i
\(75\) 0 0
\(76\) −1.53190 3.18101i −0.175720 0.364887i
\(77\) 1.74652 + 6.28226i 0.199034 + 0.715930i
\(78\) 0 0
\(79\) −6.60146 −0.742722 −0.371361 0.928489i \(-0.621109\pi\)
−0.371361 + 0.928489i \(0.621109\pi\)
\(80\) −9.85548 −1.10188
\(81\) 0 0
\(82\) −9.24459 7.37232i −1.02089 0.814136i
\(83\) 3.17998 13.9324i 0.349048 1.52928i −0.430300 0.902686i \(-0.641592\pi\)
0.779347 0.626592i \(-0.215551\pi\)
\(84\) 0 0
\(85\) −0.378578 1.65866i −0.0410626 0.179907i
\(86\) 9.21150 19.1279i 0.993301 2.06261i
\(87\) 0 0
\(88\) −3.18430 + 3.99298i −0.339447 + 0.425653i
\(89\) 0.346714 1.51906i 0.0367517 0.161020i −0.953222 0.302271i \(-0.902255\pi\)
0.989974 + 0.141251i \(0.0451125\pi\)
\(90\) 0 0
\(91\) 0.987068 + 3.55051i 0.103473 + 0.372194i
\(92\) 3.41418 + 2.72272i 0.355953 + 0.283863i
\(93\) 0 0
\(94\) 1.51096 + 3.13754i 0.155844 + 0.323613i
\(95\) 7.34156 5.85470i 0.753229 0.600680i
\(96\) 0 0
\(97\) 0.726497i 0.0737646i 0.999320 + 0.0368823i \(0.0117427\pi\)
−0.999320 + 0.0368823i \(0.988257\pi\)
\(98\) −11.0274 + 3.62894i −1.11394 + 0.366578i
\(99\) 0 0
\(100\) −0.169695 0.743484i −0.0169695 0.0743484i
\(101\) −10.0260 12.5722i −0.997623 1.25098i −0.967878 0.251422i \(-0.919102\pi\)
−0.0297450 0.999558i \(-0.509470\pi\)
\(102\) 0 0
\(103\) 4.26687 3.40272i 0.420427 0.335280i −0.390317 0.920681i \(-0.627634\pi\)
0.810744 + 0.585401i \(0.199063\pi\)
\(104\) −1.79965 + 2.25669i −0.176470 + 0.221287i
\(105\) 0 0
\(106\) 9.69133 + 12.1525i 0.941305 + 1.18036i
\(107\) 10.2888 + 2.34836i 0.994659 + 0.227025i 0.688721 0.725027i \(-0.258173\pi\)
0.305939 + 0.952051i \(0.401030\pi\)
\(108\) 0 0
\(109\) 4.04543 + 17.7242i 0.387482 + 1.69767i 0.673286 + 0.739382i \(0.264882\pi\)
−0.285804 + 0.958288i \(0.592261\pi\)
\(110\) 7.35014 + 3.53964i 0.700808 + 0.337491i
\(111\) 0 0
\(112\) −10.5834 7.65894i −1.00004 0.723702i
\(113\) 0.975368 + 0.222621i 0.0917549 + 0.0209425i 0.268152 0.963377i \(-0.413587\pi\)
−0.176397 + 0.984319i \(0.556444\pi\)
\(114\) 0 0
\(115\) −5.03926 + 10.4641i −0.469913 + 0.975784i
\(116\) 0.145410i 0.0135010i
\(117\) 0 0
\(118\) −9.26921 + 19.2477i −0.853300 + 1.77190i
\(119\) 0.882445 2.07538i 0.0808936 0.190249i
\(120\) 0 0
\(121\) −4.43829 + 2.13737i −0.403481 + 0.194306i
\(122\) −0.434002 + 1.90149i −0.0392927 + 0.172153i
\(123\) 0 0
\(124\) −2.55855 5.31288i −0.229764 0.477111i
\(125\) 10.8188 5.21008i 0.967666 0.466003i
\(126\) 0 0
\(127\) −4.17799 2.01201i −0.370737 0.178537i 0.239233 0.970962i \(-0.423104\pi\)
−0.609970 + 0.792425i \(0.708818\pi\)
\(128\) 13.3428i 1.17935i
\(129\) 0 0
\(130\) 4.15403 + 2.00048i 0.364333 + 0.175454i
\(131\) 1.46906 1.84214i 0.128352 0.160949i −0.713503 0.700652i \(-0.752892\pi\)
0.841855 + 0.539704i \(0.181464\pi\)
\(132\) 0 0
\(133\) 12.4337 0.581831i 1.07814 0.0504512i
\(134\) 3.93530 0.898208i 0.339959 0.0775933i
\(135\) 0 0
\(136\) 1.72210 0.393058i 0.147669 0.0337045i
\(137\) 3.70151 + 2.95185i 0.316241 + 0.252194i 0.768726 0.639578i \(-0.220891\pi\)
−0.452485 + 0.891772i \(0.649462\pi\)
\(138\) 0 0
\(139\) 7.55824 6.02749i 0.641081 0.511245i −0.248139 0.968724i \(-0.579819\pi\)
0.889220 + 0.457479i \(0.151248\pi\)
\(140\) −1.55072 + 3.64706i −0.131060 + 0.308232i
\(141\) 0 0
\(142\) 3.32412 + 4.16831i 0.278954 + 0.349797i
\(143\) 3.09278 1.48941i 0.258632 0.124550i
\(144\) 0 0
\(145\) 0.377040 0.0860569i 0.0313115 0.00714664i
\(146\) −17.0076 −1.40756
\(147\) 0 0
\(148\) −2.05231 −0.168698
\(149\) −12.0757 + 2.75620i −0.989279 + 0.225797i −0.686393 0.727230i \(-0.740807\pi\)
−0.302886 + 0.953027i \(0.597950\pi\)
\(150\) 0 0
\(151\) 16.5050 7.94839i 1.34316 0.646831i 0.382343 0.924020i \(-0.375117\pi\)
0.960815 + 0.277189i \(0.0894029\pi\)
\(152\) 6.07864 + 7.62237i 0.493043 + 0.618256i
\(153\) 0 0
\(154\) 5.14230 + 9.51307i 0.414378 + 0.766585i
\(155\) 12.2618 9.77843i 0.984889 0.785423i
\(156\) 0 0
\(157\) −3.90479 3.11397i −0.311636 0.248522i 0.455164 0.890408i \(-0.349581\pi\)
−0.766800 + 0.641886i \(0.778152\pi\)
\(158\) −10.6737 + 2.43621i −0.849155 + 0.193814i
\(159\) 0 0
\(160\) −7.87004 + 1.79629i −0.622182 + 0.142009i
\(161\) −13.5434 + 7.32090i −1.06737 + 0.576968i
\(162\) 0 0
\(163\) 0.282487 0.354228i 0.0221261 0.0277453i −0.770645 0.637264i \(-0.780066\pi\)
0.792771 + 0.609519i \(0.208637\pi\)
\(164\) −4.82072 2.32154i −0.376435 0.181281i
\(165\) 0 0
\(166\) 23.7004i 1.83951i
\(167\) 17.3199 + 8.34084i 1.34026 + 0.645433i 0.960144 0.279507i \(-0.0901710\pi\)
0.380113 + 0.924940i \(0.375885\pi\)
\(168\) 0 0
\(169\) −9.96466 + 4.79873i −0.766513 + 0.369133i
\(170\) −1.22422 2.54213i −0.0938937 0.194972i
\(171\) 0 0
\(172\) 2.13774 9.36605i 0.163001 0.714155i
\(173\) −3.04260 + 1.46524i −0.231325 + 0.111400i −0.545956 0.837814i \(-0.683833\pi\)
0.314631 + 0.949214i \(0.398119\pi\)
\(174\) 0 0
\(175\) 2.64624 + 0.475083i 0.200037 + 0.0359129i
\(176\) −5.28000 + 10.9640i −0.397995 + 0.826444i
\(177\) 0 0
\(178\) 2.58407i 0.193684i
\(179\) −6.38764 + 13.2641i −0.477435 + 0.991404i 0.513629 + 0.858013i \(0.328301\pi\)
−0.991063 + 0.133391i \(0.957413\pi\)
\(180\) 0 0
\(181\) 16.0470 + 3.66261i 1.19276 + 0.272240i 0.772412 0.635122i \(-0.219050\pi\)
0.420350 + 0.907362i \(0.361907\pi\)
\(182\) 2.90624 + 5.37645i 0.215425 + 0.398529i
\(183\) 0 0
\(184\) −10.8644 5.23200i −0.800931 0.385708i
\(185\) −1.21460 5.32150i −0.0892990 0.391245i
\(186\) 0 0
\(187\) −2.04805 0.467453i −0.149768 0.0341836i
\(188\) 0.982509 + 1.23203i 0.0716568 + 0.0898548i
\(189\) 0 0
\(190\) 9.70975 12.1756i 0.704419 0.883313i
\(191\) 2.77212 2.21069i 0.200583 0.159960i −0.518047 0.855352i \(-0.673341\pi\)
0.718630 + 0.695392i \(0.244769\pi\)
\(192\) 0 0
\(193\) −3.07600 3.85718i −0.221415 0.277646i 0.658700 0.752405i \(-0.271106\pi\)
−0.880116 + 0.474760i \(0.842535\pi\)
\(194\) 0.268107 + 1.17465i 0.0192489 + 0.0843351i
\(195\) 0 0
\(196\) −4.49948 + 2.71133i −0.321392 + 0.193667i
\(197\) 19.9041i 1.41811i 0.705153 + 0.709055i \(0.250878\pi\)
−0.705153 + 0.709055i \(0.749122\pi\)
\(198\) 0 0
\(199\) −17.4557 + 13.9205i −1.23740 + 0.986797i −0.237523 + 0.971382i \(0.576336\pi\)
−0.999881 + 0.0154153i \(0.995093\pi\)
\(200\) 0.913680 + 1.89728i 0.0646069 + 0.134158i
\(201\) 0 0
\(202\) −20.8504 16.6276i −1.46703 1.16992i
\(203\) 0.471766 + 0.200594i 0.0331115 + 0.0140789i
\(204\) 0 0
\(205\) 3.16660 13.8738i 0.221165 0.968985i
\(206\) 5.64324 7.07640i 0.393183 0.493036i
\(207\) 0 0
\(208\) −2.98406 + 6.19647i −0.206908 + 0.429648i
\(209\) −2.58005 11.3040i −0.178466 0.781911i
\(210\) 0 0
\(211\) 4.87397 21.3543i 0.335538 1.47009i −0.472696 0.881226i \(-0.656719\pi\)
0.808234 0.588862i \(-0.200424\pi\)
\(212\) 5.49914 + 4.38542i 0.377682 + 0.301192i
\(213\) 0 0
\(214\) 17.5024 1.19644
\(215\) 25.5508 1.74255
\(216\) 0 0
\(217\) 20.7665 0.971766i 1.40972 0.0659678i
\(218\) 13.0819 + 27.1648i 0.886017 + 1.83983i
\(219\) 0 0
\(220\) 3.59903 + 0.821455i 0.242647 + 0.0553825i
\(221\) −1.15748 0.264188i −0.0778607 0.0177712i
\(222\) 0 0
\(223\) −4.60807 9.56875i −0.308579 0.640771i 0.687790 0.725910i \(-0.258581\pi\)
−0.996369 + 0.0851386i \(0.972867\pi\)
\(224\) −9.84729 4.18705i −0.657950 0.279759i
\(225\) 0 0
\(226\) 1.65920 0.110368
\(227\) −14.4562 −0.959490 −0.479745 0.877408i \(-0.659271\pi\)
−0.479745 + 0.877408i \(0.659271\pi\)
\(228\) 0 0
\(229\) 6.88002 + 5.48663i 0.454644 + 0.362567i 0.823875 0.566771i \(-0.191808\pi\)
−0.369231 + 0.929338i \(0.620379\pi\)
\(230\) −4.28615 + 18.7788i −0.282620 + 1.23824i
\(231\) 0 0
\(232\) 0.0893485 + 0.391461i 0.00586601 + 0.0257007i
\(233\) 1.43613 2.98216i 0.0940841 0.195368i −0.848616 0.529010i \(-0.822563\pi\)
0.942700 + 0.333642i \(0.108278\pi\)
\(234\) 0 0
\(235\) −2.61310 + 3.27673i −0.170460 + 0.213750i
\(236\) −2.15114 + 9.42474i −0.140027 + 0.613498i
\(237\) 0 0
\(238\) 0.660903 3.68127i 0.0428400 0.238622i
\(239\) −18.8587 15.0393i −1.21987 0.972810i −0.219869 0.975529i \(-0.570563\pi\)
−0.999996 + 0.00271895i \(0.999135\pi\)
\(240\) 0 0
\(241\) 9.80881 + 20.3682i 0.631841 + 1.31203i 0.933487 + 0.358611i \(0.116750\pi\)
−0.301646 + 0.953420i \(0.597536\pi\)
\(242\) −6.38737 + 5.09376i −0.410596 + 0.327439i
\(243\) 0 0
\(244\) 0.882569i 0.0565007i
\(245\) −9.69321 10.0623i −0.619277 0.642854i
\(246\) 0 0
\(247\) −1.45815 6.38859i −0.0927801 0.406496i
\(248\) 10.1524 + 12.7308i 0.644681 + 0.808404i
\(249\) 0 0
\(250\) 15.5699 12.4166i 0.984729 0.785295i
\(251\) 3.42386 4.29339i 0.216112 0.270996i −0.661944 0.749553i \(-0.730268\pi\)
0.878057 + 0.478557i \(0.158840\pi\)
\(252\) 0 0
\(253\) 8.94139 + 11.2121i 0.562140 + 0.704902i
\(254\) −7.49779 1.71132i −0.470453 0.107378i
\(255\) 0 0
\(256\) −3.51414 15.3964i −0.219634 0.962277i
\(257\) −19.0231 9.16104i −1.18663 0.571450i −0.266792 0.963754i \(-0.585964\pi\)
−0.919835 + 0.392304i \(0.871678\pi\)
\(258\) 0 0
\(259\) 2.83116 6.65846i 0.175920 0.413737i
\(260\) 2.03404 + 0.464257i 0.126146 + 0.0287920i
\(261\) 0 0
\(262\) 1.69545 3.52065i 0.104745 0.217506i
\(263\) 22.1586i 1.36636i 0.730252 + 0.683178i \(0.239403\pi\)
−0.730252 + 0.683178i \(0.760597\pi\)
\(264\) 0 0
\(265\) −8.11661 + 16.8543i −0.498599 + 1.03535i
\(266\) 19.8889 5.52927i 1.21947 0.339022i
\(267\) 0 0
\(268\) 1.64567 0.792513i 0.100525 0.0484104i
\(269\) −2.41640 + 10.5870i −0.147331 + 0.645498i 0.846290 + 0.532723i \(0.178831\pi\)
−0.993621 + 0.112775i \(0.964026\pi\)
\(270\) 0 0
\(271\) 14.0530 + 29.1814i 0.853661 + 1.77265i 0.588622 + 0.808408i \(0.299670\pi\)
0.265039 + 0.964238i \(0.414615\pi\)
\(272\) 3.79203 1.82615i 0.229926 0.110726i
\(273\) 0 0
\(274\) 7.07421 + 3.40676i 0.427369 + 0.205810i
\(275\) 2.50439i 0.151020i
\(276\) 0 0
\(277\) −21.1898 10.2045i −1.27317 0.613128i −0.329546 0.944139i \(-0.606896\pi\)
−0.943627 + 0.331012i \(0.892610\pi\)
\(278\) 9.99631 12.5350i 0.599539 0.751798i
\(279\) 0 0
\(280\) 1.93376 10.7712i 0.115564 0.643699i
\(281\) 6.15580 1.40502i 0.367224 0.0838165i −0.0349268 0.999390i \(-0.511120\pi\)
0.402151 + 0.915573i \(0.368263\pi\)
\(282\) 0 0
\(283\) 16.3965 3.74238i 0.974668 0.222462i 0.294608 0.955618i \(-0.404811\pi\)
0.680060 + 0.733156i \(0.261954\pi\)
\(284\) 1.88620 + 1.50419i 0.111925 + 0.0892575i
\(285\) 0 0
\(286\) 4.45098 3.54954i 0.263192 0.209889i
\(287\) 14.1821 12.4377i 0.837145 0.734173i
\(288\) 0 0
\(289\) −10.1463 12.7231i −0.596843 0.748417i
\(290\) 0.577867 0.278286i 0.0339335 0.0163415i
\(291\) 0 0
\(292\) −7.50315 + 1.71254i −0.439089 + 0.100219i
\(293\) −20.5047 −1.19790 −0.598948 0.800788i \(-0.704415\pi\)
−0.598948 + 0.800788i \(0.704415\pi\)
\(294\) 0 0
\(295\) −25.7109 −1.49694
\(296\) 5.52504 1.26106i 0.321137 0.0732974i
\(297\) 0 0
\(298\) −18.5077 + 8.91284i −1.07212 + 0.516307i
\(299\) 5.05335 + 6.33670i 0.292243 + 0.366461i
\(300\) 0 0
\(301\) 27.4380 + 19.8562i 1.58150 + 1.14449i
\(302\) 23.7532 18.9425i 1.36684 1.09002i
\(303\) 0 0
\(304\) 18.1621 + 14.4838i 1.04167 + 0.830702i
\(305\) −2.28845 + 0.522323i −0.131036 + 0.0299081i
\(306\) 0 0
\(307\) −24.1636 + 5.51519i −1.37909 + 0.314769i −0.846853 0.531826i \(-0.821506\pi\)
−0.532238 + 0.846595i \(0.678649\pi\)
\(308\) 3.22649 + 3.67903i 0.183846 + 0.209632i
\(309\) 0 0
\(310\) 16.2171 20.3356i 0.921067 1.15498i
\(311\) 26.8403 + 12.9256i 1.52197 + 0.732944i 0.993266 0.115860i \(-0.0369624\pi\)
0.528708 + 0.848804i \(0.322677\pi\)
\(312\) 0 0
\(313\) 20.0324i 1.13230i 0.824303 + 0.566149i \(0.191567\pi\)
−0.824303 + 0.566149i \(0.808433\pi\)
\(314\) −7.46273 3.59386i −0.421146 0.202813i
\(315\) 0 0
\(316\) −4.46355 + 2.14953i −0.251094 + 0.120921i
\(317\) 4.49995 + 9.34425i 0.252742 + 0.524825i 0.988279 0.152660i \(-0.0487840\pi\)
−0.735536 + 0.677485i \(0.763070\pi\)
\(318\) 0 0
\(319\) 0.106260 0.465554i 0.00594940 0.0260660i
\(320\) 5.69701 2.74353i 0.318472 0.153368i
\(321\) 0 0
\(322\) −19.1962 + 16.8350i −1.06976 + 0.938179i
\(323\) −1.73994 + 3.61302i −0.0968127 + 0.201034i
\(324\) 0 0
\(325\) 1.41539i 0.0785118i
\(326\) 0.326021 0.676991i 0.0180567 0.0374950i
\(327\) 0 0
\(328\) 14.4044 + 3.28771i 0.795351 + 0.181534i
\(329\) −5.35254 + 1.48805i −0.295095 + 0.0820387i
\(330\) 0 0
\(331\) 9.12925 + 4.39641i 0.501789 + 0.241649i 0.667616 0.744506i \(-0.267315\pi\)
−0.165827 + 0.986155i \(0.553029\pi\)
\(332\) −2.38646 10.4558i −0.130974 0.573835i
\(333\) 0 0
\(334\) 31.0822 + 7.09431i 1.70074 + 0.388183i
\(335\) 3.02888 + 3.79810i 0.165485 + 0.207512i
\(336\) 0 0
\(337\) −1.16913 + 1.46605i −0.0636868 + 0.0798607i −0.812655 0.582746i \(-0.801978\pi\)
0.748968 + 0.662606i \(0.230550\pi\)
\(338\) −14.3407 + 11.4363i −0.780029 + 0.622052i
\(339\) 0 0
\(340\) −0.796057 0.998224i −0.0431723 0.0541363i
\(341\) −4.30917 18.8797i −0.233354 1.02239i
\(342\) 0 0
\(343\) −2.58955 18.3383i −0.139822 0.990177i
\(344\) 26.5281i 1.43030i
\(345\) 0 0
\(346\) −4.37876 + 3.49195i −0.235404 + 0.187728i
\(347\) −2.10351 4.36797i −0.112922 0.234485i 0.836847 0.547437i \(-0.184396\pi\)
−0.949769 + 0.312952i \(0.898682\pi\)
\(348\) 0 0
\(349\) −24.5577 19.5841i −1.31454 1.04831i −0.994910 0.100770i \(-0.967869\pi\)
−0.319632 0.947542i \(-0.603559\pi\)
\(350\) 4.45396 0.208422i 0.238074 0.0111406i
\(351\) 0 0
\(352\) −2.21798 + 9.71762i −0.118219 + 0.517951i
\(353\) 12.0119 15.0624i 0.639328 0.801691i −0.351591 0.936154i \(-0.614359\pi\)
0.990919 + 0.134462i \(0.0429307\pi\)
\(354\) 0 0
\(355\) −2.78399 + 5.78101i −0.147759 + 0.306824i
\(356\) −0.260197 1.14000i −0.0137904 0.0604197i
\(357\) 0 0
\(358\) −5.43302 + 23.8036i −0.287144 + 1.25806i
\(359\) 13.8395 + 11.0366i 0.730420 + 0.582491i 0.916496 0.400045i \(-0.131005\pi\)
−0.186075 + 0.982535i \(0.559577\pi\)
\(360\) 0 0
\(361\) −3.13354 −0.164923
\(362\) 27.2975 1.43473
\(363\) 0 0
\(364\) 1.82350 + 2.07925i 0.0955772 + 0.108983i
\(365\) −8.88105 18.4417i −0.464855 0.965282i
\(366\) 0 0
\(367\) −27.7535 6.33455i −1.44872 0.330661i −0.575426 0.817854i \(-0.695164\pi\)
−0.873294 + 0.487193i \(0.838021\pi\)
\(368\) −28.0119 6.39354i −1.46022 0.333286i
\(369\) 0 0
\(370\) −3.92770 8.15595i −0.204191 0.424008i
\(371\) −21.8140 + 11.7916i −1.13253 + 0.612189i
\(372\) 0 0
\(373\) −15.1007 −0.781884 −0.390942 0.920415i \(-0.627851\pi\)
−0.390942 + 0.920415i \(0.627851\pi\)
\(374\) −3.48394 −0.180150
\(375\) 0 0
\(376\) −3.40206 2.71305i −0.175448 0.139915i
\(377\) 0.0600541 0.263114i 0.00309294 0.0135511i
\(378\) 0 0
\(379\) 2.76701 + 12.1231i 0.142132 + 0.622721i 0.994938 + 0.100493i \(0.0320419\pi\)
−0.852806 + 0.522228i \(0.825101\pi\)
\(380\) 3.05759 6.34915i 0.156851 0.325704i
\(381\) 0 0
\(382\) 3.66632 4.59742i 0.187585 0.235225i
\(383\) 5.38704 23.6021i 0.275265 1.20601i −0.628440 0.777858i \(-0.716306\pi\)
0.903705 0.428156i \(-0.140836\pi\)
\(384\) 0 0
\(385\) −7.62999 + 10.5434i −0.388860 + 0.537343i
\(386\) −6.39695 5.10140i −0.325596 0.259654i
\(387\) 0 0
\(388\) 0.236558 + 0.491218i 0.0120094 + 0.0249378i
\(389\) 0.741770 0.591542i 0.0376092 0.0299924i −0.604505 0.796601i \(-0.706629\pi\)
0.642114 + 0.766609i \(0.278058\pi\)
\(390\) 0 0
\(391\) 4.95995i 0.250836i
\(392\) 10.4471 10.0640i 0.527660 0.508307i
\(393\) 0 0
\(394\) 7.34543 + 32.1824i 0.370057 + 1.62133i
\(395\) −8.21522 10.3016i −0.413353 0.518328i
\(396\) 0 0
\(397\) −16.0461 + 12.7963i −0.805330 + 0.642229i −0.937104 0.349051i \(-0.886504\pi\)
0.131774 + 0.991280i \(0.457933\pi\)
\(398\) −23.0865 + 28.9495i −1.15722 + 1.45111i
\(399\) 0 0
\(400\) 3.12843 + 3.92292i 0.156421 + 0.196146i
\(401\) −28.8491 6.58461i −1.44065 0.328820i −0.570377 0.821383i \(-0.693203\pi\)
−0.870276 + 0.492564i \(0.836060\pi\)
\(402\) 0 0
\(403\) −2.43539 10.6701i −0.121315 0.531517i
\(404\) −10.8727 5.23602i −0.540937 0.260502i
\(405\) 0 0
\(406\) 0.836813 + 0.150234i 0.0415303 + 0.00745599i
\(407\) −6.57078 1.49974i −0.325701 0.0743392i
\(408\) 0 0
\(409\) −12.2144 + 25.3634i −0.603962 + 1.25414i 0.344956 + 0.938619i \(0.387894\pi\)
−0.948918 + 0.315521i \(0.897821\pi\)
\(410\) 23.6007i 1.16555i
\(411\) 0 0
\(412\) 1.77705 3.69008i 0.0875490 0.181797i
\(413\) −27.6099 19.9806i −1.35860 0.983179i
\(414\) 0 0
\(415\) 25.6988 12.3759i 1.26150 0.607509i
\(416\) −1.25352 + 5.49205i −0.0614591 + 0.269270i
\(417\) 0 0
\(418\) −8.34323 17.3249i −0.408081 0.847389i
\(419\) 16.8705 8.12440i 0.824178 0.396903i 0.0262493 0.999655i \(-0.491644\pi\)
0.797928 + 0.602752i \(0.205929\pi\)
\(420\) 0 0
\(421\) −22.2346 10.7076i −1.08365 0.521858i −0.195168 0.980770i \(-0.562525\pi\)
−0.888482 + 0.458911i \(0.848240\pi\)
\(422\) 36.3258i 1.76831i
\(423\) 0 0
\(424\) −17.4990 8.42706i −0.849825 0.409254i
\(425\) −0.540049 + 0.677200i −0.0261962 + 0.0328490i
\(426\) 0 0
\(427\) −2.86339 1.21751i −0.138569 0.0589193i
\(428\) 7.72141 1.76236i 0.373228 0.0851869i
\(429\) 0 0
\(430\) 41.3123 9.42926i 1.99226 0.454720i
\(431\) 15.8922 + 12.6736i 0.765500 + 0.610466i 0.926416 0.376502i \(-0.122873\pi\)
−0.160916 + 0.986968i \(0.551445\pi\)
\(432\) 0 0
\(433\) 22.1422 17.6578i 1.06409 0.848580i 0.0751872 0.997169i \(-0.476045\pi\)
0.988899 + 0.148589i \(0.0474731\pi\)
\(434\) 33.2182 9.23491i 1.59452 0.443290i
\(435\) 0 0
\(436\) 8.50655 + 10.6669i 0.407390 + 0.510851i
\(437\) 24.6648 11.8780i 1.17988 0.568200i
\(438\) 0 0
\(439\) 6.77204 1.54567i 0.323212 0.0737710i −0.0578366 0.998326i \(-0.518420\pi\)
0.381048 + 0.924555i \(0.375563\pi\)
\(440\) −10.1938 −0.485968
\(441\) 0 0
\(442\) −1.96900 −0.0936556
\(443\) −40.3342 + 9.20601i −1.91633 + 0.437391i −0.917083 + 0.398695i \(0.869463\pi\)
−0.999251 + 0.0386957i \(0.987680\pi\)
\(444\) 0 0
\(445\) 2.80195 1.34935i 0.132825 0.0639653i
\(446\) −10.9819 13.7709i −0.520009 0.652070i
\(447\) 0 0
\(448\) 8.24987 + 1.48111i 0.389770 + 0.0699758i
\(449\) −9.76889 + 7.79043i −0.461022 + 0.367653i −0.826286 0.563251i \(-0.809550\pi\)
0.365263 + 0.930904i \(0.380979\pi\)
\(450\) 0 0
\(451\) −13.7378 10.9555i −0.646888 0.515876i
\(452\) 0.731979 0.167069i 0.0344294 0.00785829i
\(453\) 0 0
\(454\) −23.3738 + 5.33491i −1.09699 + 0.250380i
\(455\) −4.31220 + 5.95876i −0.202159 + 0.279351i
\(456\) 0 0
\(457\) 20.7195 25.9814i 0.969216 1.21536i −0.00731325 0.999973i \(-0.502328\pi\)
0.976529 0.215385i \(-0.0691007\pi\)
\(458\) 13.1489 + 6.33217i 0.614407 + 0.295883i
\(459\) 0 0
\(460\) 8.71612i 0.406391i
\(461\) 5.58333 + 2.68879i 0.260042 + 0.125229i 0.559363 0.828923i \(-0.311046\pi\)
−0.299321 + 0.954152i \(0.596760\pi\)
\(462\) 0 0
\(463\) −21.5815 + 10.3931i −1.00298 + 0.483009i −0.861948 0.506996i \(-0.830756\pi\)
−0.141031 + 0.990005i \(0.545042\pi\)
\(464\) 0.415112 + 0.861990i 0.0192711 + 0.0400169i
\(465\) 0 0
\(466\) 1.22150 5.35176i 0.0565851 0.247915i
\(467\) −22.1418 + 10.6629i −1.02460 + 0.493421i −0.869216 0.494433i \(-0.835376\pi\)
−0.155384 + 0.987854i \(0.549661\pi\)
\(468\) 0 0
\(469\) 0.301006 + 6.43246i 0.0138991 + 0.297023i
\(470\) −3.01581 + 6.26239i −0.139109 + 0.288862i
\(471\) 0 0
\(472\) 26.6943i 1.22870i
\(473\) 13.6886 28.4247i 0.629404 1.30697i
\(474\) 0 0
\(475\) −4.66087 1.06381i −0.213855 0.0488111i
\(476\) −0.0791110 1.69059i −0.00362605 0.0774882i
\(477\) 0 0
\(478\) −36.0421 17.3570i −1.64853 0.793890i
\(479\) −1.64374 7.20168i −0.0751042 0.329053i 0.923393 0.383856i \(-0.125404\pi\)
−0.998497 + 0.0548029i \(0.982547\pi\)
\(480\) 0 0
\(481\) −3.71357 0.847598i −0.169324 0.0386471i
\(482\) 23.3763 + 29.3129i 1.06476 + 1.33517i
\(483\) 0 0
\(484\) −2.30497 + 2.89034i −0.104771 + 0.131379i
\(485\) −1.13370 + 0.904093i −0.0514785 + 0.0410528i
\(486\) 0 0
\(487\) −17.1121 21.4579i −0.775424 0.972351i 0.224574 0.974457i \(-0.427901\pi\)
−0.999998 + 0.00210608i \(0.999330\pi\)
\(488\) −0.542301 2.37598i −0.0245488 0.107555i
\(489\) 0 0
\(490\) −19.3861 12.6922i −0.875773 0.573375i
\(491\) 10.8534i 0.489809i −0.969547 0.244904i \(-0.921243\pi\)
0.969547 0.244904i \(-0.0787566\pi\)
\(492\) 0 0
\(493\) −0.129126 + 0.102974i −0.00581553 + 0.00463773i
\(494\) −4.71530 9.79142i −0.212151 0.440537i
\(495\) 0 0
\(496\) 30.3341 + 24.1906i 1.36204 + 1.08619i
\(497\) −7.48220 + 4.04451i −0.335622 + 0.181421i
\(498\) 0 0
\(499\) −5.30664 + 23.2499i −0.237558 + 1.04081i 0.705638 + 0.708572i \(0.250660\pi\)
−0.943196 + 0.332236i \(0.892197\pi\)
\(500\) 5.61863 7.04554i 0.251273 0.315086i
\(501\) 0 0
\(502\) 3.95151 8.20540i 0.176365 0.366225i
\(503\) −2.00502 8.78455i −0.0893993 0.391684i 0.910356 0.413827i \(-0.135808\pi\)
−0.999755 + 0.0221432i \(0.992951\pi\)
\(504\) 0 0
\(505\) 7.14198 31.2911i 0.317814 1.39243i
\(506\) 18.5948 + 14.8289i 0.826640 + 0.659224i
\(507\) 0 0
\(508\) −3.48007 −0.154403
\(509\) −39.3676 −1.74494 −0.872469 0.488669i \(-0.837482\pi\)
−0.872469 + 0.488669i \(0.837482\pi\)
\(510\) 0 0
\(511\) 4.79447 26.7055i 0.212095 1.18138i
\(512\) 0.214638 + 0.445700i 0.00948574 + 0.0196973i
\(513\) 0 0
\(514\) −34.1387 7.79193i −1.50579 0.343687i
\(515\) 10.6199 + 2.42391i 0.467967 + 0.106810i
\(516\) 0 0
\(517\) 2.24534 + 4.66251i 0.0987501 + 0.205057i
\(518\) 2.12039 11.8107i 0.0931644 0.518932i
\(519\) 0 0
\(520\) −5.76115 −0.252643
\(521\) −29.7894 −1.30510 −0.652549 0.757746i \(-0.726301\pi\)
−0.652549 + 0.757746i \(0.726301\pi\)
\(522\) 0 0
\(523\) 5.99277 + 4.77907i 0.262045 + 0.208974i 0.745695 0.666288i \(-0.232118\pi\)
−0.483650 + 0.875262i \(0.660689\pi\)
\(524\) 0.393469 1.72390i 0.0171888 0.0753090i
\(525\) 0 0
\(526\) 8.17741 + 35.8276i 0.356552 + 1.56216i
\(527\) −2.90601 + 6.03440i −0.126588 + 0.262863i
\(528\) 0 0
\(529\) −6.77105 + 8.49062i −0.294393 + 0.369157i
\(530\) −6.90359 + 30.2466i −0.299873 + 1.31383i
\(531\) 0 0
\(532\) 8.21752 4.44199i 0.356275 0.192585i
\(533\) −7.76412 6.19168i −0.336301 0.268191i
\(534\) 0 0
\(535\) 9.13939 + 18.9781i 0.395130 + 0.820496i
\(536\) −3.94337 + 3.14473i −0.170328 + 0.135832i
\(537\) 0 0
\(538\) 18.0095i 0.776445i
\(539\) −16.3871 + 5.39273i −0.705844 + 0.232281i
\(540\) 0 0
\(541\) 0.673732 + 2.95181i 0.0289660 + 0.126908i 0.987344 0.158595i \(-0.0506964\pi\)
−0.958378 + 0.285503i \(0.907839\pi\)
\(542\) 33.4911 + 41.9965i 1.43857 + 1.80390i
\(543\) 0 0
\(544\) 2.69527 2.14941i 0.115559 0.0921550i
\(545\) −22.6242 + 28.3699i −0.969115 + 1.21523i
\(546\) 0 0
\(547\) 17.7640 + 22.2753i 0.759533 + 0.952424i 0.999833 0.0182745i \(-0.00581729\pi\)
−0.240300 + 0.970699i \(0.577246\pi\)
\(548\) 3.46392 + 0.790618i 0.147971 + 0.0337735i
\(549\) 0 0
\(550\) −0.924221 4.04928i −0.0394089 0.172662i
\(551\) −0.821296 0.395515i −0.0349884 0.0168495i
\(552\) 0 0
\(553\) −0.816417 17.4467i −0.0347176 0.741910i
\(554\) −38.0271 8.67943i −1.61562 0.368754i
\(555\) 0 0
\(556\) 3.14783 6.53653i 0.133498 0.277211i
\(557\) 11.2411i 0.476299i −0.971228 0.238150i \(-0.923459\pi\)
0.971228 0.238150i \(-0.0765409\pi\)
\(558\) 0 0
\(559\) 7.73632 16.0646i 0.327212 0.679462i
\(560\) −1.21885 26.0466i −0.0515057 1.10067i
\(561\) 0 0
\(562\) 9.43463 4.54348i 0.397976 0.191655i
\(563\) −6.04365 + 26.4789i −0.254709 + 1.11595i 0.672111 + 0.740450i \(0.265388\pi\)
−0.926821 + 0.375504i \(0.877470\pi\)
\(564\) 0 0
\(565\) 0.866402 + 1.79910i 0.0364498 + 0.0756888i
\(566\) 25.1299 12.1019i 1.05629 0.508681i
\(567\) 0 0
\(568\) −6.00213 2.89047i −0.251844 0.121282i
\(569\) 28.8622i 1.20997i 0.796238 + 0.604984i \(0.206820\pi\)
−0.796238 + 0.604984i \(0.793180\pi\)
\(570\) 0 0
\(571\) 18.7194 + 9.01481i 0.783384 + 0.377258i 0.782428 0.622742i \(-0.213981\pi\)
0.000956678 1.00000i \(0.499695\pi\)
\(572\) 1.60620 2.01411i 0.0671586 0.0842142i
\(573\) 0 0
\(574\) 18.3407 25.3439i 0.765526 1.05783i
\(575\) 5.76480 1.31578i 0.240409 0.0548718i
\(576\) 0 0
\(577\) 18.0877 4.12840i 0.753001 0.171868i 0.171242 0.985229i \(-0.445222\pi\)
0.581759 + 0.813361i \(0.302365\pi\)
\(578\) −21.1006 16.8272i −0.877671 0.699919i
\(579\) 0 0
\(580\) 0.226912 0.180957i 0.00942202 0.00751381i
\(581\) 37.2146 + 6.68118i 1.54392 + 0.277182i
\(582\) 0 0
\(583\) 14.4017 + 18.0591i 0.596457 + 0.747933i
\(584\) 19.1471 9.22074i 0.792311 0.381557i
\(585\) 0 0
\(586\) −33.1534 + 7.56706i −1.36956 + 0.312592i
\(587\) 10.0746 0.415823 0.207911 0.978148i \(-0.433333\pi\)
0.207911 + 0.978148i \(0.433333\pi\)
\(588\) 0 0
\(589\) −36.9671 −1.52320
\(590\) −41.5712 + 9.48835i −1.71146 + 0.390629i
\(591\) 0 0
\(592\) 12.1660 5.85885i 0.500021 0.240797i
\(593\) 19.5733 + 24.5442i 0.803780 + 1.00791i 0.999628 + 0.0272741i \(0.00868268\pi\)
−0.195848 + 0.980634i \(0.562746\pi\)
\(594\) 0 0
\(595\) 4.33678 1.20566i 0.177791 0.0494272i
\(596\) −7.26746 + 5.79561i −0.297687 + 0.237397i
\(597\) 0 0
\(598\) 10.5091 + 8.38074i 0.429750 + 0.342714i
\(599\) 43.4803 9.92410i 1.77656 0.405488i 0.796570 0.604546i \(-0.206645\pi\)
0.979988 + 0.199058i \(0.0637882\pi\)
\(600\) 0 0
\(601\) −13.2382 + 3.02152i −0.539996 + 0.123251i −0.483815 0.875170i \(-0.660749\pi\)
−0.0561805 + 0.998421i \(0.517892\pi\)
\(602\) 51.6915 + 21.9791i 2.10679 + 0.895802i
\(603\) 0 0
\(604\) 8.57167 10.7485i 0.348776 0.437352i
\(605\) −8.85862 4.26608i −0.360154 0.173441i
\(606\) 0 0
\(607\) 14.5618i 0.591044i −0.955336 0.295522i \(-0.904507\pi\)
0.955336 0.295522i \(-0.0954935\pi\)
\(608\) 17.1431 + 8.25569i 0.695245 + 0.334812i
\(609\) 0 0
\(610\) −3.50737 + 1.68906i −0.142009 + 0.0683880i
\(611\) 1.26899 + 2.63508i 0.0513378 + 0.106604i
\(612\) 0 0
\(613\) −8.91343 + 39.0523i −0.360010 + 1.57731i 0.393153 + 0.919473i \(0.371384\pi\)
−0.753163 + 0.657834i \(0.771473\pi\)
\(614\) −37.0342 + 17.8347i −1.49458 + 0.719750i
\(615\) 0 0
\(616\) −10.9467 7.92183i −0.441055 0.319180i
\(617\) 16.3610 33.9739i 0.658668 1.36774i −0.257239 0.966348i \(-0.582813\pi\)
0.915907 0.401390i \(-0.131473\pi\)
\(618\) 0 0
\(619\) 10.9899i 0.441721i −0.975305 0.220860i \(-0.929113\pi\)
0.975305 0.220860i \(-0.0708865\pi\)
\(620\) 5.10674 10.6042i 0.205091 0.425877i
\(621\) 0 0
\(622\) 48.1674 + 10.9939i 1.93134 + 0.440815i
\(623\) 4.05753 + 0.728453i 0.162561 + 0.0291848i
\(624\) 0 0
\(625\) 17.0162 + 8.19455i 0.680646 + 0.327782i
\(626\) 7.39276 + 32.3898i 0.295474 + 1.29456i
\(627\) 0 0
\(628\) −3.65416 0.834038i −0.145817 0.0332817i
\(629\) 1.45337 + 1.82247i 0.0579496 + 0.0726665i
\(630\) 0 0
\(631\) 28.7388 36.0373i 1.14407 1.43462i 0.261027 0.965331i \(-0.415939\pi\)
0.883045 0.469289i \(-0.155490\pi\)
\(632\) 10.6956 8.52945i 0.425448 0.339283i
\(633\) 0 0
\(634\) 10.7242 + 13.4478i 0.425914 + 0.534080i
\(635\) −2.05958 9.02361i −0.0817319 0.358091i
\(636\) 0 0
\(637\) −9.26142 + 3.04778i −0.366951 + 0.120757i
\(638\) 0.791955i 0.0313538i
\(639\) 0 0
\(640\) 20.8214 16.6045i 0.823039 0.656352i
\(641\) −5.96447 12.3854i −0.235582 0.489192i 0.749341 0.662185i \(-0.230371\pi\)
−0.984923 + 0.172993i \(0.944656\pi\)
\(642\) 0 0
\(643\) 13.9766 + 11.1459i 0.551182 + 0.439553i 0.859062 0.511872i \(-0.171048\pi\)
−0.307879 + 0.951425i \(0.599619\pi\)
\(644\) −6.77352 + 9.35992i −0.266914 + 0.368833i
\(645\) 0 0
\(646\) −1.47991 + 6.48389i −0.0582261 + 0.255105i
\(647\) 2.71769 3.40788i 0.106844 0.133978i −0.725535 0.688186i \(-0.758407\pi\)
0.832378 + 0.554208i \(0.186979\pi\)
\(648\) 0 0
\(649\) −13.7744 + 28.6028i −0.540692 + 1.12276i
\(650\) −0.522336 2.28851i −0.0204877 0.0897626i
\(651\) 0 0
\(652\) 0.0756608 0.331492i 0.00296311 0.0129822i
\(653\) 28.2832 + 22.5551i 1.10681 + 0.882648i 0.993826 0.110949i \(-0.0353890\pi\)
0.112980 + 0.993597i \(0.463960\pi\)
\(654\) 0 0
\(655\) 4.70283 0.183755
\(656\) 35.2046 1.37451
\(657\) 0 0
\(658\) −8.10522 + 4.38128i −0.315974 + 0.170800i
\(659\) −9.48481 19.6954i −0.369476 0.767224i 0.630484 0.776202i \(-0.282856\pi\)
−0.999960 + 0.00897814i \(0.997142\pi\)
\(660\) 0 0
\(661\) −16.6330 3.79637i −0.646947 0.147662i −0.113558 0.993531i \(-0.536225\pi\)
−0.533389 + 0.845870i \(0.679082\pi\)
\(662\) 16.3833 + 3.73938i 0.636754 + 0.145335i
\(663\) 0 0
\(664\) 12.8493 + 26.6818i 0.498648 + 1.03545i
\(665\) 16.3811 + 18.6787i 0.635232 + 0.724327i
\(666\) 0 0
\(667\) 1.12748 0.0436561
\(668\) 14.4267 0.558185
\(669\) 0 0
\(670\) 6.29896 + 5.02326i 0.243350 + 0.194065i
\(671\) −0.644944 + 2.82568i −0.0248978 + 0.109084i
\(672\) 0 0
\(673\) −0.300780 1.31780i −0.0115942 0.0507976i 0.968800 0.247844i \(-0.0797221\pi\)
−0.980394 + 0.197047i \(0.936865\pi\)
\(674\) −1.34931 + 2.80187i −0.0519734 + 0.107924i
\(675\) 0 0
\(676\) −5.17503 + 6.48928i −0.199039 + 0.249588i
\(677\) −6.85747 + 30.0445i −0.263554 + 1.15470i 0.653811 + 0.756658i \(0.273169\pi\)
−0.917365 + 0.398047i \(0.869688\pi\)
\(678\) 0 0
\(679\) −1.92003 + 0.0898474i −0.0736840 + 0.00344803i
\(680\) 2.75645 + 2.19819i 0.105705 + 0.0842968i
\(681\) 0 0
\(682\) −13.9347 28.9358i −0.533589 1.10801i
\(683\) −7.21649 + 5.75495i −0.276131 + 0.220207i −0.751757 0.659441i \(-0.770793\pi\)
0.475626 + 0.879648i \(0.342222\pi\)
\(684\) 0 0
\(685\) 9.44964i 0.361052i
\(686\) −10.9546 28.6951i −0.418247 1.09558i
\(687\) 0 0
\(688\) 14.0654 + 61.6246i 0.536239 + 2.34941i
\(689\) 8.13931 + 10.2064i 0.310083 + 0.388832i
\(690\) 0 0
\(691\) 3.61709 2.88453i 0.137601 0.109733i −0.552271 0.833665i \(-0.686239\pi\)
0.689871 + 0.723932i \(0.257667\pi\)
\(692\) −1.58014 + 1.98143i −0.0600678 + 0.0753227i
\(693\) 0 0
\(694\) −5.01306 6.28617i −0.190293 0.238620i
\(695\) 18.8118 + 4.29367i 0.713572 + 0.162868i
\(696\) 0 0
\(697\) 1.35231 + 5.92487i 0.0512225 + 0.224420i
\(698\) −46.9339 22.6022i −1.77647 0.855505i
\(699\) 0 0
\(700\) 1.94394 0.540430i 0.0734740 0.0204263i
\(701\) 15.7508 + 3.59501i 0.594898 + 0.135782i 0.509360 0.860553i \(-0.329882\pi\)
0.0855376 + 0.996335i \(0.472739\pi\)
\(702\) 0 0
\(703\) −5.58227 + 11.5917i −0.210539 + 0.437189i
\(704\) 7.80763i 0.294261i
\(705\) 0 0
\(706\) 13.8630 28.7869i 0.521742 1.08341i
\(707\) 31.9866 28.0521i 1.20298 1.05501i
\(708\) 0 0
\(709\) 12.6766 6.10473i 0.476080 0.229268i −0.180427 0.983588i \(-0.557748\pi\)
0.656506 + 0.754321i \(0.272034\pi\)
\(710\) −2.36793 + 10.3746i −0.0888667 + 0.389350i
\(711\) 0 0
\(712\) 1.40096 + 2.90913i 0.0525032 + 0.109024i
\(713\) 41.1948 19.8384i 1.54276 0.742953i
\(714\) 0 0
\(715\) 6.17305 + 2.97278i 0.230859 + 0.111176i
\(716\) 11.0484i 0.412896i
\(717\) 0 0
\(718\) 26.4496 + 12.7375i 0.987091 + 0.475358i
\(719\) −8.39810 + 10.5309i −0.313196 + 0.392736i −0.913368 0.407136i \(-0.866528\pi\)
0.600171 + 0.799871i \(0.295099\pi\)
\(720\) 0 0
\(721\) 9.52059 + 10.8559i 0.354565 + 0.404295i
\(722\) −5.06653 + 1.15640i −0.188557 + 0.0430368i
\(723\) 0 0
\(724\) 12.0427 2.74866i 0.447563 0.102153i
\(725\) −0.153938 0.122762i −0.00571713 0.00455926i
\(726\) 0 0
\(727\) 22.1775 17.6860i 0.822519 0.655937i −0.119001 0.992894i \(-0.537969\pi\)
0.941520 + 0.336957i \(0.109398\pi\)
\(728\) −6.18668 4.47713i −0.229294 0.165934i
\(729\) 0 0
\(730\) −21.1652 26.5404i −0.783361 0.982303i
\(731\) −9.83101 + 4.73437i −0.363613 + 0.175107i
\(732\) 0 0
\(733\) 12.9806 2.96274i 0.479450 0.109431i 0.0240359 0.999711i \(-0.492348\pi\)
0.455414 + 0.890280i \(0.349491\pi\)
\(734\) −47.2115 −1.74261
\(735\) 0 0
\(736\) −23.5341 −0.867478
\(737\) 5.84801 1.33477i 0.215414 0.0491669i
\(738\) 0 0
\(739\) −3.30389 + 1.59107i −0.121536 + 0.0585285i −0.493664 0.869653i \(-0.664343\pi\)
0.372128 + 0.928181i \(0.378628\pi\)
\(740\) −2.55400 3.20262i −0.0938870 0.117731i
\(741\) 0 0
\(742\) −30.9189 + 27.1158i −1.13507 + 0.995451i
\(743\) 14.1620 11.2938i 0.519555 0.414331i −0.328289 0.944577i \(-0.606472\pi\)
0.847844 + 0.530246i \(0.177901\pi\)
\(744\) 0 0
\(745\) −19.3287 15.4141i −0.708149 0.564730i
\(746\) −24.4159 + 5.57276i −0.893928 + 0.204033i
\(747\) 0 0
\(748\) −1.53699 + 0.350807i −0.0561978 + 0.0128268i
\(749\) −4.93394 + 27.4824i −0.180282 + 1.00418i
\(750\) 0 0
\(751\) −5.67349 + 7.11433i −0.207028 + 0.259606i −0.874495 0.485034i \(-0.838807\pi\)
0.667467 + 0.744640i \(0.267379\pi\)
\(752\) −9.34145 4.49860i −0.340648 0.164047i
\(753\) 0 0
\(754\) 0.447584i 0.0163001i
\(755\) 32.9432 + 15.8646i 1.19893 + 0.577372i
\(756\) 0 0
\(757\) 23.0567 11.1035i 0.838008 0.403564i 0.0348959 0.999391i \(-0.488890\pi\)
0.803113 + 0.595827i \(0.203176\pi\)
\(758\) 8.94781 + 18.5803i 0.324999 + 0.674867i
\(759\) 0 0
\(760\) −4.33010 + 18.9714i −0.157069 + 0.688165i
\(761\) −25.4896 + 12.2752i −0.923998 + 0.444974i −0.834497 0.551013i \(-0.814242\pi\)
−0.0895011 + 0.995987i \(0.528527\pi\)
\(762\) 0 0
\(763\) −46.3422 + 12.8835i −1.67770 + 0.466414i
\(764\) 1.15452 2.39739i 0.0417691 0.0867345i
\(765\) 0 0
\(766\) 40.1497i 1.45067i
\(767\) −7.78479 + 16.1653i −0.281093 + 0.583695i
\(768\) 0 0
\(769\) 43.6040 + 9.95234i 1.57240 + 0.358890i 0.917787 0.397072i \(-0.129974\pi\)
0.654615 + 0.755963i \(0.272831\pi\)
\(770\) −8.44576 + 19.8631i −0.304364 + 0.715818i
\(771\) 0 0
\(772\) −3.33577 1.60642i −0.120057 0.0578165i
\(773\) −6.78121 29.7104i −0.243903 1.06861i −0.937429 0.348178i \(-0.886801\pi\)
0.693525 0.720432i \(-0.256057\pi\)
\(774\) 0 0
\(775\) −7.78451 1.77676i −0.279628 0.0638233i
\(776\) −0.938674 1.17706i −0.0336964 0.0422540i
\(777\) 0 0
\(778\) 0.981044 1.23019i 0.0351721 0.0441045i
\(779\) −26.2247 + 20.9135i −0.939597 + 0.749303i
\(780\) 0 0
\(781\) 4.93976 + 6.19427i 0.176759 + 0.221648i
\(782\) −1.83042 8.01961i −0.0654558 0.286781i
\(783\) 0 0
\(784\) 18.9326 28.9177i 0.676165 1.03278i
\(785\) 9.96861i 0.355795i
\(786\) 0 0
\(787\) 32.0194 25.5346i 1.14137 0.910210i 0.144515 0.989503i \(-0.453838\pi\)
0.996851 + 0.0792930i \(0.0252663\pi\)
\(788\) 6.48107 + 13.4581i 0.230879 + 0.479424i
\(789\) 0 0
\(790\) −17.0847 13.6246i −0.607845 0.484740i
\(791\) −0.467731 + 2.60529i −0.0166306 + 0.0926335i
\(792\) 0 0
\(793\) −0.364499 + 1.59697i −0.0129437 + 0.0567102i
\(794\) −21.2221 + 26.6117i −0.753144 + 0.944413i
\(795\) 0 0
\(796\) −7.26990 + 15.0961i −0.257675 + 0.535067i
\(797\) 6.88241 + 30.1538i 0.243787 + 1.06810i 0.937537 + 0.347886i \(0.113100\pi\)
−0.693749 + 0.720216i \(0.744042\pi\)
\(798\) 0 0
\(799\) 0.398274 1.74495i 0.0140899 0.0617320i
\(800\) 3.21319 + 2.56244i 0.113604 + 0.0905958i
\(801\) 0 0
\(802\) −49.0752 −1.73291
\(803\) −25.2740 −0.891899
\(804\) 0 0
\(805\) −28.2784 12.0239i −0.996683 0.423788i
\(806\) −7.87542 16.3535i −0.277400 0.576026i
\(807\) 0 0
\(808\) 32.4879 + 7.41515i 1.14292 + 0.260864i
\(809\) 37.9162 + 8.65413i 1.33306 + 0.304263i 0.828925 0.559360i \(-0.188953\pi\)
0.504138 + 0.863623i \(0.331810\pi\)
\(810\) 0 0
\(811\) −6.71229 13.9382i −0.235700 0.489437i 0.749247 0.662290i \(-0.230415\pi\)
−0.984948 + 0.172854i \(0.944701\pi\)
\(812\) 0.384299 0.0179832i 0.0134862 0.000631086i
\(813\) 0 0
\(814\) −11.1776 −0.391774
\(815\) 0.904315 0.0316768
\(816\) 0 0
\(817\) −47.0861 37.5499i −1.64733 1.31370i
\(818\) −10.3890 + 45.5170i −0.363241 + 1.59146i
\(819\) 0 0
\(820\) −2.37642 10.4118i −0.0829881 0.363595i
\(821\) 11.4523 23.7809i 0.399688 0.829960i −0.599866 0.800100i \(-0.704780\pi\)
0.999554 0.0298600i \(-0.00950614\pi\)
\(822\) 0 0
\(823\) 24.1231 30.2495i 0.840880 1.05443i −0.156886 0.987617i \(-0.550146\pi\)
0.997766 0.0668129i \(-0.0212831\pi\)
\(824\) −2.51663 + 11.0261i −0.0876708 + 0.384111i
\(825\) 0 0
\(826\) −52.0154 22.1168i −1.80985 0.769543i
\(827\) −19.5745 15.6101i −0.680672 0.542818i 0.220981 0.975278i \(-0.429074\pi\)
−0.901653 + 0.432460i \(0.857646\pi\)
\(828\) 0 0
\(829\) 3.11101 + 6.46008i 0.108050 + 0.224368i 0.947982 0.318323i \(-0.103120\pi\)
−0.839932 + 0.542691i \(0.817405\pi\)
\(830\) 36.9845 29.4941i 1.28375 1.02376i
\(831\) 0 0
\(832\) 4.41259i 0.152979i
\(833\) 5.59406 + 2.07551i 0.193823 + 0.0719123i
\(834\) 0 0
\(835\) 8.53802 + 37.4075i 0.295470 + 1.29454i
\(836\) −5.42522 6.80302i −0.187635 0.235287i
\(837\) 0 0
\(838\) 24.2792 19.3620i 0.838711 0.668850i
\(839\) 7.64399 9.58526i 0.263900 0.330920i −0.632173 0.774827i \(-0.717837\pi\)
0.896073 + 0.443908i \(0.146408\pi\)
\(840\) 0 0
\(841\) 18.0578 + 22.6438i 0.622683 + 0.780819i
\(842\) −39.9021 9.10740i −1.37512 0.313862i
\(843\) 0 0
\(844\) −3.65774 16.0256i −0.125905 0.551625i
\(845\) −19.8890 9.57803i −0.684202 0.329494i
\(846\) 0 0
\(847\) −6.19766 11.4654i −0.212954 0.393957i
\(848\) −45.1181 10.2979i −1.54936 0.353632i
\(849\) 0 0
\(850\) −0.623276 + 1.29425i −0.0213782 + 0.0443922i
\(851\) 15.9131i 0.545494i
\(852\) 0 0
\(853\) 11.9694 24.8547i 0.409825 0.851010i −0.589248 0.807952i \(-0.700576\pi\)
0.999073 0.0430577i \(-0.0137099\pi\)
\(854\) −5.07904 0.911846i −0.173801 0.0312027i
\(855\) 0 0
\(856\) −19.7040 + 9.48896i −0.673470 + 0.324326i
\(857\) 6.66111 29.1842i 0.227539 0.996914i −0.724100 0.689695i \(-0.757744\pi\)
0.951639 0.307219i \(-0.0993984\pi\)
\(858\) 0 0
\(859\) 21.3225 + 44.2766i 0.727513 + 1.51070i 0.854871 + 0.518840i \(0.173636\pi\)
−0.127358 + 0.991857i \(0.540650\pi\)
\(860\) 17.2760 8.31970i 0.589108 0.283699i
\(861\) 0 0
\(862\) 30.3727 + 14.6267i 1.03450 + 0.498188i
\(863\) 31.9261i 1.08678i −0.839482 0.543388i \(-0.817141\pi\)
0.839482 0.543388i \(-0.182859\pi\)
\(864\) 0 0
\(865\) −6.07289 2.92455i −0.206484 0.0994376i
\(866\) 29.2846 36.7218i 0.995133 1.24786i
\(867\) 0 0
\(868\) 13.7248 7.41894i 0.465849 0.251815i
\(869\) −15.8615 + 3.62029i −0.538066 + 0.122810i
\(870\) 0 0
\(871\) 3.30508 0.754364i 0.111989 0.0255606i
\(872\) −29.4550 23.4896i −0.997471 0.795457i
\(873\) 0 0
\(874\) 35.4964 28.3074i 1.20068 0.957514i
\(875\) 15.1075 + 27.9483i 0.510726 + 0.944825i
\(876\) 0 0
\(877\) 32.5323 + 40.7942i 1.09854 + 1.37752i 0.919227 + 0.393728i \(0.128815\pi\)
0.179309 + 0.983793i \(0.442614\pi\)
\(878\) 10.3791 4.99831i 0.350278 0.168685i
\(879\) 0 0
\(880\) −23.6801 + 5.40482i −0.798255 + 0.182196i
\(881\) −53.4246 −1.79992 −0.899960 0.435973i \(-0.856404\pi\)
−0.899960 + 0.435973i \(0.856404\pi\)
\(882\) 0 0
\(883\) −29.9201 −1.00689 −0.503445 0.864027i \(-0.667935\pi\)
−0.503445 + 0.864027i \(0.667935\pi\)
\(884\) −0.868650 + 0.198264i −0.0292159 + 0.00666833i
\(885\) 0 0
\(886\) −61.8178 + 29.7699i −2.07681 + 1.00014i
\(887\) 20.6339 + 25.8741i 0.692818 + 0.868767i 0.996464 0.0840181i \(-0.0267754\pi\)
−0.303646 + 0.952785i \(0.598204\pi\)
\(888\) 0 0
\(889\) 4.80077 11.2907i 0.161013 0.378677i
\(890\) 4.03243 3.21576i 0.135168 0.107792i
\(891\) 0 0
\(892\) −6.23145 4.96941i −0.208644 0.166388i
\(893\) 9.63108 2.19823i 0.322292 0.0735610i
\(894\) 0 0
\(895\) −28.6477 + 6.53865i −0.957587 + 0.218563i
\(896\) 35.2632 1.65013i 1.17806 0.0551271i
\(897\) 0 0
\(898\) −12.9201 + 16.2012i −0.431148 + 0.540642i
\(899\) −1.37172 0.660584i −0.0457493 0.0220317i
\(900\) 0 0
\(901\) 7.98888i 0.266148i
\(902\) −26.2553 12.6439i −0.874206 0.420995i
\(903\) 0 0
\(904\) −1.86792 + 0.899541i −0.0621260 + 0.0299183i
\(905\) 14.2542 + 29.5992i 0.473827 + 0.983911i
\(906\) 0 0
\(907\) 4.95057 21.6899i 0.164381 0.720200i −0.823796 0.566886i \(-0.808148\pi\)
0.988177 0.153315i \(-0.0489948\pi\)
\(908\) −9.77448 + 4.70714i −0.324377 + 0.156212i
\(909\) 0 0
\(910\) −4.77324 + 11.2259i −0.158231 + 0.372136i
\(911\) 8.61363 17.8864i 0.285382 0.592602i −0.708162 0.706050i \(-0.750475\pi\)
0.993544 + 0.113448i \(0.0361895\pi\)
\(912\) 0 0
\(913\) 35.2197i 1.16560i
\(914\) 23.9125 49.6549i 0.790957 1.64244i
\(915\) 0 0
\(916\) 6.43842 + 1.46953i 0.212731 + 0.0485545i
\(917\) 5.05020 + 3.65469i 0.166772 + 0.120689i
\(918\) 0 0
\(919\) −37.7936 18.2004i −1.24670 0.600377i −0.310071 0.950713i \(-0.600353\pi\)
−0.936624 + 0.350336i \(0.886067\pi\)
\(920\) −5.35569 23.4648i −0.176572 0.773612i
\(921\) 0 0
\(922\) 10.0198 + 2.28695i 0.329985 + 0.0753168i
\(923\) 2.79178 + 3.50078i 0.0918925 + 0.115230i
\(924\) 0 0
\(925\) −1.73265 + 2.17267i −0.0569691 + 0.0714370i
\(926\) −31.0591 + 24.7688i −1.02067 + 0.813953i
\(927\) 0 0
\(928\) 0.488595 + 0.612678i 0.0160389 + 0.0201121i
\(929\) −8.83635 38.7146i −0.289911 1.27018i −0.884647 0.466262i \(-0.845600\pi\)
0.594735 0.803921i \(-0.297257\pi\)
\(930\) 0 0
\(931\) 3.07540 + 32.7885i 0.100792 + 1.07460i
\(932\) 2.48400i 0.0813661i
\(933\) 0 0
\(934\) −31.8654 + 25.4118i −1.04267 + 0.831499i
\(935\) −1.81924 3.77770i −0.0594956 0.123544i
\(936\) 0 0
\(937\) 21.0438 + 16.7819i 0.687471 + 0.548240i 0.903734 0.428095i \(-0.140815\pi\)
−0.216262 + 0.976335i \(0.569387\pi\)
\(938\) 2.86052 + 10.2894i 0.0933994 + 0.335960i
\(939\) 0 0
\(940\) −0.699887 + 3.06641i −0.0228278 + 0.100015i
\(941\) −5.47593 + 6.86660i −0.178510 + 0.223845i −0.863034 0.505146i \(-0.831439\pi\)
0.684524 + 0.728990i \(0.260010\pi\)
\(942\) 0 0
\(943\) 18.0006 37.3787i 0.586181 1.21722i
\(944\) −14.1535 62.0107i −0.460658 2.01828i
\(945\) 0 0
\(946\) 11.6429 51.0108i 0.378543 1.65850i
\(947\) −7.89215 6.29378i −0.256460 0.204520i 0.486817 0.873504i \(-0.338158\pi\)
−0.743277 + 0.668984i \(0.766729\pi\)
\(948\) 0 0
\(949\) −14.2839 −0.463676
\(950\) −7.92862 −0.257238
\(951\) 0 0
\(952\) 1.25177 + 4.50266i 0.0405702 + 0.145932i
\(953\) 10.0434 + 20.8554i 0.325338 + 0.675572i 0.997921 0.0644502i \(-0.0205294\pi\)
−0.672583 + 0.740022i \(0.734815\pi\)
\(954\) 0 0
\(955\) 6.89955 + 1.57478i 0.223264 + 0.0509586i
\(956\) −17.6482 4.02809i −0.570784 0.130278i
\(957\) 0 0
\(958\) −5.31542 11.0376i −0.171733 0.356608i
\(959\) −7.34356 + 10.1476i −0.237136 + 0.327684i
\(960\) 0 0
\(961\) −30.7418 −0.991673
\(962\) −6.31716 −0.203673
\(963\) 0 0
\(964\) 13.2644 + 10.5780i 0.427216 + 0.340694i
\(965\) 2.19118 9.60017i 0.0705365 0.309041i
\(966\) 0 0
\(967\) 6.92235 + 30.3288i 0.222608 + 0.975308i 0.955506 + 0.294970i \(0.0953097\pi\)
−0.732899 + 0.680338i \(0.761833\pi\)
\(968\) 4.42926 9.19745i 0.142362 0.295617i
\(969\) 0 0
\(970\) −1.49940 + 1.88018i −0.0481427 + 0.0603690i
\(971\) −11.0640 + 48.4747i −0.355061 + 1.55563i 0.410255 + 0.911971i \(0.365440\pi\)
−0.765316 + 0.643655i \(0.777417\pi\)
\(972\) 0 0
\(973\) 16.8646 + 19.2299i 0.540653 + 0.616483i
\(974\) −35.5869 28.3796i −1.14028 0.909342i
\(975\) 0 0
\(976\) −2.51953 5.23185i −0.0806481 0.167468i
\(977\) −6.54339 + 5.21818i −0.209342 + 0.166944i −0.722548 0.691321i \(-0.757029\pi\)
0.513206 + 0.858265i \(0.328458\pi\)
\(978\) 0 0
\(979\) 3.84002i 0.122728i
\(980\) −9.83044 3.64730i −0.314022 0.116509i
\(981\) 0 0
\(982\) −4.00536 17.5486i −0.127816 0.559999i
\(983\) −15.6257 19.5941i −0.498384 0.624953i 0.467480 0.884004i \(-0.345162\pi\)
−0.965864 + 0.259050i \(0.916590\pi\)
\(984\) 0 0
\(985\) −31.0604 + 24.7698i −0.989665 + 0.789232i
\(986\) −0.170778 + 0.214149i −0.00543868 + 0.00681989i
\(987\) 0 0
\(988\) −3.06614 3.84482i −0.0975470 0.122320i
\(989\) 72.6222 + 16.5755i 2.30925 + 0.527071i
\(990\) 0 0
\(991\) 5.71205 + 25.0261i 0.181449 + 0.794982i 0.980941 + 0.194305i \(0.0622451\pi\)
−0.799492 + 0.600677i \(0.794898\pi\)
\(992\) 28.6322 + 13.7885i 0.909072 + 0.437786i
\(993\) 0 0
\(994\) −10.6052 + 9.30068i −0.336375 + 0.295000i
\(995\) −43.4458 9.91622i −1.37732 0.314365i
\(996\) 0 0
\(997\) 26.2484 54.5053i 0.831294 1.72620i 0.157185 0.987569i \(-0.449758\pi\)
0.674109 0.738632i \(-0.264528\pi\)
\(998\) 39.5505i 1.25195i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 441.2.w.a.62.15 yes 120
3.2 odd 2 inner 441.2.w.a.62.6 120
49.34 odd 14 inner 441.2.w.a.377.6 yes 120
147.83 even 14 inner 441.2.w.a.377.15 yes 120
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
441.2.w.a.62.6 120 3.2 odd 2 inner
441.2.w.a.62.15 yes 120 1.1 even 1 trivial
441.2.w.a.377.6 yes 120 49.34 odd 14 inner
441.2.w.a.377.15 yes 120 147.83 even 14 inner