Properties

Label 441.2.w.a.62.14
Level $441$
Weight $2$
Character 441.62
Analytic conductor $3.521$
Analytic rank $0$
Dimension $120$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [441,2,Mod(62,441)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(441, base_ring=CyclotomicField(14)) chi = DirichletCharacter(H, H._module([7, 11])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("441.62"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 441 = 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 441.w (of order \(14\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.52140272914\)
Analytic rank: \(0\)
Dimension: \(120\)
Relative dimension: \(20\) over \(\Q(\zeta_{14})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{14}]$

Embedding invariants

Embedding label 62.14
Character \(\chi\) \(=\) 441.62
Dual form 441.2.w.a.377.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.880699 - 0.201014i) q^{2} +(-1.06671 + 0.513702i) q^{4} +(-2.70158 - 3.38767i) q^{5} +(2.62942 + 0.293490i) q^{7} +(-2.24872 + 1.79330i) q^{8} +(-3.06025 - 2.44047i) q^{10} +(-2.23309 + 0.509689i) q^{11} +(-5.63896 + 1.28706i) q^{13} +(2.37473 - 0.270074i) q^{14} +(-0.143595 + 0.180062i) q^{16} +(-4.20422 - 2.02465i) q^{17} -5.60936i q^{19} +(4.62207 + 2.22587i) q^{20} +(-1.86423 + 0.897765i) q^{22} +(-0.518590 - 1.07686i) q^{23} +(-3.06519 + 13.4295i) q^{25} +(-4.70751 + 2.26702i) q^{26} +(-2.95561 + 1.03767i) q^{28} +(1.47898 - 3.07113i) q^{29} -0.588888i q^{31} +(2.40563 - 4.99534i) q^{32} +(-4.10964 - 0.937998i) q^{34} +(-6.10934 - 9.70051i) q^{35} +(1.11676 + 0.537802i) q^{37} +(-1.12756 - 4.94016i) q^{38} +(12.1502 + 2.77321i) q^{40} +(0.526282 + 0.659937i) q^{41} +(1.25480 - 1.57347i) q^{43} +(2.12024 - 1.69084i) q^{44} +(-0.673187 - 0.844149i) q^{46} +(0.851950 + 3.73264i) q^{47} +(6.82773 + 1.54342i) q^{49} +12.4435i q^{50} +(5.35399 - 4.26967i) q^{52} +(1.27448 + 2.64649i) q^{53} +(7.75953 + 6.18802i) q^{55} +(-6.43916 + 4.05536i) q^{56} +(0.685196 - 3.00204i) q^{58} +(8.71710 - 10.9309i) q^{59} +(1.57855 - 3.27789i) q^{61} +(-0.118375 - 0.518633i) q^{62} +(1.21700 - 5.33202i) q^{64} +(19.5942 + 15.6259i) q^{65} -6.27020 q^{67} +5.52477 q^{68} +(-7.33043 - 7.31517i) q^{70} +(-1.87256 - 3.88841i) q^{71} +(-7.77931 - 1.77558i) q^{73} +(1.09163 + 0.249158i) q^{74} +(2.88154 + 5.98358i) q^{76} +(-6.02133 + 0.684797i) q^{77} -0.653795 q^{79} +0.997922 q^{80} +(0.596153 + 0.475416i) q^{82} +(-1.57947 + 6.92012i) q^{83} +(4.49920 + 19.7123i) q^{85} +(0.788810 - 1.63798i) q^{86} +(4.10759 - 5.15075i) q^{88} +(-2.56309 + 11.2296i) q^{89} +(-15.2050 + 1.72924i) q^{91} +(1.10637 + 0.882304i) q^{92} +(1.50062 + 3.11607i) q^{94} +(-19.0027 + 15.1541i) q^{95} -14.6184i q^{97} +(6.32342 - 0.0131793i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 120 q + 24 q^{4} - 32 q^{16} - 44 q^{22} - 4 q^{25} - 56 q^{28} + 112 q^{34} - 76 q^{37} + 28 q^{40} + 8 q^{43} - 40 q^{46} - 84 q^{49} - 140 q^{52} + 12 q^{58} - 84 q^{61} + 24 q^{64} + 16 q^{67} + 112 q^{70}+ \cdots - 112 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/441\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(344\)
\(\chi(n)\) \(e\left(\frac{11}{14}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.880699 0.201014i 0.622748 0.142138i 0.100508 0.994936i \(-0.467953\pi\)
0.522241 + 0.852798i \(0.325096\pi\)
\(3\) 0 0
\(4\) −1.06671 + 0.513702i −0.533357 + 0.256851i
\(5\) −2.70158 3.38767i −1.20818 1.51501i −0.797596 0.603192i \(-0.793895\pi\)
−0.410587 0.911822i \(-0.634676\pi\)
\(6\) 0 0
\(7\) 2.62942 + 0.293490i 0.993828 + 0.110929i
\(8\) −2.24872 + 1.79330i −0.795044 + 0.634026i
\(9\) 0 0
\(10\) −3.06025 2.44047i −0.967735 0.771743i
\(11\) −2.23309 + 0.509689i −0.673303 + 0.153677i −0.545485 0.838121i \(-0.683654\pi\)
−0.127818 + 0.991798i \(0.540797\pi\)
\(12\) 0 0
\(13\) −5.63896 + 1.28706i −1.56397 + 0.356965i −0.914873 0.403742i \(-0.867709\pi\)
−0.649095 + 0.760708i \(0.724852\pi\)
\(14\) 2.37473 0.270074i 0.634672 0.0721802i
\(15\) 0 0
\(16\) −0.143595 + 0.180062i −0.0358986 + 0.0450155i
\(17\) −4.20422 2.02465i −1.01967 0.491049i −0.152104 0.988364i \(-0.548605\pi\)
−0.867570 + 0.497315i \(0.834319\pi\)
\(18\) 0 0
\(19\) 5.60936i 1.28687i −0.765499 0.643437i \(-0.777508\pi\)
0.765499 0.643437i \(-0.222492\pi\)
\(20\) 4.62207 + 2.22587i 1.03353 + 0.497719i
\(21\) 0 0
\(22\) −1.86423 + 0.897765i −0.397455 + 0.191404i
\(23\) −0.518590 1.07686i −0.108134 0.224542i 0.839880 0.542773i \(-0.182625\pi\)
−0.948013 + 0.318231i \(0.896911\pi\)
\(24\) 0 0
\(25\) −3.06519 + 13.4295i −0.613039 + 2.68590i
\(26\) −4.70751 + 2.26702i −0.923220 + 0.444599i
\(27\) 0 0
\(28\) −2.95561 + 1.03767i −0.558557 + 0.196101i
\(29\) 1.47898 3.07113i 0.274640 0.570295i −0.717335 0.696728i \(-0.754638\pi\)
0.991975 + 0.126433i \(0.0403527\pi\)
\(30\) 0 0
\(31\) 0.588888i 0.105767i −0.998601 0.0528837i \(-0.983159\pi\)
0.998601 0.0528837i \(-0.0168413\pi\)
\(32\) 2.40563 4.99534i 0.425259 0.883059i
\(33\) 0 0
\(34\) −4.10964 0.937998i −0.704797 0.160865i
\(35\) −6.10934 9.70051i −1.03267 1.63969i
\(36\) 0 0
\(37\) 1.11676 + 0.537802i 0.183594 + 0.0884141i 0.523423 0.852073i \(-0.324655\pi\)
−0.339829 + 0.940487i \(0.610369\pi\)
\(38\) −1.12756 4.94016i −0.182914 0.801399i
\(39\) 0 0
\(40\) 12.1502 + 2.77321i 1.92112 + 0.438482i
\(41\) 0.526282 + 0.659937i 0.0821914 + 0.103065i 0.821227 0.570602i \(-0.193290\pi\)
−0.739036 + 0.673666i \(0.764718\pi\)
\(42\) 0 0
\(43\) 1.25480 1.57347i 0.191355 0.239951i −0.676894 0.736081i \(-0.736674\pi\)
0.868249 + 0.496129i \(0.165246\pi\)
\(44\) 2.12024 1.69084i 0.319638 0.254903i
\(45\) 0 0
\(46\) −0.673187 0.844149i −0.0992559 0.124463i
\(47\) 0.851950 + 3.73264i 0.124270 + 0.544461i 0.998284 + 0.0585605i \(0.0186510\pi\)
−0.874014 + 0.485900i \(0.838492\pi\)
\(48\) 0 0
\(49\) 6.82773 + 1.54342i 0.975390 + 0.220489i
\(50\) 12.4435i 1.75978i
\(51\) 0 0
\(52\) 5.35399 4.26967i 0.742465 0.592096i
\(53\) 1.27448 + 2.64649i 0.175063 + 0.363523i 0.969976 0.243201i \(-0.0781975\pi\)
−0.794912 + 0.606724i \(0.792483\pi\)
\(54\) 0 0
\(55\) 7.75953 + 6.18802i 1.04630 + 0.834393i
\(56\) −6.43916 + 4.05536i −0.860469 + 0.541920i
\(57\) 0 0
\(58\) 0.685196 3.00204i 0.0899707 0.394187i
\(59\) 8.71710 10.9309i 1.13487 1.42308i 0.243444 0.969915i \(-0.421723\pi\)
0.891426 0.453167i \(-0.149706\pi\)
\(60\) 0 0
\(61\) 1.57855 3.27789i 0.202112 0.419690i −0.775134 0.631796i \(-0.782318\pi\)
0.977247 + 0.212106i \(0.0680322\pi\)
\(62\) −0.118375 0.518633i −0.0150336 0.0658665i
\(63\) 0 0
\(64\) 1.21700 5.33202i 0.152125 0.666502i
\(65\) 19.5942 + 15.6259i 2.43037 + 1.93815i
\(66\) 0 0
\(67\) −6.27020 −0.766027 −0.383014 0.923743i \(-0.625114\pi\)
−0.383014 + 0.923743i \(0.625114\pi\)
\(68\) 5.52477 0.669977
\(69\) 0 0
\(70\) −7.33043 7.31517i −0.876154 0.874330i
\(71\) −1.87256 3.88841i −0.222232 0.461469i 0.759807 0.650149i \(-0.225293\pi\)
−0.982039 + 0.188680i \(0.939579\pi\)
\(72\) 0 0
\(73\) −7.77931 1.77558i −0.910500 0.207816i −0.258479 0.966017i \(-0.583221\pi\)
−0.652021 + 0.758201i \(0.726078\pi\)
\(74\) 1.09163 + 0.249158i 0.126900 + 0.0289640i
\(75\) 0 0
\(76\) 2.88154 + 5.98358i 0.330535 + 0.686363i
\(77\) −6.02133 + 0.684797i −0.686195 + 0.0780398i
\(78\) 0 0
\(79\) −0.653795 −0.0735577 −0.0367789 0.999323i \(-0.511710\pi\)
−0.0367789 + 0.999323i \(0.511710\pi\)
\(80\) 0.997922 0.111571
\(81\) 0 0
\(82\) 0.596153 + 0.475416i 0.0658340 + 0.0525009i
\(83\) −1.57947 + 6.92012i −0.173370 + 0.759582i 0.811226 + 0.584733i \(0.198801\pi\)
−0.984595 + 0.174849i \(0.944056\pi\)
\(84\) 0 0
\(85\) 4.49920 + 19.7123i 0.488007 + 2.13810i
\(86\) 0.788810 1.63798i 0.0850596 0.176628i
\(87\) 0 0
\(88\) 4.10759 5.15075i 0.437870 0.549072i
\(89\) −2.56309 + 11.2296i −0.271687 + 1.19034i 0.636333 + 0.771414i \(0.280450\pi\)
−0.908020 + 0.418926i \(0.862407\pi\)
\(90\) 0 0
\(91\) −15.2050 + 1.72924i −1.59391 + 0.181273i
\(92\) 1.10637 + 0.882304i 0.115348 + 0.0919866i
\(93\) 0 0
\(94\) 1.50062 + 3.11607i 0.154777 + 0.321399i
\(95\) −19.0027 + 15.1541i −1.94963 + 1.55478i
\(96\) 0 0
\(97\) 14.6184i 1.48427i −0.670249 0.742136i \(-0.733813\pi\)
0.670249 0.742136i \(-0.266187\pi\)
\(98\) 6.32342 0.0131793i 0.638762 0.00133131i
\(99\) 0 0
\(100\) −3.62907 15.9000i −0.362907 1.59000i
\(101\) 2.17142 + 2.72287i 0.216064 + 0.270936i 0.878038 0.478591i \(-0.158852\pi\)
−0.661974 + 0.749527i \(0.730281\pi\)
\(102\) 0 0
\(103\) 1.97183 1.57248i 0.194290 0.154941i −0.521513 0.853243i \(-0.674632\pi\)
0.715803 + 0.698302i \(0.246061\pi\)
\(104\) 10.3724 13.0066i 1.01710 1.27540i
\(105\) 0 0
\(106\) 1.65441 + 2.07457i 0.160691 + 0.201500i
\(107\) −9.15970 2.09064i −0.885502 0.202110i −0.244500 0.969649i \(-0.578624\pi\)
−0.641002 + 0.767539i \(0.721481\pi\)
\(108\) 0 0
\(109\) −2.54281 11.1408i −0.243557 1.06709i −0.937752 0.347306i \(-0.887097\pi\)
0.694195 0.719787i \(-0.255760\pi\)
\(110\) 8.07769 + 3.89001i 0.770178 + 0.370898i
\(111\) 0 0
\(112\) −0.430417 + 0.431315i −0.0406706 + 0.0407554i
\(113\) −3.83148 0.874509i −0.360435 0.0822669i 0.0384686 0.999260i \(-0.487752\pi\)
−0.398904 + 0.916993i \(0.630609\pi\)
\(114\) 0 0
\(115\) −2.24705 + 4.66605i −0.209538 + 0.435111i
\(116\) 4.03578i 0.374712i
\(117\) 0 0
\(118\) 5.47988 11.3791i 0.504464 1.04753i
\(119\) −10.4605 6.55755i −0.958910 0.601130i
\(120\) 0 0
\(121\) −5.18374 + 2.49636i −0.471249 + 0.226942i
\(122\) 0.731324 3.20414i 0.0662110 0.290089i
\(123\) 0 0
\(124\) 0.302513 + 0.628175i 0.0271665 + 0.0564118i
\(125\) 34.2561 16.4969i 3.06396 1.47553i
\(126\) 0 0
\(127\) 19.9907 + 9.62702i 1.77389 + 0.854260i 0.963202 + 0.268779i \(0.0866200\pi\)
0.810686 + 0.585481i \(0.199094\pi\)
\(128\) 6.14827i 0.543435i
\(129\) 0 0
\(130\) 20.3976 + 9.82299i 1.78899 + 0.861533i
\(131\) −7.87965 + 9.88077i −0.688448 + 0.863287i −0.996102 0.0882116i \(-0.971885\pi\)
0.307653 + 0.951498i \(0.400456\pi\)
\(132\) 0 0
\(133\) 1.64629 14.7494i 0.142752 1.27893i
\(134\) −5.52216 + 1.26040i −0.477042 + 0.108882i
\(135\) 0 0
\(136\) 13.0849 2.98655i 1.12202 0.256095i
\(137\) −14.3556 11.4482i −1.22648 0.978085i −0.999992 0.00407088i \(-0.998704\pi\)
−0.226488 0.974014i \(-0.572724\pi\)
\(138\) 0 0
\(139\) 14.8002 11.8027i 1.25533 1.00110i 0.255926 0.966696i \(-0.417620\pi\)
0.999408 0.0343994i \(-0.0109518\pi\)
\(140\) 11.5001 + 7.20928i 0.971935 + 0.609296i
\(141\) 0 0
\(142\) −2.43078 3.04811i −0.203987 0.255792i
\(143\) 11.9363 5.74823i 0.998166 0.480691i
\(144\) 0 0
\(145\) −14.3996 + 3.28661i −1.19582 + 0.272938i
\(146\) −7.20815 −0.596551
\(147\) 0 0
\(148\) −1.46753 −0.120630
\(149\) −13.2926 + 3.03394i −1.08897 + 0.248550i −0.729069 0.684441i \(-0.760046\pi\)
−0.359900 + 0.932991i \(0.617189\pi\)
\(150\) 0 0
\(151\) −14.7372 + 7.09708i −1.19930 + 0.577552i −0.923476 0.383656i \(-0.874665\pi\)
−0.275823 + 0.961208i \(0.588950\pi\)
\(152\) 10.0592 + 12.6139i 0.815913 + 1.02312i
\(153\) 0 0
\(154\) −5.16533 + 1.81347i −0.416234 + 0.146134i
\(155\) −1.99496 + 1.59093i −0.160239 + 0.127786i
\(156\) 0 0
\(157\) −2.20114 1.75535i −0.175670 0.140092i 0.531708 0.846928i \(-0.321551\pi\)
−0.707378 + 0.706836i \(0.750122\pi\)
\(158\) −0.575797 + 0.131422i −0.0458079 + 0.0104554i
\(159\) 0 0
\(160\) −23.4216 + 5.34582i −1.85164 + 0.422624i
\(161\) −1.04754 2.98373i −0.0825580 0.235151i
\(162\) 0 0
\(163\) 13.1340 16.4695i 1.02874 1.28999i 0.0725088 0.997368i \(-0.476899\pi\)
0.956227 0.292626i \(-0.0945291\pi\)
\(164\) −0.900403 0.433611i −0.0703097 0.0338593i
\(165\) 0 0
\(166\) 6.41204i 0.497671i
\(167\) −10.5862 5.09804i −0.819184 0.394498i −0.0231366 0.999732i \(-0.507365\pi\)
−0.796048 + 0.605234i \(0.793080\pi\)
\(168\) 0 0
\(169\) 18.4288 8.87485i 1.41760 0.682680i
\(170\) 7.92488 + 16.4562i 0.607811 + 1.26213i
\(171\) 0 0
\(172\) −0.530216 + 2.32303i −0.0404286 + 0.177129i
\(173\) 15.0494 7.24742i 1.14419 0.551011i 0.236905 0.971533i \(-0.423867\pi\)
0.907283 + 0.420521i \(0.138153\pi\)
\(174\) 0 0
\(175\) −12.0011 + 34.4122i −0.907199 + 2.60132i
\(176\) 0.228884 0.475283i 0.0172528 0.0358258i
\(177\) 0 0
\(178\) 10.4052i 0.779899i
\(179\) −2.11939 + 4.40096i −0.158411 + 0.328943i −0.965035 0.262121i \(-0.915578\pi\)
0.806624 + 0.591065i \(0.201292\pi\)
\(180\) 0 0
\(181\) −14.6014 3.33268i −1.08532 0.247716i −0.357794 0.933800i \(-0.616471\pi\)
−0.727522 + 0.686084i \(0.759328\pi\)
\(182\) −13.0434 + 4.57934i −0.966841 + 0.339444i
\(183\) 0 0
\(184\) 3.09730 + 1.49158i 0.228336 + 0.109961i
\(185\) −1.19511 5.23612i −0.0878663 0.384968i
\(186\) 0 0
\(187\) 10.4204 + 2.37838i 0.762012 + 0.173924i
\(188\) −2.82625 3.54400i −0.206125 0.258473i
\(189\) 0 0
\(190\) −13.6894 + 17.1660i −0.993137 + 1.24535i
\(191\) −2.65384 + 2.11637i −0.192025 + 0.153135i −0.714783 0.699346i \(-0.753475\pi\)
0.522758 + 0.852481i \(0.324903\pi\)
\(192\) 0 0
\(193\) 1.38258 + 1.73370i 0.0995202 + 0.124794i 0.829098 0.559104i \(-0.188855\pi\)
−0.729577 + 0.683898i \(0.760283\pi\)
\(194\) −2.93850 12.8744i −0.210972 0.924328i
\(195\) 0 0
\(196\) −8.07609 + 1.86103i −0.576863 + 0.132931i
\(197\) 10.1054i 0.719977i 0.932957 + 0.359989i \(0.117219\pi\)
−0.932957 + 0.359989i \(0.882781\pi\)
\(198\) 0 0
\(199\) −17.9142 + 14.2861i −1.26990 + 1.01271i −0.271164 + 0.962533i \(0.587409\pi\)
−0.998740 + 0.0501816i \(0.984020\pi\)
\(200\) −17.1903 35.6960i −1.21554 2.52409i
\(201\) 0 0
\(202\) 2.45970 + 1.96155i 0.173064 + 0.138014i
\(203\) 4.79021 7.64125i 0.336207 0.536310i
\(204\) 0 0
\(205\) 0.813858 3.56574i 0.0568423 0.249042i
\(206\) 1.42050 1.78125i 0.0989707 0.124105i
\(207\) 0 0
\(208\) 0.577975 1.20018i 0.0400753 0.0832173i
\(209\) 2.85903 + 12.5262i 0.197763 + 0.866456i
\(210\) 0 0
\(211\) 4.15135 18.1882i 0.285791 1.25213i −0.604451 0.796642i \(-0.706608\pi\)
0.890242 0.455488i \(-0.150535\pi\)
\(212\) −2.71901 2.16834i −0.186742 0.148922i
\(213\) 0 0
\(214\) −8.48719 −0.580172
\(215\) −8.72032 −0.594721
\(216\) 0 0
\(217\) 0.172833 1.54844i 0.0117327 0.105115i
\(218\) −4.47890 9.30053i −0.303349 0.629911i
\(219\) 0 0
\(220\) −11.4560 2.61476i −0.772363 0.176287i
\(221\) 26.3133 + 6.00584i 1.77002 + 0.403997i
\(222\) 0 0
\(223\) 2.19793 + 4.56404i 0.147184 + 0.305631i 0.961507 0.274782i \(-0.0886056\pi\)
−0.814323 + 0.580413i \(0.802891\pi\)
\(224\) 7.79149 12.4288i 0.520591 0.830435i
\(225\) 0 0
\(226\) −3.55017 −0.236154
\(227\) −17.2441 −1.14453 −0.572266 0.820068i \(-0.693935\pi\)
−0.572266 + 0.820068i \(0.693935\pi\)
\(228\) 0 0
\(229\) −8.18030 6.52357i −0.540569 0.431090i 0.314762 0.949171i \(-0.398075\pi\)
−0.855332 + 0.518081i \(0.826647\pi\)
\(230\) −1.04103 + 4.56107i −0.0686438 + 0.300748i
\(231\) 0 0
\(232\) 2.18164 + 9.55839i 0.143232 + 0.627539i
\(233\) 5.28618 10.9769i 0.346309 0.719119i −0.652958 0.757394i \(-0.726472\pi\)
0.999267 + 0.0382756i \(0.0121865\pi\)
\(234\) 0 0
\(235\) 10.3433 12.9701i 0.674725 0.846078i
\(236\) −3.68342 + 16.1381i −0.239770 + 1.05050i
\(237\) 0 0
\(238\) −10.5307 3.67253i −0.682603 0.238055i
\(239\) −0.370472 0.295442i −0.0239638 0.0191105i 0.611435 0.791295i \(-0.290593\pi\)
−0.635399 + 0.772184i \(0.719164\pi\)
\(240\) 0 0
\(241\) −3.43409 7.13095i −0.221209 0.459345i 0.760599 0.649222i \(-0.224905\pi\)
−0.981808 + 0.189877i \(0.939191\pi\)
\(242\) −4.06351 + 3.24054i −0.261212 + 0.208310i
\(243\) 0 0
\(244\) 4.30747i 0.275757i
\(245\) −13.2170 27.2998i −0.844406 1.74412i
\(246\) 0 0
\(247\) 7.21956 + 31.6310i 0.459370 + 2.01263i
\(248\) 1.05605 + 1.32425i 0.0670594 + 0.0840898i
\(249\) 0 0
\(250\) 26.8532 21.4147i 1.69835 1.35439i
\(251\) 3.76595 4.72236i 0.237705 0.298073i −0.648643 0.761093i \(-0.724663\pi\)
0.886348 + 0.463021i \(0.153234\pi\)
\(252\) 0 0
\(253\) 1.70693 + 2.14042i 0.107313 + 0.134567i
\(254\) 19.5410 + 4.46010i 1.22611 + 0.279851i
\(255\) 0 0
\(256\) 3.66988 + 16.0788i 0.229368 + 1.00493i
\(257\) −4.63028 2.22982i −0.288829 0.139093i 0.283859 0.958866i \(-0.408385\pi\)
−0.572688 + 0.819773i \(0.694099\pi\)
\(258\) 0 0
\(259\) 2.77859 + 1.74187i 0.172653 + 0.108234i
\(260\) −28.9285 6.60274i −1.79407 0.409484i
\(261\) 0 0
\(262\) −4.95343 + 10.2859i −0.306024 + 0.635465i
\(263\) 12.7789i 0.787979i 0.919115 + 0.393990i \(0.128905\pi\)
−0.919115 + 0.393990i \(0.871095\pi\)
\(264\) 0 0
\(265\) 5.52232 11.4672i 0.339233 0.704426i
\(266\) −1.51494 13.3207i −0.0928869 0.816744i
\(267\) 0 0
\(268\) 6.68851 3.22102i 0.408566 0.196755i
\(269\) 0.218109 0.955599i 0.0132984 0.0582639i −0.967843 0.251554i \(-0.919059\pi\)
0.981142 + 0.193290i \(0.0619157\pi\)
\(270\) 0 0
\(271\) 4.44545 + 9.23108i 0.270042 + 0.560748i 0.991254 0.131966i \(-0.0421290\pi\)
−0.721212 + 0.692714i \(0.756415\pi\)
\(272\) 0.968265 0.466292i 0.0587097 0.0282731i
\(273\) 0 0
\(274\) −14.9442 7.19674i −0.902811 0.434771i
\(275\) 31.5516i 1.90263i
\(276\) 0 0
\(277\) 23.6016 + 11.3659i 1.41808 + 0.682913i 0.976740 0.214425i \(-0.0687878\pi\)
0.441343 + 0.897338i \(0.354502\pi\)
\(278\) 10.6620 13.3697i 0.639463 0.801862i
\(279\) 0 0
\(280\) 31.1341 + 10.8579i 1.86062 + 0.648884i
\(281\) 19.5942 4.47224i 1.16889 0.266792i 0.406341 0.913722i \(-0.366805\pi\)
0.762549 + 0.646930i \(0.223947\pi\)
\(282\) 0 0
\(283\) −15.5784 + 3.55567i −0.926041 + 0.211363i −0.658844 0.752279i \(-0.728954\pi\)
−0.267197 + 0.963642i \(0.586097\pi\)
\(284\) 3.99497 + 3.18588i 0.237058 + 0.189047i
\(285\) 0 0
\(286\) 9.35684 7.46183i 0.553282 0.441227i
\(287\) 1.19013 + 1.88971i 0.0702513 + 0.111546i
\(288\) 0 0
\(289\) 2.97698 + 3.73302i 0.175116 + 0.219589i
\(290\) −12.0210 + 5.78903i −0.705900 + 0.339944i
\(291\) 0 0
\(292\) 9.21041 2.10222i 0.538999 0.123023i
\(293\) −23.8502 −1.39335 −0.696673 0.717389i \(-0.745337\pi\)
−0.696673 + 0.717389i \(0.745337\pi\)
\(294\) 0 0
\(295\) −60.5802 −3.52712
\(296\) −3.47572 + 0.793310i −0.202022 + 0.0461102i
\(297\) 0 0
\(298\) −11.0969 + 5.34398i −0.642825 + 0.309568i
\(299\) 4.31030 + 5.40494i 0.249271 + 0.312576i
\(300\) 0 0
\(301\) 3.76119 3.76903i 0.216791 0.217244i
\(302\) −11.5525 + 9.21278i −0.664769 + 0.530136i
\(303\) 0 0
\(304\) 1.01003 + 0.805473i 0.0579292 + 0.0461970i
\(305\) −15.3690 + 3.50787i −0.880025 + 0.200860i
\(306\) 0 0
\(307\) −23.2393 + 5.30422i −1.32634 + 0.302728i −0.826278 0.563263i \(-0.809546\pi\)
−0.500060 + 0.865991i \(0.666689\pi\)
\(308\) 6.07125 3.82365i 0.345942 0.217873i
\(309\) 0 0
\(310\) −1.43716 + 1.80214i −0.0816253 + 0.102355i
\(311\) 14.4864 + 6.97629i 0.821449 + 0.395589i 0.796901 0.604110i \(-0.206471\pi\)
0.0245480 + 0.999699i \(0.492185\pi\)
\(312\) 0 0
\(313\) 7.93963i 0.448774i 0.974500 + 0.224387i \(0.0720380\pi\)
−0.974500 + 0.224387i \(0.927962\pi\)
\(314\) −2.29139 1.10348i −0.129311 0.0622728i
\(315\) 0 0
\(316\) 0.697412 0.335856i 0.0392325 0.0188934i
\(317\) 7.66940 + 15.9257i 0.430756 + 0.894475i 0.997506 + 0.0705846i \(0.0224865\pi\)
−0.566749 + 0.823890i \(0.691799\pi\)
\(318\) 0 0
\(319\) −1.73738 + 7.61195i −0.0972745 + 0.426187i
\(320\) −21.3510 + 10.2821i −1.19355 + 0.574786i
\(321\) 0 0
\(322\) −1.52234 2.41720i −0.0848368 0.134705i
\(323\) −11.3570 + 23.5830i −0.631919 + 1.31219i
\(324\) 0 0
\(325\) 79.6735i 4.41949i
\(326\) 8.25651 17.1448i 0.457286 0.949564i
\(327\) 0 0
\(328\) −2.36693 0.540235i −0.130692 0.0298295i
\(329\) 1.14464 + 10.0647i 0.0631063 + 0.554886i
\(330\) 0 0
\(331\) −10.3891 5.00311i −0.571034 0.274996i 0.126004 0.992030i \(-0.459785\pi\)
−0.697038 + 0.717034i \(0.745499\pi\)
\(332\) −1.87004 8.19317i −0.102632 0.449659i
\(333\) 0 0
\(334\) −10.3480 2.36187i −0.566219 0.129236i
\(335\) 16.9394 + 21.2414i 0.925501 + 1.16054i
\(336\) 0 0
\(337\) 16.3395 20.4891i 0.890072 1.11611i −0.102534 0.994730i \(-0.532695\pi\)
0.992605 0.121385i \(-0.0387336\pi\)
\(338\) 14.4463 11.5205i 0.785773 0.626633i
\(339\) 0 0
\(340\) −14.9256 18.7161i −0.809454 1.01502i
\(341\) 0.300150 + 1.31504i 0.0162540 + 0.0712135i
\(342\) 0 0
\(343\) 17.5000 + 6.06217i 0.944911 + 0.327327i
\(344\) 5.78851i 0.312096i
\(345\) 0 0
\(346\) 11.7972 9.40794i 0.634221 0.505774i
\(347\) 10.5180 + 21.8408i 0.564635 + 1.17248i 0.966474 + 0.256766i \(0.0826570\pi\)
−0.401839 + 0.915710i \(0.631629\pi\)
\(348\) 0 0
\(349\) −1.25766 1.00295i −0.0673209 0.0536866i 0.589251 0.807950i \(-0.299423\pi\)
−0.656572 + 0.754263i \(0.727994\pi\)
\(350\) −3.65204 + 32.7192i −0.195210 + 1.74891i
\(351\) 0 0
\(352\) −2.82592 + 12.3812i −0.150622 + 0.659918i
\(353\) 2.22612 2.79147i 0.118485 0.148575i −0.719052 0.694956i \(-0.755424\pi\)
0.837537 + 0.546381i \(0.183995\pi\)
\(354\) 0 0
\(355\) −8.11379 + 16.8485i −0.430635 + 0.894223i
\(356\) −3.03461 13.2955i −0.160834 0.704659i
\(357\) 0 0
\(358\) −0.981892 + 4.30195i −0.0518946 + 0.227365i
\(359\) 1.41736 + 1.13031i 0.0748056 + 0.0596555i 0.660179 0.751109i \(-0.270481\pi\)
−0.585373 + 0.810764i \(0.699052\pi\)
\(360\) 0 0
\(361\) −12.4649 −0.656047
\(362\) −13.5294 −0.711089
\(363\) 0 0
\(364\) 15.3310 9.65542i 0.803564 0.506081i
\(365\) 15.0013 + 31.1506i 0.785207 + 1.63050i
\(366\) 0 0
\(367\) 14.9617 + 3.41491i 0.780994 + 0.178257i 0.594388 0.804178i \(-0.297394\pi\)
0.186606 + 0.982435i \(0.440251\pi\)
\(368\) 0.268369 + 0.0612534i 0.0139897 + 0.00319306i
\(369\) 0 0
\(370\) −2.10507 4.37122i −0.109437 0.227249i
\(371\) 2.57443 + 7.33278i 0.133658 + 0.380699i
\(372\) 0 0
\(373\) 19.1260 0.990306 0.495153 0.868806i \(-0.335112\pi\)
0.495153 + 0.868806i \(0.335112\pi\)
\(374\) 9.65529 0.499263
\(375\) 0 0
\(376\) −8.60952 6.86587i −0.444002 0.354080i
\(377\) −4.38719 + 19.2216i −0.225952 + 0.989960i
\(378\) 0 0
\(379\) −6.62972 29.0467i −0.340546 1.49203i −0.797925 0.602757i \(-0.794069\pi\)
0.457379 0.889272i \(-0.348788\pi\)
\(380\) 12.4857 25.9268i 0.640503 1.33002i
\(381\) 0 0
\(382\) −1.91182 + 2.39734i −0.0978170 + 0.122659i
\(383\) −0.965199 + 4.22881i −0.0493194 + 0.216082i −0.993583 0.113109i \(-0.963919\pi\)
0.944263 + 0.329191i \(0.106776\pi\)
\(384\) 0 0
\(385\) 18.5870 + 18.5483i 0.947280 + 0.945308i
\(386\) 1.56613 + 1.24895i 0.0797141 + 0.0635699i
\(387\) 0 0
\(388\) 7.50950 + 15.5936i 0.381237 + 0.791647i
\(389\) 11.5074 9.17687i 0.583450 0.465286i −0.286736 0.958010i \(-0.592570\pi\)
0.870186 + 0.492724i \(0.163999\pi\)
\(390\) 0 0
\(391\) 5.57734i 0.282058i
\(392\) −18.1215 + 8.77342i −0.915273 + 0.443125i
\(393\) 0 0
\(394\) 2.03132 + 8.89979i 0.102336 + 0.448365i
\(395\) 1.76628 + 2.21484i 0.0888712 + 0.111441i
\(396\) 0 0
\(397\) −20.1552 + 16.0732i −1.01156 + 0.806691i −0.981228 0.192849i \(-0.938227\pi\)
−0.0303298 + 0.999540i \(0.509656\pi\)
\(398\) −12.9053 + 16.1828i −0.646885 + 0.811168i
\(399\) 0 0
\(400\) −1.97799 2.48033i −0.0988997 0.124016i
\(401\) 0.424547 + 0.0969002i 0.0212009 + 0.00483896i 0.233108 0.972451i \(-0.425110\pi\)
−0.211907 + 0.977290i \(0.567968\pi\)
\(402\) 0 0
\(403\) 0.757933 + 3.32072i 0.0377553 + 0.165417i
\(404\) −3.71503 1.78906i −0.184830 0.0890092i
\(405\) 0 0
\(406\) 2.68274 7.69254i 0.133142 0.381774i
\(407\) −2.76793 0.631763i −0.137201 0.0313153i
\(408\) 0 0
\(409\) 0.726290 1.50816i 0.0359127 0.0745735i −0.882241 0.470799i \(-0.843966\pi\)
0.918153 + 0.396225i \(0.129680\pi\)
\(410\) 3.30394i 0.163170i
\(411\) 0 0
\(412\) −1.29559 + 2.69032i −0.0638291 + 0.132542i
\(413\) 26.1291 26.1836i 1.28573 1.28841i
\(414\) 0 0
\(415\) 27.7102 13.3445i 1.36024 0.655057i
\(416\) −7.13596 + 31.2647i −0.349869 + 1.53288i
\(417\) 0 0
\(418\) 5.03588 + 10.4571i 0.246313 + 0.511474i
\(419\) 29.1182 14.0226i 1.42252 0.685047i 0.444926 0.895567i \(-0.353230\pi\)
0.977589 + 0.210520i \(0.0675158\pi\)
\(420\) 0 0
\(421\) 6.34125 + 3.05379i 0.309054 + 0.148832i 0.581981 0.813202i \(-0.302278\pi\)
−0.272928 + 0.962035i \(0.587992\pi\)
\(422\) 16.8528i 0.820384i
\(423\) 0 0
\(424\) −7.61189 3.66569i −0.369666 0.178022i
\(425\) 40.0768 50.2547i 1.94401 2.43771i
\(426\) 0 0
\(427\) 5.11270 8.15566i 0.247421 0.394680i
\(428\) 10.8447 2.47524i 0.524200 0.119645i
\(429\) 0 0
\(430\) −7.67998 + 1.75290i −0.370361 + 0.0845326i
\(431\) −15.6426 12.4745i −0.753477 0.600877i 0.169591 0.985514i \(-0.445755\pi\)
−0.923068 + 0.384637i \(0.874327\pi\)
\(432\) 0 0
\(433\) −2.32509 + 1.85420i −0.111737 + 0.0891071i −0.677764 0.735279i \(-0.737051\pi\)
0.566028 + 0.824386i \(0.308480\pi\)
\(434\) −0.159043 1.39845i −0.00763432 0.0671277i
\(435\) 0 0
\(436\) 8.43549 + 10.5778i 0.403987 + 0.506583i
\(437\) −6.04051 + 2.90896i −0.288957 + 0.139154i
\(438\) 0 0
\(439\) 7.56298 1.72620i 0.360961 0.0823871i −0.0381941 0.999270i \(-0.512161\pi\)
0.399155 + 0.916883i \(0.369303\pi\)
\(440\) −28.5460 −1.36088
\(441\) 0 0
\(442\) 24.3814 1.15970
\(443\) −12.7104 + 2.90106i −0.603889 + 0.137834i −0.513524 0.858075i \(-0.671660\pi\)
−0.0903645 + 0.995909i \(0.528803\pi\)
\(444\) 0 0
\(445\) 44.9668 21.6549i 2.13163 1.02654i
\(446\) 2.85315 + 3.57773i 0.135100 + 0.169411i
\(447\) 0 0
\(448\) 4.76490 13.6630i 0.225120 0.645514i
\(449\) 23.3381 18.6115i 1.10139 0.878332i 0.108121 0.994138i \(-0.465516\pi\)
0.993272 + 0.115806i \(0.0369450\pi\)
\(450\) 0 0
\(451\) −1.51160 1.20546i −0.0711784 0.0567629i
\(452\) 4.53632 1.03539i 0.213371 0.0487005i
\(453\) 0 0
\(454\) −15.1869 + 3.46630i −0.712755 + 0.162682i
\(455\) 46.9355 + 46.8378i 2.20037 + 2.19579i
\(456\) 0 0
\(457\) −1.26926 + 1.59161i −0.0593737 + 0.0744523i −0.810632 0.585557i \(-0.800876\pi\)
0.751258 + 0.660009i \(0.229447\pi\)
\(458\) −8.51571 4.10095i −0.397913 0.191625i
\(459\) 0 0
\(460\) 6.13165i 0.285890i
\(461\) 12.4446 + 5.99301i 0.579603 + 0.279122i 0.700627 0.713527i \(-0.252904\pi\)
−0.121024 + 0.992650i \(0.538618\pi\)
\(462\) 0 0
\(463\) −13.2412 + 6.37663i −0.615371 + 0.296347i −0.715484 0.698629i \(-0.753794\pi\)
0.100113 + 0.994976i \(0.468079\pi\)
\(464\) 0.340621 + 0.707306i 0.0158129 + 0.0328359i
\(465\) 0 0
\(466\) 2.44903 10.7299i 0.113449 0.497054i
\(467\) −20.4064 + 9.82721i −0.944296 + 0.454749i −0.841683 0.539972i \(-0.818435\pi\)
−0.102613 + 0.994721i \(0.532720\pi\)
\(468\) 0 0
\(469\) −16.4870 1.84024i −0.761299 0.0849745i
\(470\) 6.50219 13.5019i 0.299924 0.622798i
\(471\) 0 0
\(472\) 40.2129i 1.85095i
\(473\) −2.00010 + 4.15325i −0.0919647 + 0.190967i
\(474\) 0 0
\(475\) 75.3308 + 17.1938i 3.45641 + 0.788904i
\(476\) 14.5270 + 1.62147i 0.665842 + 0.0743197i
\(477\) 0 0
\(478\) −0.385662 0.185725i −0.0176398 0.00849487i
\(479\) −5.90077 25.8529i −0.269613 1.18125i −0.910465 0.413587i \(-0.864276\pi\)
0.640852 0.767665i \(-0.278581\pi\)
\(480\) 0 0
\(481\) −6.98954 1.59532i −0.318696 0.0727402i
\(482\) −4.45782 5.58993i −0.203048 0.254614i
\(483\) 0 0
\(484\) 4.24718 5.32579i 0.193054 0.242082i
\(485\) −49.5223 + 39.4927i −2.24869 + 1.79327i
\(486\) 0 0
\(487\) 10.7003 + 13.4177i 0.484875 + 0.608015i 0.962743 0.270417i \(-0.0871616\pi\)
−0.477868 + 0.878432i \(0.658590\pi\)
\(488\) 2.32851 + 10.2019i 0.105407 + 0.461817i
\(489\) 0 0
\(490\) −17.1279 21.3861i −0.773758 0.966125i
\(491\) 26.1049i 1.17810i −0.808097 0.589049i \(-0.799502\pi\)
0.808097 0.589049i \(-0.200498\pi\)
\(492\) 0 0
\(493\) −12.4359 + 9.91733i −0.560086 + 0.446654i
\(494\) 12.7165 + 26.4061i 0.572143 + 1.18807i
\(495\) 0 0
\(496\) 0.106036 + 0.0845611i 0.00476117 + 0.00379691i
\(497\) −3.78254 10.7738i −0.169670 0.483273i
\(498\) 0 0
\(499\) 4.80784 21.0645i 0.215228 0.942977i −0.745722 0.666257i \(-0.767895\pi\)
0.960951 0.276720i \(-0.0892474\pi\)
\(500\) −28.0670 + 35.1949i −1.25519 + 1.57396i
\(501\) 0 0
\(502\) 2.36741 4.91598i 0.105663 0.219411i
\(503\) −2.00226 8.77249i −0.0892766 0.391146i 0.910472 0.413571i \(-0.135719\pi\)
−0.999749 + 0.0224246i \(0.992861\pi\)
\(504\) 0 0
\(505\) 3.35795 14.7121i 0.149427 0.654681i
\(506\) 1.93354 + 1.54195i 0.0859564 + 0.0685479i
\(507\) 0 0
\(508\) −26.2698 −1.16553
\(509\) 33.4567 1.48294 0.741471 0.670985i \(-0.234128\pi\)
0.741471 + 0.670985i \(0.234128\pi\)
\(510\) 0 0
\(511\) −19.9340 6.95189i −0.881827 0.307534i
\(512\) 1.12886 + 2.34410i 0.0498890 + 0.103595i
\(513\) 0 0
\(514\) −4.52611 1.03305i −0.199638 0.0455661i
\(515\) −10.6541 2.43173i −0.469476 0.107155i
\(516\) 0 0
\(517\) −3.80496 7.90109i −0.167342 0.347490i
\(518\) 2.79724 + 0.975526i 0.122904 + 0.0428621i
\(519\) 0 0
\(520\) −72.0839 −3.16109
\(521\) 17.1409 0.750958 0.375479 0.926831i \(-0.377478\pi\)
0.375479 + 0.926831i \(0.377478\pi\)
\(522\) 0 0
\(523\) −15.5833 12.4272i −0.681408 0.543405i 0.220471 0.975394i \(-0.429241\pi\)
−0.901879 + 0.431989i \(0.857812\pi\)
\(524\) 3.32956 14.5877i 0.145452 0.637268i
\(525\) 0 0
\(526\) 2.56873 + 11.2543i 0.112002 + 0.490713i
\(527\) −1.19229 + 2.47582i −0.0519370 + 0.107848i
\(528\) 0 0
\(529\) 13.4496 16.8652i 0.584764 0.733271i
\(530\) 2.55843 11.2092i 0.111131 0.486898i
\(531\) 0 0
\(532\) 5.82066 + 16.5791i 0.252358 + 0.718793i
\(533\) −3.81706 3.04401i −0.165335 0.131851i
\(534\) 0 0
\(535\) 17.6632 + 36.6781i 0.763649 + 1.58573i
\(536\) 14.1000 11.2443i 0.609025 0.485681i
\(537\) 0 0
\(538\) 0.885438i 0.0381739i
\(539\) −16.0336 + 0.0334173i −0.690616 + 0.00143939i
\(540\) 0 0
\(541\) 7.59738 + 33.2863i 0.326637 + 1.43109i 0.825496 + 0.564407i \(0.190895\pi\)
−0.498859 + 0.866683i \(0.666248\pi\)
\(542\) 5.77068 + 7.23621i 0.247872 + 0.310822i
\(543\) 0 0
\(544\) −20.2276 + 16.1310i −0.867251 + 0.691609i
\(545\) −30.8717 + 38.7119i −1.32240 + 1.65823i
\(546\) 0 0
\(547\) 6.88277 + 8.63072i 0.294286 + 0.369023i 0.906890 0.421367i \(-0.138450\pi\)
−0.612604 + 0.790390i \(0.709878\pi\)
\(548\) 21.1942 + 4.83745i 0.905373 + 0.206646i
\(549\) 0 0
\(550\) −6.34231 27.7875i −0.270437 1.18486i
\(551\) −17.2271 8.29613i −0.733899 0.353427i
\(552\) 0 0
\(553\) −1.71910 0.191883i −0.0731038 0.00815968i
\(554\) 23.0706 + 5.26572i 0.980177 + 0.223719i
\(555\) 0 0
\(556\) −9.72445 + 20.1930i −0.412408 + 0.856375i
\(557\) 38.9619i 1.65087i −0.564499 0.825434i \(-0.690931\pi\)
0.564499 0.825434i \(-0.309069\pi\)
\(558\) 0 0
\(559\) −5.05061 + 10.4877i −0.213618 + 0.443583i
\(560\) 2.62396 + 0.292880i 0.110883 + 0.0123765i
\(561\) 0 0
\(562\) 16.3576 7.87740i 0.690003 0.332288i
\(563\) −4.15659 + 18.2112i −0.175179 + 0.767511i 0.808634 + 0.588313i \(0.200208\pi\)
−0.983813 + 0.179198i \(0.942650\pi\)
\(564\) 0 0
\(565\) 7.38848 + 15.3423i 0.310836 + 0.645457i
\(566\) −13.0052 + 6.26296i −0.546648 + 0.263252i
\(567\) 0 0
\(568\) 11.1839 + 5.38590i 0.469268 + 0.225987i
\(569\) 10.8214i 0.453657i 0.973935 + 0.226828i \(0.0728356\pi\)
−0.973935 + 0.226828i \(0.927164\pi\)
\(570\) 0 0
\(571\) −31.8497 15.3380i −1.33287 0.641876i −0.374452 0.927246i \(-0.622169\pi\)
−0.958417 + 0.285370i \(0.907884\pi\)
\(572\) −9.77976 + 12.2634i −0.408912 + 0.512760i
\(573\) 0 0
\(574\) 1.42801 + 1.42503i 0.0596039 + 0.0594798i
\(575\) 16.0513 3.66361i 0.669386 0.152783i
\(576\) 0 0
\(577\) 31.3847 7.16336i 1.30656 0.298214i 0.488107 0.872784i \(-0.337688\pi\)
0.818456 + 0.574569i \(0.194830\pi\)
\(578\) 3.37221 + 2.68925i 0.140266 + 0.111858i
\(579\) 0 0
\(580\) 13.6719 10.9030i 0.567694 0.452721i
\(581\) −6.18409 + 17.7324i −0.256559 + 0.735663i
\(582\) 0 0
\(583\) −4.19492 5.26026i −0.173736 0.217858i
\(584\) 20.6777 9.95784i 0.855648 0.412058i
\(585\) 0 0
\(586\) −21.0049 + 4.79423i −0.867704 + 0.198048i
\(587\) −16.4455 −0.678778 −0.339389 0.940646i \(-0.610220\pi\)
−0.339389 + 0.940646i \(0.610220\pi\)
\(588\) 0 0
\(589\) −3.30328 −0.136109
\(590\) −53.3530 + 12.1775i −2.19651 + 0.501338i
\(591\) 0 0
\(592\) −0.257198 + 0.123860i −0.0105708 + 0.00509061i
\(593\) 10.9015 + 13.6701i 0.447672 + 0.561363i 0.953547 0.301244i \(-0.0974019\pi\)
−0.505875 + 0.862607i \(0.668830\pi\)
\(594\) 0 0
\(595\) 6.04494 + 53.1524i 0.247818 + 2.17904i
\(596\) 12.6208 10.0648i 0.516968 0.412269i
\(597\) 0 0
\(598\) 4.88254 + 3.89370i 0.199662 + 0.159225i
\(599\) 25.4090 5.79943i 1.03818 0.236958i 0.330735 0.943724i \(-0.392704\pi\)
0.707448 + 0.706765i \(0.249846\pi\)
\(600\) 0 0
\(601\) −0.620588 + 0.141645i −0.0253143 + 0.00577782i −0.235159 0.971957i \(-0.575561\pi\)
0.209845 + 0.977735i \(0.432704\pi\)
\(602\) 2.55485 4.07544i 0.104128 0.166102i
\(603\) 0 0
\(604\) 12.0746 15.1411i 0.491309 0.616082i
\(605\) 22.4611 + 10.8167i 0.913174 + 0.439762i
\(606\) 0 0
\(607\) 36.7437i 1.49138i −0.666293 0.745690i \(-0.732120\pi\)
0.666293 0.745690i \(-0.267880\pi\)
\(608\) −28.0206 13.4940i −1.13639 0.547255i
\(609\) 0 0
\(610\) −12.8303 + 6.17875i −0.519484 + 0.250170i
\(611\) −9.60823 19.9517i −0.388707 0.807159i
\(612\) 0 0
\(613\) 4.26392 18.6815i 0.172218 0.754538i −0.812864 0.582454i \(-0.802093\pi\)
0.985082 0.172084i \(-0.0550501\pi\)
\(614\) −19.4006 + 9.34284i −0.782945 + 0.377046i
\(615\) 0 0
\(616\) 12.3123 12.3380i 0.496076 0.497111i
\(617\) 18.7842 39.0058i 0.756223 1.57031i −0.0637875 0.997964i \(-0.520318\pi\)
0.820010 0.572349i \(-0.193968\pi\)
\(618\) 0 0
\(619\) 3.16461i 0.127196i −0.997976 0.0635982i \(-0.979742\pi\)
0.997976 0.0635982i \(-0.0202576\pi\)
\(620\) 1.31079 2.72188i 0.0526425 0.109313i
\(621\) 0 0
\(622\) 14.1605 + 3.23204i 0.567784 + 0.129593i
\(623\) −10.0352 + 28.7752i −0.402054 + 1.15286i
\(624\) 0 0
\(625\) −86.3781 41.5975i −3.45512 1.66390i
\(626\) 1.59598 + 6.99242i 0.0637880 + 0.279473i
\(627\) 0 0
\(628\) 3.24971 + 0.741726i 0.129678 + 0.0295981i
\(629\) −3.60624 4.52208i −0.143790 0.180307i
\(630\) 0 0
\(631\) 21.2880 26.6943i 0.847462 1.06268i −0.149799 0.988717i \(-0.547863\pi\)
0.997261 0.0739671i \(-0.0235660\pi\)
\(632\) 1.47021 1.17245i 0.0584816 0.0466375i
\(633\) 0 0
\(634\) 9.95571 + 12.4841i 0.395392 + 0.495806i
\(635\) −21.3933 93.7301i −0.848967 3.71957i
\(636\) 0 0
\(637\) −40.4878 + 0.0843848i −1.60418 + 0.00334345i
\(638\) 7.05307i 0.279234i
\(639\) 0 0
\(640\) 20.8283 16.6100i 0.823312 0.656569i
\(641\) 6.40154 + 13.2929i 0.252845 + 0.525039i 0.988298 0.152538i \(-0.0487445\pi\)
−0.735452 + 0.677577i \(0.763030\pi\)
\(642\) 0 0
\(643\) −17.3801 13.8602i −0.685405 0.546592i 0.217698 0.976016i \(-0.430145\pi\)
−0.903103 + 0.429424i \(0.858717\pi\)
\(644\) 2.65018 + 2.64466i 0.104432 + 0.104214i
\(645\) 0 0
\(646\) −5.26157 + 23.0524i −0.207014 + 0.906986i
\(647\) 8.91706 11.1816i 0.350566 0.439596i −0.575017 0.818142i \(-0.695004\pi\)
0.925582 + 0.378546i \(0.123576\pi\)
\(648\) 0 0
\(649\) −13.8947 + 28.8527i −0.545416 + 1.13257i
\(650\) −16.0155 70.1684i −0.628179 2.75223i
\(651\) 0 0
\(652\) −5.54980 + 24.3153i −0.217347 + 0.952259i
\(653\) −22.6942 18.0981i −0.888094 0.708232i 0.0691209 0.997608i \(-0.477981\pi\)
−0.957215 + 0.289377i \(0.906552\pi\)
\(654\) 0 0
\(655\) 54.7603 2.13966
\(656\) −0.194401 −0.00759007
\(657\) 0 0
\(658\) 3.03123 + 8.63390i 0.118170 + 0.336584i
\(659\) −18.2270 37.8488i −0.710024 1.47438i −0.872985 0.487747i \(-0.837819\pi\)
0.162961 0.986632i \(-0.447895\pi\)
\(660\) 0 0
\(661\) −11.3129 2.58211i −0.440023 0.100432i −0.00323055 0.999995i \(-0.501028\pi\)
−0.436792 + 0.899562i \(0.643885\pi\)
\(662\) −10.1553 2.31789i −0.394698 0.0900872i
\(663\) 0 0
\(664\) −8.85804 18.3939i −0.343759 0.713822i
\(665\) −54.4136 + 34.2695i −2.11007 + 1.32891i
\(666\) 0 0
\(667\) −4.07418 −0.157753
\(668\) 13.9113 0.538245
\(669\) 0 0
\(670\) 19.1884 + 15.3022i 0.741311 + 0.591176i
\(671\) −1.85434 + 8.12439i −0.0715860 + 0.313639i
\(672\) 0 0
\(673\) 3.40478 + 14.9173i 0.131245 + 0.575020i 0.997192 + 0.0748854i \(0.0238591\pi\)
−0.865948 + 0.500135i \(0.833284\pi\)
\(674\) 10.2716 21.3292i 0.395648 0.821572i
\(675\) 0 0
\(676\) −15.0992 + 18.9338i −0.580740 + 0.728224i
\(677\) −3.63335 + 15.9187i −0.139641 + 0.611807i 0.855873 + 0.517187i \(0.173021\pi\)
−0.995513 + 0.0946200i \(0.969836\pi\)
\(678\) 0 0
\(679\) 4.29035 38.4379i 0.164649 1.47511i
\(680\) −45.4675 36.2591i −1.74360 1.39047i
\(681\) 0 0
\(682\) 0.528683 + 1.09782i 0.0202443 + 0.0420378i
\(683\) 3.40737 2.71729i 0.130379 0.103974i −0.556129 0.831096i \(-0.687714\pi\)
0.686508 + 0.727122i \(0.259143\pi\)
\(684\) 0 0
\(685\) 79.5602i 3.03984i
\(686\) 16.6308 + 1.82121i 0.634968 + 0.0695341i
\(687\) 0 0
\(688\) 0.103139 + 0.451882i 0.00393214 + 0.0172278i
\(689\) −10.5929 13.2831i −0.403558 0.506046i
\(690\) 0 0
\(691\) 0.537751 0.428842i 0.0204570 0.0163139i −0.613208 0.789922i \(-0.710121\pi\)
0.633665 + 0.773608i \(0.281550\pi\)
\(692\) −12.3304 + 15.4618i −0.468732 + 0.587771i
\(693\) 0 0
\(694\) 13.6535 + 17.1209i 0.518279 + 0.649902i
\(695\) −79.9677 18.2521i −3.03335 0.692342i
\(696\) 0 0
\(697\) −0.876468 3.84006i −0.0331986 0.145453i
\(698\) −1.30922 0.630490i −0.0495549 0.0238644i
\(699\) 0 0
\(700\) −4.87587 42.8730i −0.184291 1.62045i
\(701\) −3.24163 0.739880i −0.122435 0.0279449i 0.160865 0.986976i \(-0.448572\pi\)
−0.283299 + 0.959032i \(0.591429\pi\)
\(702\) 0 0
\(703\) 3.01672 6.26429i 0.113778 0.236262i
\(704\) 12.5272i 0.472136i
\(705\) 0 0
\(706\) 1.39942 2.90593i 0.0526679 0.109366i
\(707\) 4.91044 + 7.79688i 0.184676 + 0.293232i
\(708\) 0 0
\(709\) −14.0022 + 6.74311i −0.525864 + 0.253243i −0.677929 0.735128i \(-0.737122\pi\)
0.152064 + 0.988371i \(0.451408\pi\)
\(710\) −3.75904 + 16.4694i −0.141074 + 0.618086i
\(711\) 0 0
\(712\) −14.3744 29.8488i −0.538704 1.11863i
\(713\) −0.634152 + 0.305392i −0.0237492 + 0.0114370i
\(714\) 0 0
\(715\) −51.7201 24.9071i −1.93422 0.931472i
\(716\) 5.78330i 0.216132i
\(717\) 0 0
\(718\) 1.47548 + 0.710554i 0.0550644 + 0.0265176i
\(719\) 3.97981 4.99052i 0.148422 0.186115i −0.702063 0.712115i \(-0.747737\pi\)
0.850485 + 0.526000i \(0.176309\pi\)
\(720\) 0 0
\(721\) 5.64628 3.55600i 0.210278 0.132433i
\(722\) −10.9778 + 2.50561i −0.408552 + 0.0932493i
\(723\) 0 0
\(724\) 17.2876 3.94577i 0.642487 0.146643i
\(725\) 36.7104 + 29.2756i 1.36339 + 1.08727i
\(726\) 0 0
\(727\) −5.40462 + 4.31004i −0.200446 + 0.159851i −0.718569 0.695456i \(-0.755202\pi\)
0.518123 + 0.855306i \(0.326631\pi\)
\(728\) 31.0907 31.1556i 1.15230 1.15470i
\(729\) 0 0
\(730\) 19.4734 + 24.4188i 0.720742 + 0.903782i
\(731\) −8.46116 + 4.07468i −0.312947 + 0.150707i
\(732\) 0 0
\(733\) −29.5914 + 6.75405i −1.09298 + 0.249466i −0.730767 0.682627i \(-0.760837\pi\)
−0.362217 + 0.932094i \(0.617980\pi\)
\(734\) 13.8632 0.511700
\(735\) 0 0
\(736\) −6.62683 −0.244268
\(737\) 14.0019 3.19585i 0.515768 0.117721i
\(738\) 0 0
\(739\) −24.3072 + 11.7057i −0.894156 + 0.430603i −0.823775 0.566917i \(-0.808136\pi\)
−0.0703813 + 0.997520i \(0.522422\pi\)
\(740\) 3.96465 + 4.97151i 0.145743 + 0.182756i
\(741\) 0 0
\(742\) 3.74129 + 5.94048i 0.137347 + 0.218082i
\(743\) 12.2610 9.77781i 0.449812 0.358713i −0.372229 0.928141i \(-0.621407\pi\)
0.822041 + 0.569428i \(0.192835\pi\)
\(744\) 0 0
\(745\) 46.1889 + 36.8344i 1.69223 + 1.34951i
\(746\) 16.8442 3.84459i 0.616712 0.140760i
\(747\) 0 0
\(748\) −12.3373 + 2.81591i −0.451097 + 0.102960i
\(749\) −23.4711 8.18546i −0.857617 0.299090i
\(750\) 0 0
\(751\) −8.69392 + 10.9018i −0.317246 + 0.397814i −0.914729 0.404068i \(-0.867596\pi\)
0.597483 + 0.801881i \(0.296167\pi\)
\(752\) −0.794440 0.382582i −0.0289703 0.0139513i
\(753\) 0 0
\(754\) 17.8103i 0.648613i
\(755\) 63.8564 + 30.7516i 2.32397 + 1.11917i
\(756\) 0 0
\(757\) −40.0279 + 19.2764i −1.45484 + 0.700614i −0.983428 0.181299i \(-0.941970\pi\)
−0.471412 + 0.881913i \(0.656256\pi\)
\(758\) −11.6776 24.2487i −0.424149 0.880754i
\(759\) 0 0
\(760\) 15.5559 68.1549i 0.564272 2.47224i
\(761\) 34.1086 16.4258i 1.23643 0.595435i 0.302592 0.953120i \(-0.402148\pi\)
0.933842 + 0.357685i \(0.116434\pi\)
\(762\) 0 0
\(763\) −3.41641 30.0401i −0.123682 1.08752i
\(764\) 1.74371 3.62084i 0.0630851 0.130997i
\(765\) 0 0
\(766\) 3.91833i 0.141575i
\(767\) −35.0867 + 72.8584i −1.26691 + 2.63076i
\(768\) 0 0
\(769\) 10.2500 + 2.33950i 0.369625 + 0.0843645i 0.403299 0.915068i \(-0.367864\pi\)
−0.0336737 + 0.999433i \(0.510721\pi\)
\(770\) 20.0980 + 12.5992i 0.724281 + 0.454044i
\(771\) 0 0
\(772\) −2.36542 1.13913i −0.0851333 0.0409981i
\(773\) 9.39000 + 41.1403i 0.337735 + 1.47971i 0.803766 + 0.594945i \(0.202826\pi\)
−0.466031 + 0.884768i \(0.654317\pi\)
\(774\) 0 0
\(775\) 7.90847 + 1.80506i 0.284081 + 0.0648396i
\(776\) 26.2151 + 32.8727i 0.941068 + 1.18006i
\(777\) 0 0
\(778\) 8.28990 10.3952i 0.297207 0.372686i
\(779\) 3.70182 2.95210i 0.132632 0.105770i
\(780\) 0 0
\(781\) 6.16348 + 7.72875i 0.220547 + 0.276557i
\(782\) 1.12112 + 4.91196i 0.0400913 + 0.175651i
\(783\) 0 0
\(784\) −1.25834 + 1.00779i −0.0449405 + 0.0359924i
\(785\) 12.1990i 0.435400i
\(786\) 0 0
\(787\) 0.711713 0.567572i 0.0253698 0.0202318i −0.610723 0.791844i \(-0.709121\pi\)
0.636093 + 0.771613i \(0.280550\pi\)
\(788\) −5.19115 10.7795i −0.184927 0.384005i
\(789\) 0 0
\(790\) 2.00078 + 1.59557i 0.0711844 + 0.0567677i
\(791\) −9.81791 3.42396i −0.349085 0.121742i
\(792\) 0 0
\(793\) −4.68254 + 20.5156i −0.166282 + 0.728529i
\(794\) −14.5197 + 18.2071i −0.515285 + 0.646146i
\(795\) 0 0
\(796\) 11.7705 24.4417i 0.417195 0.866314i
\(797\) −5.79511 25.3901i −0.205273 0.899362i −0.967664 0.252244i \(-0.918831\pi\)
0.762390 0.647118i \(-0.224026\pi\)
\(798\) 0 0
\(799\) 3.97548 17.4177i 0.140643 0.616195i
\(800\) 59.7111 + 47.6180i 2.11111 + 1.68355i
\(801\) 0 0
\(802\) 0.393377 0.0138906
\(803\) 18.2769 0.644978
\(804\) 0 0
\(805\) −7.27788 + 11.6095i −0.256512 + 0.409182i
\(806\) 1.33502 + 2.77220i 0.0470241 + 0.0976466i
\(807\) 0 0
\(808\) −9.76585 2.22899i −0.343561 0.0784156i
\(809\) 25.1809 + 5.74737i 0.885313 + 0.202067i 0.640918 0.767609i \(-0.278554\pi\)
0.244394 + 0.969676i \(0.421411\pi\)
\(810\) 0 0
\(811\) 3.47238 + 7.21046i 0.121932 + 0.253194i 0.952996 0.302982i \(-0.0979823\pi\)
−0.831065 + 0.556176i \(0.812268\pi\)
\(812\) −1.18446 + 10.6118i −0.0415664 + 0.372400i
\(813\) 0 0
\(814\) −2.56471 −0.0898931
\(815\) −91.2760 −3.19726
\(816\) 0 0
\(817\) −8.82613 7.03860i −0.308787 0.246250i
\(818\) 0.336482 1.47423i 0.0117648 0.0515451i
\(819\) 0 0
\(820\) 0.963577 + 4.22171i 0.0336496 + 0.147428i
\(821\) 2.82253 5.86104i 0.0985069 0.204552i −0.845892 0.533355i \(-0.820931\pi\)
0.944398 + 0.328803i \(0.106645\pi\)
\(822\) 0 0
\(823\) −24.7618 + 31.0503i −0.863140 + 1.08234i 0.132693 + 0.991157i \(0.457637\pi\)
−0.995834 + 0.0911868i \(0.970934\pi\)
\(824\) −1.61417 + 7.07215i −0.0562323 + 0.246370i
\(825\) 0 0
\(826\) 17.7486 28.3121i 0.617552 0.985106i
\(827\) 34.5160 + 27.5256i 1.20024 + 0.957158i 0.999746 0.0225377i \(-0.00717458\pi\)
0.200492 + 0.979695i \(0.435746\pi\)
\(828\) 0 0
\(829\) −11.7069 24.3097i −0.406599 0.844312i −0.999245 0.0388486i \(-0.987631\pi\)
0.592646 0.805463i \(-0.298083\pi\)
\(830\) 21.7219 17.3226i 0.753978 0.601278i
\(831\) 0 0
\(832\) 31.6334i 1.09669i
\(833\) −25.5804 20.3126i −0.886309 0.703791i
\(834\) 0 0
\(835\) 11.3289 + 49.6353i 0.392054 + 1.71770i
\(836\) −9.48450 11.8932i −0.328028 0.411335i
\(837\) 0 0
\(838\) 22.8256 18.2028i 0.788498 0.628806i
\(839\) −16.6578 + 20.8883i −0.575093 + 0.721144i −0.981267 0.192652i \(-0.938291\pi\)
0.406174 + 0.913796i \(0.366863\pi\)
\(840\) 0 0
\(841\) 10.8367 + 13.5888i 0.373680 + 0.468580i
\(842\) 6.19859 + 1.41479i 0.213617 + 0.0487568i
\(843\) 0 0
\(844\) 4.91504 + 21.5342i 0.169183 + 0.741238i
\(845\) −79.8520 38.4547i −2.74699 1.32288i
\(846\) 0 0
\(847\) −14.3629 + 5.04260i −0.493515 + 0.173266i
\(848\) −0.659540 0.150536i −0.0226487 0.00516941i
\(849\) 0 0
\(850\) 25.1937 52.3152i 0.864136 1.79440i
\(851\) 1.48149i 0.0507850i
\(852\) 0 0
\(853\) −11.5683 + 24.0219i −0.396092 + 0.822494i 0.603590 + 0.797295i \(0.293736\pi\)
−0.999682 + 0.0251995i \(0.991978\pi\)
\(854\) 2.86335 8.21041i 0.0979817 0.280954i
\(855\) 0 0
\(856\) 24.3468 11.7248i 0.832156 0.400745i
\(857\) 6.43802 28.2068i 0.219919 0.963527i −0.737619 0.675217i \(-0.764050\pi\)
0.957537 0.288309i \(-0.0930931\pi\)
\(858\) 0 0
\(859\) −9.42345 19.5680i −0.321524 0.667651i 0.676081 0.736828i \(-0.263677\pi\)
−0.997604 + 0.0691766i \(0.977963\pi\)
\(860\) 9.30208 4.47965i 0.317198 0.152755i
\(861\) 0 0
\(862\) −16.2840 7.84194i −0.554634 0.267098i
\(863\) 27.5878i 0.939101i −0.882906 0.469551i \(-0.844416\pi\)
0.882906 0.469551i \(-0.155584\pi\)
\(864\) 0 0
\(865\) −65.2091 31.4031i −2.21718 1.06774i
\(866\) −1.67499 + 2.10037i −0.0569183 + 0.0713733i
\(867\) 0 0
\(868\) 0.611072 + 1.74052i 0.0207411 + 0.0590772i
\(869\) 1.45999 0.333232i 0.0495266 0.0113041i
\(870\) 0 0
\(871\) 35.3574 8.07011i 1.19804 0.273445i
\(872\) 25.6968 + 20.4925i 0.870203 + 0.693964i
\(873\) 0 0
\(874\) −4.73513 + 3.77614i −0.160168 + 0.127730i
\(875\) 94.9155 33.3234i 3.20873 1.12654i
\(876\) 0 0
\(877\) 19.4777 + 24.4242i 0.657714 + 0.824747i 0.993092 0.117336i \(-0.0374356\pi\)
−0.335378 + 0.942084i \(0.608864\pi\)
\(878\) 6.31372 3.04053i 0.213078 0.102613i
\(879\) 0 0
\(880\) −2.22845 + 0.508630i −0.0751211 + 0.0171459i
\(881\) −47.1716 −1.58925 −0.794625 0.607101i \(-0.792333\pi\)
−0.794625 + 0.607101i \(0.792333\pi\)
\(882\) 0 0
\(883\) 42.3029 1.42361 0.711803 0.702379i \(-0.247879\pi\)
0.711803 + 0.702379i \(0.247879\pi\)
\(884\) −31.1540 + 7.11069i −1.04782 + 0.239158i
\(885\) 0 0
\(886\) −10.6109 + 5.10993i −0.356479 + 0.171671i
\(887\) −12.8105 16.0638i −0.430133 0.539370i 0.518780 0.854908i \(-0.326386\pi\)
−0.948913 + 0.315538i \(0.897815\pi\)
\(888\) 0 0
\(889\) 49.7386 + 31.1806i 1.66818 + 1.04576i
\(890\) 35.2493 28.1104i 1.18156 0.942261i
\(891\) 0 0
\(892\) −4.68911 3.73944i −0.157003 0.125206i
\(893\) 20.9377 4.77889i 0.700653 0.159919i
\(894\) 0 0
\(895\) 20.6347 4.70974i 0.689743 0.157429i
\(896\) −1.80446 + 16.1664i −0.0602827 + 0.540082i
\(897\) 0 0
\(898\) 16.8127 21.0824i 0.561046 0.703530i
\(899\) −1.80856 0.870954i −0.0603187 0.0290480i
\(900\) 0 0
\(901\) 13.7068i 0.456640i
\(902\) −1.57358 0.757795i −0.0523944 0.0252318i
\(903\) 0 0
\(904\) 10.1842 4.90445i 0.338721 0.163119i
\(905\) 28.1569 + 58.4684i 0.935967 + 1.94356i
\(906\) 0 0
\(907\) −6.39116 + 28.0015i −0.212215 + 0.929775i 0.750843 + 0.660481i \(0.229648\pi\)
−0.963058 + 0.269294i \(0.913210\pi\)
\(908\) 18.3945 8.85834i 0.610444 0.293974i
\(909\) 0 0
\(910\) 50.7511 + 31.8153i 1.68238 + 1.05467i
\(911\) −20.5909 + 42.7574i −0.682207 + 1.41662i 0.215712 + 0.976457i \(0.430793\pi\)
−0.897919 + 0.440160i \(0.854922\pi\)
\(912\) 0 0
\(913\) 16.2583i 0.538072i
\(914\) −0.797905 + 1.65687i −0.0263924 + 0.0548043i
\(915\) 0 0
\(916\) 12.0772 + 2.75654i 0.399042 + 0.0910788i
\(917\) −23.6188 + 23.6681i −0.779963 + 0.781590i
\(918\) 0 0
\(919\) 25.6226 + 12.3392i 0.845212 + 0.407032i 0.805798 0.592190i \(-0.201737\pi\)
0.0394137 + 0.999223i \(0.487451\pi\)
\(920\) −3.31462 14.5223i −0.109280 0.478785i
\(921\) 0 0
\(922\) 12.1646 + 2.77650i 0.400621 + 0.0914391i
\(923\) 15.5639 + 19.5165i 0.512292 + 0.642394i
\(924\) 0 0
\(925\) −10.6455 + 13.3490i −0.350022 + 0.438913i
\(926\) −10.3797 + 8.27755i −0.341099 + 0.272017i
\(927\) 0 0
\(928\) −11.7835 14.7760i −0.386811 0.485046i
\(929\) −4.74560 20.7918i −0.155698 0.682158i −0.991167 0.132620i \(-0.957661\pi\)
0.835469 0.549538i \(-0.185196\pi\)
\(930\) 0 0
\(931\) 8.65759 38.2992i 0.283741 1.25520i
\(932\) 14.4247i 0.472497i
\(933\) 0 0
\(934\) −15.9965 + 12.7568i −0.523422 + 0.417415i
\(935\) −20.0943 41.7262i −0.657153 1.36459i
\(936\) 0 0
\(937\) −25.0903 20.0088i −0.819663 0.653659i 0.121132 0.992636i \(-0.461348\pi\)
−0.940795 + 0.338977i \(0.889919\pi\)
\(938\) −14.8900 + 1.69342i −0.486176 + 0.0552920i
\(939\) 0 0
\(940\) −4.37059 + 19.1488i −0.142553 + 0.624565i
\(941\) 3.74022 4.69009i 0.121928 0.152893i −0.717121 0.696948i \(-0.754541\pi\)
0.839049 + 0.544056i \(0.183112\pi\)
\(942\) 0 0
\(943\) 0.437737 0.908971i 0.0142547 0.0296002i
\(944\) 0.716510 + 3.13923i 0.0233204 + 0.102173i
\(945\) 0 0
\(946\) −0.926625 + 4.05981i −0.0301272 + 0.131996i
\(947\) 33.1443 + 26.4317i 1.07704 + 0.858915i 0.990525 0.137335i \(-0.0438538\pi\)
0.0865203 + 0.996250i \(0.472425\pi\)
\(948\) 0 0
\(949\) 46.1525 1.49817
\(950\) 69.8000 2.26461
\(951\) 0 0
\(952\) 35.2824 4.01261i 1.14351 0.130049i
\(953\) 7.66592 + 15.9184i 0.248323 + 0.515649i 0.987453 0.157915i \(-0.0504771\pi\)
−0.739129 + 0.673564i \(0.764763\pi\)
\(954\) 0 0
\(955\) 14.3391 + 3.27281i 0.464003 + 0.105906i
\(956\) 0.546957 + 0.124839i 0.0176898 + 0.00403759i
\(957\) 0 0
\(958\) −10.3936 21.5825i −0.335802 0.697300i
\(959\) −34.3869 34.3154i −1.11041 1.10810i
\(960\) 0 0
\(961\) 30.6532 0.988813
\(962\) −6.47636 −0.208806
\(963\) 0 0
\(964\) 7.32637 + 5.84259i 0.235967 + 0.188177i
\(965\) 2.13806 9.36745i 0.0688266 0.301549i
\(966\) 0 0
\(967\) −11.9865 52.5164i −0.385460 1.68881i −0.680032 0.733183i \(-0.738034\pi\)
0.294571 0.955630i \(-0.404823\pi\)
\(968\) 7.18009 14.9096i 0.230777 0.479213i
\(969\) 0 0
\(970\) −35.6757 + 44.7359i −1.14548 + 1.43638i
\(971\) −0.0674744 + 0.295625i −0.00216536 + 0.00948704i −0.975999 0.217775i \(-0.930120\pi\)
0.973834 + 0.227262i \(0.0729773\pi\)
\(972\) 0 0
\(973\) 42.3799 26.6907i 1.35864 0.855664i
\(974\) 12.1209 + 9.66606i 0.388377 + 0.309721i
\(975\) 0 0
\(976\) 0.363552 + 0.754923i 0.0116370 + 0.0241645i
\(977\) 14.3702 11.4598i 0.459743 0.366633i −0.366060 0.930591i \(-0.619294\pi\)
0.825803 + 0.563958i \(0.190722\pi\)
\(978\) 0 0
\(979\) 26.3832i 0.843211i
\(980\) 28.1227 + 22.3314i 0.898348 + 0.713351i
\(981\) 0 0
\(982\) −5.24745 22.9906i −0.167453 0.733659i
\(983\) 18.1203 + 22.7221i 0.577948 + 0.724724i 0.981761 0.190117i \(-0.0608869\pi\)
−0.403813 + 0.914841i \(0.632315\pi\)
\(984\) 0 0
\(985\) 34.2337 27.3004i 1.09078 0.869864i
\(986\) −8.95880 + 11.2340i −0.285306 + 0.357763i
\(987\) 0 0
\(988\) −23.9501 30.0325i −0.761954 0.955460i
\(989\) −2.34513 0.535261i −0.0745709 0.0170203i
\(990\) 0 0
\(991\) 1.03384 + 4.52955i 0.0328410 + 0.143886i 0.988690 0.149971i \(-0.0479181\pi\)
−0.955849 + 0.293857i \(0.905061\pi\)
\(992\) −2.94169 1.41665i −0.0933989 0.0449785i
\(993\) 0 0
\(994\) −5.49697 8.72818i −0.174353 0.276841i
\(995\) 96.7933 + 22.0924i 3.06855 + 0.700377i
\(996\) 0 0
\(997\) −6.67258 + 13.8558i −0.211323 + 0.438816i −0.979506 0.201413i \(-0.935447\pi\)
0.768184 + 0.640230i \(0.221161\pi\)
\(998\) 19.5179i 0.617829i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 441.2.w.a.62.14 yes 120
3.2 odd 2 inner 441.2.w.a.62.7 120
49.34 odd 14 inner 441.2.w.a.377.7 yes 120
147.83 even 14 inner 441.2.w.a.377.14 yes 120
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
441.2.w.a.62.7 120 3.2 odd 2 inner
441.2.w.a.62.14 yes 120 1.1 even 1 trivial
441.2.w.a.377.7 yes 120 49.34 odd 14 inner
441.2.w.a.377.14 yes 120 147.83 even 14 inner