Properties

Label 441.2.w.a.188.12
Level $441$
Weight $2$
Character 441.188
Analytic conductor $3.521$
Analytic rank $0$
Dimension $120$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [441,2,Mod(62,441)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(441, base_ring=CyclotomicField(14)) chi = DirichletCharacter(H, H._module([7, 11])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("441.62"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 441 = 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 441.w (of order \(14\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.52140272914\)
Analytic rank: \(0\)
Dimension: \(120\)
Relative dimension: \(20\) over \(\Q(\zeta_{14})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{14}]$

Embedding invariants

Embedding label 188.12
Character \(\chi\) \(=\) 441.188
Dual form 441.2.w.a.251.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.203165 - 0.162019i) q^{2} +(-0.430016 + 1.88402i) q^{4} +(2.46158 - 1.18543i) q^{5} +(-1.53249 - 2.15673i) q^{7} +(0.443379 + 0.920685i) q^{8} +(0.308044 - 0.639659i) q^{10} +(2.00878 - 1.60195i) q^{11} +(4.63632 - 3.69734i) q^{13} +(-0.660778 - 0.189879i) q^{14} +(-3.24295 - 1.56172i) q^{16} +(1.48891 + 6.52334i) q^{17} +0.418798i q^{19} +(1.17487 + 5.14742i) q^{20} +(0.148568 - 0.650919i) q^{22} +(5.32955 + 1.21643i) q^{23} +(1.53666 - 1.92691i) q^{25} +(0.342899 - 1.50234i) q^{26} +(4.72232 - 1.95982i) q^{28} +(-2.32890 + 0.531557i) q^{29} +5.40375i q^{31} +(-2.90441 + 0.662912i) q^{32} +(1.35940 + 1.08408i) q^{34} +(-6.32900 - 3.49228i) q^{35} +(-1.37636 - 6.03022i) q^{37} +(0.0678530 + 0.0850850i) q^{38} +(2.18282 + 1.74074i) q^{40} +(5.97322 - 2.87655i) q^{41} +(-7.06131 - 3.40055i) q^{43} +(2.15430 + 4.47345i) q^{44} +(1.27986 - 0.616349i) q^{46} +(-2.90399 - 3.64149i) q^{47} +(-2.30293 + 6.61033i) q^{49} -0.640448i q^{50} +(4.97219 + 10.3249i) q^{52} +(13.5007 + 3.08145i) q^{53} +(3.04576 - 6.32459i) q^{55} +(1.30619 - 2.36719i) q^{56} +(-0.387029 + 0.485319i) q^{58} +(-5.52357 - 2.66001i) q^{59} +(-9.77982 + 2.23218i) q^{61} +(0.875508 + 1.09785i) q^{62} +(4.00571 - 5.02301i) q^{64} +(7.02971 - 14.5973i) q^{65} -8.37721 q^{67} -12.9304 q^{68} +(-1.85164 + 0.315907i) q^{70} +(-6.34846 - 1.44900i) q^{71} +(-5.32281 - 4.24480i) q^{73} +(-1.25664 - 1.00213i) q^{74} +(-0.789025 - 0.180090i) q^{76} +(-6.53340 - 1.87741i) q^{77} +0.883489 q^{79} -9.83409 q^{80} +(0.747494 - 1.55219i) q^{82} +(-6.46744 + 8.10992i) q^{83} +(11.3980 + 14.2927i) q^{85} +(-1.98556 + 0.453192i) q^{86} +(2.36554 + 1.13918i) q^{88} +(1.58193 - 1.98368i) q^{89} +(-15.0793 - 4.33313i) q^{91} +(-4.58358 + 9.51791i) q^{92} +(-1.17998 - 0.269322i) q^{94} +(0.496457 + 1.03090i) q^{95} +3.88426i q^{97} +(0.603122 + 1.71611i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 120 q + 24 q^{4} - 32 q^{16} - 44 q^{22} - 4 q^{25} - 56 q^{28} + 112 q^{34} - 76 q^{37} + 28 q^{40} + 8 q^{43} - 40 q^{46} - 84 q^{49} - 140 q^{52} + 12 q^{58} - 84 q^{61} + 24 q^{64} + 16 q^{67} + 112 q^{70}+ \cdots - 112 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/441\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(344\)
\(\chi(n)\) \(e\left(\frac{5}{14}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.203165 0.162019i 0.143659 0.114564i −0.549023 0.835807i \(-0.685000\pi\)
0.692682 + 0.721243i \(0.256429\pi\)
\(3\) 0 0
\(4\) −0.430016 + 1.88402i −0.215008 + 0.942011i
\(5\) 2.46158 1.18543i 1.10085 0.530142i 0.206925 0.978357i \(-0.433654\pi\)
0.893926 + 0.448215i \(0.147940\pi\)
\(6\) 0 0
\(7\) −1.53249 2.15673i −0.579228 0.815166i
\(8\) 0.443379 + 0.920685i 0.156758 + 0.325511i
\(9\) 0 0
\(10\) 0.308044 0.639659i 0.0974120 0.202278i
\(11\) 2.00878 1.60195i 0.605670 0.483005i −0.271983 0.962302i \(-0.587680\pi\)
0.877653 + 0.479297i \(0.159108\pi\)
\(12\) 0 0
\(13\) 4.63632 3.69734i 1.28588 1.02546i 0.288192 0.957573i \(-0.406946\pi\)
0.997693 0.0678861i \(-0.0216255\pi\)
\(14\) −0.660778 0.189879i −0.176600 0.0507472i
\(15\) 0 0
\(16\) −3.24295 1.56172i −0.810738 0.390431i
\(17\) 1.48891 + 6.52334i 0.361114 + 1.58214i 0.750373 + 0.661014i \(0.229874\pi\)
−0.389260 + 0.921128i \(0.627269\pi\)
\(18\) 0 0
\(19\) 0.418798i 0.0960788i 0.998845 + 0.0480394i \(0.0152973\pi\)
−0.998845 + 0.0480394i \(0.984703\pi\)
\(20\) 1.17487 + 5.14742i 0.262708 + 1.15100i
\(21\) 0 0
\(22\) 0.148568 0.650919i 0.0316748 0.138776i
\(23\) 5.32955 + 1.21643i 1.11129 + 0.253644i 0.738487 0.674267i \(-0.235540\pi\)
0.372800 + 0.927912i \(0.378398\pi\)
\(24\) 0 0
\(25\) 1.53666 1.92691i 0.307332 0.385382i
\(26\) 0.342899 1.50234i 0.0672481 0.294633i
\(27\) 0 0
\(28\) 4.72232 1.95982i 0.892434 0.370372i
\(29\) −2.32890 + 0.531557i −0.432466 + 0.0987076i −0.433212 0.901292i \(-0.642620\pi\)
0.000745584 1.00000i \(0.499763\pi\)
\(30\) 0 0
\(31\) 5.40375i 0.970542i 0.874364 + 0.485271i \(0.161279\pi\)
−0.874364 + 0.485271i \(0.838721\pi\)
\(32\) −2.90441 + 0.662912i −0.513431 + 0.117187i
\(33\) 0 0
\(34\) 1.35940 + 1.08408i 0.233135 + 0.185919i
\(35\) −6.32900 3.49228i −1.06980 0.590303i
\(36\) 0 0
\(37\) −1.37636 6.03022i −0.226272 0.991362i −0.952651 0.304067i \(-0.901655\pi\)
0.726379 0.687295i \(-0.241202\pi\)
\(38\) 0.0678530 + 0.0850850i 0.0110072 + 0.0138026i
\(39\) 0 0
\(40\) 2.18282 + 1.74074i 0.345134 + 0.275235i
\(41\) 5.97322 2.87655i 0.932861 0.449242i 0.0952155 0.995457i \(-0.469646\pi\)
0.837645 + 0.546215i \(0.183932\pi\)
\(42\) 0 0
\(43\) −7.06131 3.40055i −1.07684 0.518579i −0.190535 0.981680i \(-0.561022\pi\)
−0.886305 + 0.463102i \(0.846736\pi\)
\(44\) 2.15430 + 4.47345i 0.324773 + 0.674398i
\(45\) 0 0
\(46\) 1.27986 0.616349i 0.188705 0.0908757i
\(47\) −2.90399 3.64149i −0.423590 0.531165i 0.523546 0.851997i \(-0.324609\pi\)
−0.947136 + 0.320832i \(0.896037\pi\)
\(48\) 0 0
\(49\) −2.30293 + 6.61033i −0.328990 + 0.944333i
\(50\) 0.640448i 0.0905730i
\(51\) 0 0
\(52\) 4.97219 + 10.3249i 0.689519 + 1.43180i
\(53\) 13.5007 + 3.08145i 1.85447 + 0.423270i 0.995981 0.0895695i \(-0.0285491\pi\)
0.858485 + 0.512839i \(0.171406\pi\)
\(54\) 0 0
\(55\) 3.04576 6.32459i 0.410690 0.852807i
\(56\) 1.30619 2.36719i 0.174547 0.316329i
\(57\) 0 0
\(58\) −0.387029 + 0.485319i −0.0508194 + 0.0637255i
\(59\) −5.52357 2.66001i −0.719107 0.346304i 0.0382823 0.999267i \(-0.487811\pi\)
−0.757390 + 0.652963i \(0.773526\pi\)
\(60\) 0 0
\(61\) −9.77982 + 2.23218i −1.25218 + 0.285801i −0.796661 0.604426i \(-0.793403\pi\)
−0.455517 + 0.890227i \(0.650545\pi\)
\(62\) 0.875508 + 1.09785i 0.111190 + 0.139427i
\(63\) 0 0
\(64\) 4.00571 5.02301i 0.500714 0.627876i
\(65\) 7.02971 14.5973i 0.871928 1.81058i
\(66\) 0 0
\(67\) −8.37721 −1.02344 −0.511719 0.859153i \(-0.670991\pi\)
−0.511719 + 0.859153i \(0.670991\pi\)
\(68\) −12.9304 −1.56804
\(69\) 0 0
\(70\) −1.85164 + 0.315907i −0.221314 + 0.0377582i
\(71\) −6.34846 1.44900i −0.753424 0.171964i −0.171474 0.985189i \(-0.554853\pi\)
−0.581950 + 0.813225i \(0.697710\pi\)
\(72\) 0 0
\(73\) −5.32281 4.24480i −0.622987 0.496816i 0.260374 0.965508i \(-0.416154\pi\)
−0.883362 + 0.468692i \(0.844725\pi\)
\(74\) −1.25664 1.00213i −0.146081 0.116496i
\(75\) 0 0
\(76\) −0.789025 0.180090i −0.0905074 0.0206577i
\(77\) −6.53340 1.87741i −0.744550 0.213951i
\(78\) 0 0
\(79\) 0.883489 0.0994002 0.0497001 0.998764i \(-0.484173\pi\)
0.0497001 + 0.998764i \(0.484173\pi\)
\(80\) −9.83409 −1.09948
\(81\) 0 0
\(82\) 0.747494 1.55219i 0.0825469 0.171410i
\(83\) −6.46744 + 8.10992i −0.709894 + 0.890179i −0.997719 0.0675041i \(-0.978496\pi\)
0.287825 + 0.957683i \(0.407068\pi\)
\(84\) 0 0
\(85\) 11.3980 + 14.2927i 1.23629 + 1.55026i
\(86\) −1.98556 + 0.453192i −0.214109 + 0.0488689i
\(87\) 0 0
\(88\) 2.36554 + 1.13918i 0.252167 + 0.121437i
\(89\) 1.58193 1.98368i 0.167685 0.210270i −0.690888 0.722962i \(-0.742780\pi\)
0.858573 + 0.512692i \(0.171352\pi\)
\(90\) 0 0
\(91\) −15.0793 4.33313i −1.58074 0.454235i
\(92\) −4.58358 + 9.51791i −0.477871 + 0.992310i
\(93\) 0 0
\(94\) −1.17998 0.269322i −0.121705 0.0277784i
\(95\) 0.496457 + 1.03090i 0.0509354 + 0.105768i
\(96\) 0 0
\(97\) 3.88426i 0.394387i 0.980365 + 0.197193i \(0.0631827\pi\)
−0.980365 + 0.197193i \(0.936817\pi\)
\(98\) 0.603122 + 1.71611i 0.0609245 + 0.173353i
\(99\) 0 0
\(100\) 2.96955 + 3.72370i 0.296955 + 0.372370i
\(101\) −9.41819 + 4.53556i −0.937145 + 0.451305i −0.839161 0.543883i \(-0.816954\pi\)
−0.0979838 + 0.995188i \(0.531239\pi\)
\(102\) 0 0
\(103\) 3.43174 + 7.12609i 0.338140 + 0.702154i 0.998823 0.0485107i \(-0.0154475\pi\)
−0.660683 + 0.750665i \(0.729733\pi\)
\(104\) 5.45974 + 2.62927i 0.535371 + 0.257821i
\(105\) 0 0
\(106\) 3.24212 1.56132i 0.314903 0.151649i
\(107\) −9.87212 7.87275i −0.954374 0.761088i 0.0167017 0.999861i \(-0.494683\pi\)
−0.971075 + 0.238773i \(0.923255\pi\)
\(108\) 0 0
\(109\) −2.69069 3.37402i −0.257721 0.323172i 0.636091 0.771614i \(-0.280550\pi\)
−0.893812 + 0.448442i \(0.851979\pi\)
\(110\) −0.405909 1.77840i −0.0387019 0.169564i
\(111\) 0 0
\(112\) 1.60159 + 9.38748i 0.151336 + 0.887034i
\(113\) 10.3065 + 8.21919i 0.969557 + 0.773196i 0.973943 0.226794i \(-0.0728246\pi\)
−0.00438565 + 0.999990i \(0.501396\pi\)
\(114\) 0 0
\(115\) 14.5611 3.32347i 1.35783 0.309916i
\(116\) 4.61628i 0.428611i
\(117\) 0 0
\(118\) −1.55317 + 0.354500i −0.142981 + 0.0326344i
\(119\) 11.7873 13.2081i 1.08054 1.21079i
\(120\) 0 0
\(121\) −0.978775 + 4.28829i −0.0889795 + 0.389845i
\(122\) −1.62526 + 2.03801i −0.147144 + 0.184513i
\(123\) 0 0
\(124\) −10.1808 2.32370i −0.914262 0.208674i
\(125\) −1.54141 + 6.75337i −0.137868 + 0.604040i
\(126\) 0 0
\(127\) 4.65209 + 20.3822i 0.412807 + 1.80862i 0.570690 + 0.821166i \(0.306676\pi\)
−0.157883 + 0.987458i \(0.550467\pi\)
\(128\) 7.62770i 0.674199i
\(129\) 0 0
\(130\) −0.936851 4.10461i −0.0821673 0.359998i
\(131\) −11.3313 5.45685i −0.990018 0.476768i −0.132479 0.991186i \(-0.542294\pi\)
−0.857539 + 0.514418i \(0.828008\pi\)
\(132\) 0 0
\(133\) 0.903232 0.641805i 0.0783202 0.0556515i
\(134\) −1.70195 + 1.35726i −0.147026 + 0.117250i
\(135\) 0 0
\(136\) −5.34579 + 4.26313i −0.458398 + 0.365560i
\(137\) −2.31086 + 4.79856i −0.197430 + 0.409969i −0.976056 0.217521i \(-0.930203\pi\)
0.778625 + 0.627489i \(0.215917\pi\)
\(138\) 0 0
\(139\) −1.02034 2.11876i −0.0865442 0.179711i 0.853205 0.521576i \(-0.174656\pi\)
−0.939749 + 0.341865i \(0.888941\pi\)
\(140\) 9.30110 10.4222i 0.786087 0.880841i
\(141\) 0 0
\(142\) −1.52455 + 0.734184i −0.127937 + 0.0616113i
\(143\) 3.39040 14.8543i 0.283519 1.24218i
\(144\) 0 0
\(145\) −5.10265 + 4.06922i −0.423752 + 0.337931i
\(146\) −1.76914 −0.146415
\(147\) 0 0
\(148\) 11.9529 0.982525
\(149\) 10.9789 8.75535i 0.899423 0.717266i −0.0603099 0.998180i \(-0.519209\pi\)
0.959733 + 0.280914i \(0.0906375\pi\)
\(150\) 0 0
\(151\) 4.50982 19.7588i 0.367004 1.60795i −0.367960 0.929842i \(-0.619944\pi\)
0.734964 0.678107i \(-0.237199\pi\)
\(152\) −0.385581 + 0.185686i −0.0312747 + 0.0150611i
\(153\) 0 0
\(154\) −1.63153 + 0.677108i −0.131473 + 0.0545629i
\(155\) 6.40578 + 13.3017i 0.514525 + 1.06842i
\(156\) 0 0
\(157\) −1.46300 + 3.03795i −0.116760 + 0.242455i −0.951156 0.308711i \(-0.900102\pi\)
0.834396 + 0.551166i \(0.185817\pi\)
\(158\) 0.179494 0.143142i 0.0142798 0.0113877i
\(159\) 0 0
\(160\) −6.36358 + 5.07479i −0.503085 + 0.401197i
\(161\) −5.54398 13.3586i −0.436927 1.05280i
\(162\) 0 0
\(163\) −16.2148 7.80862i −1.27004 0.611618i −0.327227 0.944946i \(-0.606114\pi\)
−0.942811 + 0.333328i \(0.891828\pi\)
\(164\) 2.85091 + 12.4907i 0.222619 + 0.975356i
\(165\) 0 0
\(166\) 2.69550i 0.209211i
\(167\) 2.08323 + 9.12724i 0.161205 + 0.706287i 0.989324 + 0.145734i \(0.0465543\pi\)
−0.828118 + 0.560553i \(0.810589\pi\)
\(168\) 0 0
\(169\) 4.93237 21.6101i 0.379413 1.66232i
\(170\) 4.63136 + 1.05708i 0.355209 + 0.0810742i
\(171\) 0 0
\(172\) 9.44319 11.8414i 0.720036 0.902897i
\(173\) −5.68643 + 24.9139i −0.432332 + 1.89417i 0.0151690 + 0.999885i \(0.495171\pi\)
−0.447501 + 0.894284i \(0.647686\pi\)
\(174\) 0 0
\(175\) −6.51074 0.361178i −0.492165 0.0273025i
\(176\) −9.01617 + 2.05788i −0.679619 + 0.155119i
\(177\) 0 0
\(178\) 0.659317i 0.0494179i
\(179\) 14.5634 3.32400i 1.08852 0.248447i 0.359640 0.933091i \(-0.382899\pi\)
0.728878 + 0.684644i \(0.240042\pi\)
\(180\) 0 0
\(181\) −2.80247 2.23490i −0.208306 0.166118i 0.513780 0.857922i \(-0.328245\pi\)
−0.722086 + 0.691804i \(0.756816\pi\)
\(182\) −3.76563 + 1.56279i −0.279127 + 0.115841i
\(183\) 0 0
\(184\) 1.24305 + 5.44618i 0.0916392 + 0.401497i
\(185\) −10.5364 13.2123i −0.774654 0.971385i
\(186\) 0 0
\(187\) 13.4409 + 10.7188i 0.982899 + 0.783836i
\(188\) 8.10940 3.90528i 0.591439 0.284822i
\(189\) 0 0
\(190\) 0.267888 + 0.129008i 0.0194346 + 0.00935923i
\(191\) −2.17795 4.52256i −0.157591 0.327241i 0.807192 0.590289i \(-0.200986\pi\)
−0.964783 + 0.263049i \(0.915272\pi\)
\(192\) 0 0
\(193\) 7.94264 3.82497i 0.571724 0.275328i −0.125604 0.992081i \(-0.540087\pi\)
0.697327 + 0.716753i \(0.254372\pi\)
\(194\) 0.629322 + 0.789145i 0.0451827 + 0.0566573i
\(195\) 0 0
\(196\) −11.4637 7.18133i −0.818837 0.512952i
\(197\) 8.68699i 0.618922i −0.950912 0.309461i \(-0.899851\pi\)
0.950912 0.309461i \(-0.100149\pi\)
\(198\) 0 0
\(199\) −3.05048 6.33439i −0.216243 0.449033i 0.764425 0.644713i \(-0.223023\pi\)
−0.980668 + 0.195680i \(0.937309\pi\)
\(200\) 2.45540 + 0.560429i 0.173623 + 0.0396283i
\(201\) 0 0
\(202\) −1.17860 + 2.44739i −0.0829260 + 0.172198i
\(203\) 4.71545 + 4.20820i 0.330960 + 0.295358i
\(204\) 0 0
\(205\) 11.2936 14.1617i 0.788778 0.989097i
\(206\) 1.85177 + 0.891764i 0.129019 + 0.0621322i
\(207\) 0 0
\(208\) −20.8096 + 4.74965i −1.44289 + 0.329329i
\(209\) 0.670892 + 0.841272i 0.0464066 + 0.0581920i
\(210\) 0 0
\(211\) −6.31940 + 7.92428i −0.435046 + 0.545530i −0.950230 0.311549i \(-0.899152\pi\)
0.515184 + 0.857079i \(0.327723\pi\)
\(212\) −11.6110 + 24.1106i −0.797450 + 1.65592i
\(213\) 0 0
\(214\) −3.28120 −0.224298
\(215\) −21.4131 −1.46036
\(216\) 0 0
\(217\) 11.6544 8.28121i 0.791153 0.562165i
\(218\) −1.09331 0.249540i −0.0740481 0.0169010i
\(219\) 0 0
\(220\) 10.6059 + 8.45796i 0.715053 + 0.570235i
\(221\) 31.0221 + 24.7393i 2.08677 + 1.66415i
\(222\) 0 0
\(223\) 9.89847 + 2.25926i 0.662850 + 0.151291i 0.540694 0.841220i \(-0.318162\pi\)
0.122157 + 0.992511i \(0.461019\pi\)
\(224\) 5.88070 + 5.24810i 0.392921 + 0.350654i
\(225\) 0 0
\(226\) 3.42559 0.227867
\(227\) 8.15525 0.541283 0.270641 0.962680i \(-0.412764\pi\)
0.270641 + 0.962680i \(0.412764\pi\)
\(228\) 0 0
\(229\) 5.17943 10.7552i 0.342266 0.710723i −0.656794 0.754070i \(-0.728088\pi\)
0.999060 + 0.0433472i \(0.0138022\pi\)
\(230\) 2.41984 3.03438i 0.159559 0.200081i
\(231\) 0 0
\(232\) −1.52198 1.90850i −0.0999230 0.125299i
\(233\) 15.7781 3.60125i 1.03366 0.235926i 0.328149 0.944626i \(-0.393575\pi\)
0.705510 + 0.708700i \(0.250718\pi\)
\(234\) 0 0
\(235\) −11.4651 5.52131i −0.747902 0.360171i
\(236\) 7.38674 9.26268i 0.480836 0.602949i
\(237\) 0 0
\(238\) 0.254804 4.59319i 0.0165165 0.297732i
\(239\) 1.43054 2.97056i 0.0925342 0.192149i −0.849565 0.527484i \(-0.823135\pi\)
0.942099 + 0.335335i \(0.108850\pi\)
\(240\) 0 0
\(241\) −0.422284 0.0963835i −0.0272017 0.00620861i 0.208898 0.977937i \(-0.433012\pi\)
−0.236100 + 0.971729i \(0.575869\pi\)
\(242\) 0.495930 + 1.02981i 0.0318796 + 0.0661987i
\(243\) 0 0
\(244\) 19.3853i 1.24102i
\(245\) 2.16726 + 19.0018i 0.138461 + 1.21398i
\(246\) 0 0
\(247\) 1.54844 + 1.94168i 0.0985249 + 0.123546i
\(248\) −4.97515 + 2.39591i −0.315922 + 0.152140i
\(249\) 0 0
\(250\) 0.781011 + 1.62179i 0.0493955 + 0.102571i
\(251\) 12.8422 + 6.18449i 0.810594 + 0.390361i 0.792801 0.609480i \(-0.208622\pi\)
0.0177924 + 0.999842i \(0.494336\pi\)
\(252\) 0 0
\(253\) 12.6545 6.09411i 0.795585 0.383133i
\(254\) 4.24743 + 3.38721i 0.266507 + 0.212533i
\(255\) 0 0
\(256\) 6.77560 + 8.49633i 0.423475 + 0.531021i
\(257\) −2.30160 10.0840i −0.143570 0.629020i −0.994589 0.103886i \(-0.966872\pi\)
0.851020 0.525134i \(-0.175985\pi\)
\(258\) 0 0
\(259\) −10.8963 + 12.2097i −0.677061 + 0.758674i
\(260\) 24.4788 + 19.5212i 1.51811 + 1.21066i
\(261\) 0 0
\(262\) −3.18623 + 0.727236i −0.196846 + 0.0449288i
\(263\) 17.7902i 1.09699i −0.836154 0.548495i \(-0.815201\pi\)
0.836154 0.548495i \(-0.184799\pi\)
\(264\) 0 0
\(265\) 36.8859 8.41896i 2.26588 0.517173i
\(266\) 0.0795208 0.276733i 0.00487573 0.0169676i
\(267\) 0 0
\(268\) 3.60233 15.7829i 0.220048 0.964091i
\(269\) −9.15874 + 11.4847i −0.558418 + 0.700234i −0.978264 0.207361i \(-0.933513\pi\)
0.419846 + 0.907595i \(0.362084\pi\)
\(270\) 0 0
\(271\) 22.7856 + 5.20067i 1.38413 + 0.315918i 0.848795 0.528722i \(-0.177329\pi\)
0.535334 + 0.844641i \(0.320186\pi\)
\(272\) 5.35919 23.4801i 0.324948 1.42369i
\(273\) 0 0
\(274\) 0.307969 + 1.34930i 0.0186051 + 0.0815143i
\(275\) 6.33238i 0.381857i
\(276\) 0 0
\(277\) 3.44499 + 15.0935i 0.206989 + 0.906880i 0.966557 + 0.256452i \(0.0825535\pi\)
−0.759568 + 0.650428i \(0.774589\pi\)
\(278\) −0.550576 0.265143i −0.0330214 0.0159022i
\(279\) 0 0
\(280\) 0.409145 7.37542i 0.0244511 0.440766i
\(281\) −20.3030 + 16.1911i −1.21117 + 0.965878i −0.999933 0.0115558i \(-0.996322\pi\)
−0.211240 + 0.977434i \(0.567750\pi\)
\(282\) 0 0
\(283\) −17.9985 + 14.3534i −1.06990 + 0.853218i −0.989642 0.143556i \(-0.954146\pi\)
−0.0802597 + 0.996774i \(0.525575\pi\)
\(284\) 5.45988 11.3376i 0.323984 0.672760i
\(285\) 0 0
\(286\) −1.71786 3.56718i −0.101579 0.210932i
\(287\) −15.3579 8.47431i −0.906546 0.500223i
\(288\) 0 0
\(289\) −25.0206 + 12.0493i −1.47180 + 0.708783i
\(290\) −0.377388 + 1.65345i −0.0221610 + 0.0970937i
\(291\) 0 0
\(292\) 10.2862 8.20296i 0.601954 0.480042i
\(293\) −4.47285 −0.261307 −0.130653 0.991428i \(-0.541707\pi\)
−0.130653 + 0.991428i \(0.541707\pi\)
\(294\) 0 0
\(295\) −16.7500 −0.975220
\(296\) 4.94169 3.94086i 0.287230 0.229058i
\(297\) 0 0
\(298\) 0.811989 3.55756i 0.0470373 0.206084i
\(299\) 29.2071 14.0654i 1.68909 0.813423i
\(300\) 0 0
\(301\) 3.48736 + 20.4406i 0.201008 + 1.17818i
\(302\) −2.28506 4.74497i −0.131490 0.273042i
\(303\) 0 0
\(304\) 0.654046 1.35814i 0.0375121 0.0778947i
\(305\) −21.4277 + 17.0880i −1.22695 + 0.978457i
\(306\) 0 0
\(307\) −12.9156 + 10.2998i −0.737131 + 0.587842i −0.918429 0.395586i \(-0.870541\pi\)
0.181298 + 0.983428i \(0.441970\pi\)
\(308\) 6.34655 11.5018i 0.361628 0.655373i
\(309\) 0 0
\(310\) 3.45656 + 1.66459i 0.196319 + 0.0945424i
\(311\) 2.75607 + 12.0751i 0.156282 + 0.684717i 0.990980 + 0.134009i \(0.0427851\pi\)
−0.834698 + 0.550708i \(0.814358\pi\)
\(312\) 0 0
\(313\) 0.422739i 0.0238946i −0.999929 0.0119473i \(-0.996197\pi\)
0.999929 0.0119473i \(-0.00380304\pi\)
\(314\) 0.194974 + 0.854237i 0.0110030 + 0.0482074i
\(315\) 0 0
\(316\) −0.379914 + 1.66451i −0.0213718 + 0.0936361i
\(317\) −10.4050 2.37488i −0.584406 0.133387i −0.0799117 0.996802i \(-0.525464\pi\)
−0.504494 + 0.863415i \(0.668321\pi\)
\(318\) 0 0
\(319\) −3.82672 + 4.79856i −0.214255 + 0.268668i
\(320\) 3.90594 17.1130i 0.218348 0.956647i
\(321\) 0 0
\(322\) −3.29067 1.81576i −0.183382 0.101188i
\(323\) −2.73196 + 0.623552i −0.152010 + 0.0346954i
\(324\) 0 0
\(325\) 14.6153i 0.810713i
\(326\) −4.55941 + 1.04066i −0.252522 + 0.0576366i
\(327\) 0 0
\(328\) 5.29680 + 4.22405i 0.292467 + 0.233234i
\(329\) −3.40335 + 11.8437i −0.187633 + 0.652962i
\(330\) 0 0
\(331\) −3.67242 16.0899i −0.201854 0.884382i −0.969807 0.243875i \(-0.921581\pi\)
0.767952 0.640507i \(-0.221276\pi\)
\(332\) −12.4982 15.6722i −0.685926 0.860124i
\(333\) 0 0
\(334\) 1.90202 + 1.51681i 0.104074 + 0.0829963i
\(335\) −20.6211 + 9.93062i −1.12665 + 0.542568i
\(336\) 0 0
\(337\) −21.9232 10.5577i −1.19423 0.575113i −0.272207 0.962239i \(-0.587754\pi\)
−0.922027 + 0.387126i \(0.873468\pi\)
\(338\) −2.49916 5.18955i −0.135936 0.282274i
\(339\) 0 0
\(340\) −31.8291 + 15.3281i −1.72618 + 0.831283i
\(341\) 8.65652 + 10.8549i 0.468777 + 0.587828i
\(342\) 0 0
\(343\) 17.7859 5.16349i 0.960348 0.278802i
\(344\) 8.00897i 0.431815i
\(345\) 0 0
\(346\) 2.88123 + 5.98294i 0.154896 + 0.321645i
\(347\) 4.02560 + 0.918818i 0.216106 + 0.0493247i 0.329203 0.944259i \(-0.393220\pi\)
−0.113097 + 0.993584i \(0.536077\pi\)
\(348\) 0 0
\(349\) 4.37881 9.09270i 0.234393 0.486721i −0.750283 0.661117i \(-0.770083\pi\)
0.984676 + 0.174396i \(0.0557971\pi\)
\(350\) −1.38127 + 0.981482i −0.0738320 + 0.0524624i
\(351\) 0 0
\(352\) −4.77236 + 5.98435i −0.254368 + 0.318967i
\(353\) 32.9080 + 15.8477i 1.75152 + 0.843485i 0.977680 + 0.210098i \(0.0673785\pi\)
0.773835 + 0.633387i \(0.218336\pi\)
\(354\) 0 0
\(355\) −17.3449 + 3.95886i −0.920572 + 0.210115i
\(356\) 3.05705 + 3.83341i 0.162023 + 0.203171i
\(357\) 0 0
\(358\) 2.42022 3.03486i 0.127912 0.160397i
\(359\) −6.54851 + 13.5981i −0.345617 + 0.717681i −0.999234 0.0391446i \(-0.987537\pi\)
0.653616 + 0.756826i \(0.273251\pi\)
\(360\) 0 0
\(361\) 18.8246 0.990769
\(362\) −0.931458 −0.0489563
\(363\) 0 0
\(364\) 14.6480 26.5464i 0.767766 1.39141i
\(365\) −18.1344 4.13906i −0.949199 0.216648i
\(366\) 0 0
\(367\) 13.1447 + 10.4825i 0.686147 + 0.547184i 0.903330 0.428947i \(-0.141115\pi\)
−0.217183 + 0.976131i \(0.569687\pi\)
\(368\) −15.3837 12.2681i −0.801932 0.639520i
\(369\) 0 0
\(370\) −4.28127 0.977171i −0.222572 0.0508007i
\(371\) −14.0439 33.8396i −0.729123 1.75687i
\(372\) 0 0
\(373\) −14.6161 −0.756794 −0.378397 0.925643i \(-0.623525\pi\)
−0.378397 + 0.925643i \(0.623525\pi\)
\(374\) 4.46737 0.231002
\(375\) 0 0
\(376\) 2.06510 4.28821i 0.106499 0.221148i
\(377\) −8.83220 + 11.0752i −0.454881 + 0.570403i
\(378\) 0 0
\(379\) −4.94967 6.20670i −0.254248 0.318817i 0.638284 0.769801i \(-0.279644\pi\)
−0.892532 + 0.450984i \(0.851073\pi\)
\(380\) −2.15573 + 0.492031i −0.110587 + 0.0252407i
\(381\) 0 0
\(382\) −1.17522 0.565956i −0.0601295 0.0289568i
\(383\) −2.51010 + 3.14756i −0.128260 + 0.160833i −0.841815 0.539766i \(-0.818513\pi\)
0.713555 + 0.700599i \(0.247084\pi\)
\(384\) 0 0
\(385\) −18.3080 + 3.12351i −0.933063 + 0.159189i
\(386\) 0.993948 2.06395i 0.0505906 0.105053i
\(387\) 0 0
\(388\) −7.31803 1.67029i −0.371517 0.0847963i
\(389\) −15.5635 32.3178i −0.789098 1.63858i −0.769395 0.638774i \(-0.779442\pi\)
−0.0197035 0.999806i \(-0.506272\pi\)
\(390\) 0 0
\(391\) 36.5776i 1.84981i
\(392\) −7.10710 + 0.810604i −0.358963 + 0.0409417i
\(393\) 0 0
\(394\) −1.40745 1.76489i −0.0709064 0.0889139i
\(395\) 2.17477 1.04732i 0.109425 0.0526962i
\(396\) 0 0
\(397\) −1.78352 3.70352i −0.0895125 0.185875i 0.851406 0.524506i \(-0.175750\pi\)
−0.940919 + 0.338632i \(0.890036\pi\)
\(398\) −1.64604 0.792691i −0.0825085 0.0397340i
\(399\) 0 0
\(400\) −7.99261 + 3.84904i −0.399631 + 0.192452i
\(401\) 13.0626 + 10.4171i 0.652316 + 0.520205i 0.892803 0.450448i \(-0.148736\pi\)
−0.240487 + 0.970652i \(0.577307\pi\)
\(402\) 0 0
\(403\) 19.9795 + 25.0535i 0.995251 + 1.24801i
\(404\) −4.49513 19.6945i −0.223641 0.979836i
\(405\) 0 0
\(406\) 1.63982 + 0.0909676i 0.0813829 + 0.00451465i
\(407\) −12.4249 9.90852i −0.615879 0.491147i
\(408\) 0 0
\(409\) 14.1052 3.21943i 0.697459 0.159191i 0.140931 0.990019i \(-0.454990\pi\)
0.556528 + 0.830829i \(0.312133\pi\)
\(410\) 4.70693i 0.232459i
\(411\) 0 0
\(412\) −14.9014 + 3.40115i −0.734140 + 0.167563i
\(413\) 2.72792 + 15.9893i 0.134232 + 0.786781i
\(414\) 0 0
\(415\) −6.30634 + 27.6299i −0.309566 + 1.35630i
\(416\) −11.0148 + 13.8121i −0.540043 + 0.677192i
\(417\) 0 0
\(418\) 0.272603 + 0.0622200i 0.0133335 + 0.00304328i
\(419\) 1.30929 5.73638i 0.0639631 0.280241i −0.932824 0.360331i \(-0.882664\pi\)
0.996788 + 0.0800903i \(0.0255209\pi\)
\(420\) 0 0
\(421\) −0.158030 0.692373i −0.00770190 0.0337442i 0.970931 0.239360i \(-0.0769375\pi\)
−0.978633 + 0.205616i \(0.934080\pi\)
\(422\) 2.63380i 0.128211i
\(423\) 0 0
\(424\) 3.14888 + 13.7962i 0.152923 + 0.670000i
\(425\) 14.8578 + 7.15516i 0.720711 + 0.347076i
\(426\) 0 0
\(427\) 19.8017 + 17.6716i 0.958272 + 0.855189i
\(428\) 19.0776 15.2139i 0.922151 0.735391i
\(429\) 0 0
\(430\) −4.35039 + 3.46932i −0.209794 + 0.167305i
\(431\) −1.24950 + 2.59462i −0.0601865 + 0.124978i −0.928892 0.370350i \(-0.879238\pi\)
0.868706 + 0.495328i \(0.164952\pi\)
\(432\) 0 0
\(433\) −0.989981 2.05572i −0.0475755 0.0987915i 0.875826 0.482627i \(-0.160317\pi\)
−0.923402 + 0.383835i \(0.874603\pi\)
\(434\) 1.02606 3.57068i 0.0492523 0.171398i
\(435\) 0 0
\(436\) 7.51377 3.61844i 0.359844 0.173292i
\(437\) −0.509440 + 2.23200i −0.0243698 + 0.106771i
\(438\) 0 0
\(439\) 9.52617 7.59686i 0.454659 0.362579i −0.369222 0.929341i \(-0.620376\pi\)
0.823881 + 0.566763i \(0.191804\pi\)
\(440\) 7.17338 0.341977
\(441\) 0 0
\(442\) 10.3108 0.490436
\(443\) −1.97589 + 1.57572i −0.0938774 + 0.0748647i −0.669304 0.742989i \(-0.733408\pi\)
0.575426 + 0.817854i \(0.304836\pi\)
\(444\) 0 0
\(445\) 1.54253 6.75826i 0.0731229 0.320372i
\(446\) 2.37706 1.14473i 0.112557 0.0542047i
\(447\) 0 0
\(448\) −16.9720 0.941506i −0.801850 0.0444820i
\(449\) −9.03863 18.7689i −0.426559 0.885759i −0.997883 0.0650347i \(-0.979284\pi\)
0.571324 0.820725i \(-0.306430\pi\)
\(450\) 0 0
\(451\) 7.39080 15.3471i 0.348019 0.722669i
\(452\) −19.9171 + 15.8834i −0.936822 + 0.747090i
\(453\) 0 0
\(454\) 1.65686 1.32130i 0.0777603 0.0620118i
\(455\) −42.2555 + 7.20917i −1.98097 + 0.337971i
\(456\) 0 0
\(457\) 19.1035 + 9.19977i 0.893625 + 0.430347i 0.823582 0.567197i \(-0.191972\pi\)
0.0700428 + 0.997544i \(0.477686\pi\)
\(458\) −0.690263 3.02424i −0.0322539 0.141313i
\(459\) 0 0
\(460\) 28.8626i 1.34572i
\(461\) −0.625035 2.73846i −0.0291108 0.127543i 0.958285 0.285816i \(-0.0922645\pi\)
−0.987395 + 0.158273i \(0.949407\pi\)
\(462\) 0 0
\(463\) −2.91933 + 12.7904i −0.135673 + 0.594422i 0.860684 + 0.509140i \(0.170036\pi\)
−0.996357 + 0.0852824i \(0.972821\pi\)
\(464\) 8.38266 + 1.91329i 0.389155 + 0.0888221i
\(465\) 0 0
\(466\) 2.62209 3.28800i 0.121466 0.152314i
\(467\) −8.40531 + 36.8261i −0.388951 + 1.70411i 0.279327 + 0.960196i \(0.409889\pi\)
−0.668278 + 0.743911i \(0.732969\pi\)
\(468\) 0 0
\(469\) 12.8380 + 18.0673i 0.592804 + 0.834272i
\(470\) −3.22387 + 0.735826i −0.148706 + 0.0339411i
\(471\) 0 0
\(472\) 6.26486i 0.288363i
\(473\) −19.6321 + 4.48090i −0.902685 + 0.206032i
\(474\) 0 0
\(475\) 0.806986 + 0.643550i 0.0370271 + 0.0295281i
\(476\) 19.8157 + 27.8873i 0.908251 + 1.27821i
\(477\) 0 0
\(478\) −0.190649 0.835287i −0.00872008 0.0382052i
\(479\) −17.0479 21.3774i −0.778939 0.976759i −0.999999 0.00149851i \(-0.999523\pi\)
0.221060 0.975260i \(-0.429048\pi\)
\(480\) 0 0
\(481\) −28.6770 22.8692i −1.30756 1.04274i
\(482\) −0.101409 + 0.0488361i −0.00461906 + 0.00222442i
\(483\) 0 0
\(484\) −7.65835 3.68807i −0.348107 0.167639i
\(485\) 4.60453 + 9.56140i 0.209081 + 0.434161i
\(486\) 0 0
\(487\) 3.64611 1.75587i 0.165221 0.0795662i −0.349446 0.936957i \(-0.613630\pi\)
0.514666 + 0.857390i \(0.327916\pi\)
\(488\) −6.39130 8.01444i −0.289321 0.362796i
\(489\) 0 0
\(490\) 3.51896 + 3.50936i 0.158970 + 0.158537i
\(491\) 23.7370i 1.07124i −0.844460 0.535618i \(-0.820079\pi\)
0.844460 0.535618i \(-0.179921\pi\)
\(492\) 0 0
\(493\) −6.93505 14.4008i −0.312339 0.648579i
\(494\) 0.629177 + 0.143606i 0.0283080 + 0.00646112i
\(495\) 0 0
\(496\) 8.43916 17.5241i 0.378929 0.786855i
\(497\) 6.60389 + 15.9125i 0.296225 + 0.713772i
\(498\) 0 0
\(499\) 13.3191 16.7017i 0.596247 0.747670i −0.388541 0.921432i \(-0.627021\pi\)
0.984788 + 0.173761i \(0.0555922\pi\)
\(500\) −12.0607 5.80812i −0.539370 0.259747i
\(501\) 0 0
\(502\) 3.61109 0.824207i 0.161171 0.0367862i
\(503\) −13.0531 16.3681i −0.582011 0.729819i 0.400443 0.916321i \(-0.368856\pi\)
−0.982454 + 0.186503i \(0.940285\pi\)
\(504\) 0 0
\(505\) −17.8070 + 22.3293i −0.792401 + 0.993639i
\(506\) 1.58360 3.28838i 0.0703996 0.146186i
\(507\) 0 0
\(508\) −40.4009 −1.79250
\(509\) −8.37447 −0.371192 −0.185596 0.982626i \(-0.559422\pi\)
−0.185596 + 0.982626i \(0.559422\pi\)
\(510\) 0 0
\(511\) −0.997701 + 17.9850i −0.0441357 + 0.795608i
\(512\) 17.6260 + 4.02303i 0.778968 + 0.177794i
\(513\) 0 0
\(514\) −2.10139 1.67580i −0.0926884 0.0739165i
\(515\) 16.8950 + 13.4733i 0.744483 + 0.593705i
\(516\) 0 0
\(517\) −11.6669 2.66290i −0.513111 0.117114i
\(518\) −0.235542 + 4.24598i −0.0103491 + 0.186558i
\(519\) 0 0
\(520\) 16.5564 0.726045
\(521\) 14.5608 0.637921 0.318960 0.947768i \(-0.396666\pi\)
0.318960 + 0.947768i \(0.396666\pi\)
\(522\) 0 0
\(523\) 7.41416 15.3957i 0.324198 0.673205i −0.673630 0.739069i \(-0.735266\pi\)
0.997829 + 0.0658635i \(0.0209802\pi\)
\(524\) 15.1535 19.0018i 0.661982 0.830099i
\(525\) 0 0
\(526\) −2.88234 3.61434i −0.125676 0.157593i
\(527\) −35.2505 + 8.04569i −1.53554 + 0.350476i
\(528\) 0 0
\(529\) 6.20209 + 2.98677i 0.269656 + 0.129860i
\(530\) 6.12989 7.68664i 0.266265 0.333886i
\(531\) 0 0
\(532\) 0.820771 + 1.97770i 0.0355849 + 0.0857440i
\(533\) 17.0582 35.4217i 0.738872 1.53428i
\(534\) 0 0
\(535\) −33.6336 7.67665i −1.45411 0.331890i
\(536\) −3.71427 7.71277i −0.160432 0.333141i
\(537\) 0 0
\(538\) 3.81717i 0.164570i
\(539\) 5.96332 + 16.9679i 0.256859 + 0.730858i
\(540\) 0 0
\(541\) −7.15055 8.96651i −0.307426 0.385500i 0.603986 0.796995i \(-0.293578\pi\)
−0.911412 + 0.411495i \(0.865007\pi\)
\(542\) 5.47185 2.63510i 0.235036 0.113187i
\(543\) 0 0
\(544\) −8.64880 17.9594i −0.370814 0.770004i
\(545\) −10.6230 5.11577i −0.455040 0.219136i
\(546\) 0 0
\(547\) −10.3901 + 5.00362i −0.444250 + 0.213939i −0.642616 0.766189i \(-0.722151\pi\)
0.198366 + 0.980128i \(0.436437\pi\)
\(548\) −8.04689 6.41718i −0.343746 0.274128i
\(549\) 0 0
\(550\) −1.02596 1.28652i −0.0437472 0.0548573i
\(551\) −0.222615 0.975339i −0.00948371 0.0415509i
\(552\) 0 0
\(553\) −1.35394 1.90544i −0.0575754 0.0810277i
\(554\) 3.14533 + 2.50831i 0.133632 + 0.106568i
\(555\) 0 0
\(556\) 4.43056 1.01125i 0.187897 0.0428864i
\(557\) 28.5685i 1.21048i −0.796041 0.605242i \(-0.793076\pi\)
0.796041 0.605242i \(-0.206924\pi\)
\(558\) 0 0
\(559\) −45.3115 + 10.3421i −1.91647 + 0.437423i
\(560\) 15.0707 + 21.2094i 0.636852 + 0.896262i
\(561\) 0 0
\(562\) −1.50159 + 6.57891i −0.0633409 + 0.277515i
\(563\) 22.0460 27.6448i 0.929128 1.16509i −0.0568781 0.998381i \(-0.518115\pi\)
0.986006 0.166709i \(-0.0533139\pi\)
\(564\) 0 0
\(565\) 35.1136 + 8.01445i 1.47724 + 0.337171i
\(566\) −1.33116 + 5.83219i −0.0559528 + 0.245145i
\(567\) 0 0
\(568\) −1.48070 6.48739i −0.0621290 0.272205i
\(569\) 17.6630i 0.740472i 0.928938 + 0.370236i \(0.120723\pi\)
−0.928938 + 0.370236i \(0.879277\pi\)
\(570\) 0 0
\(571\) −9.74752 42.7067i −0.407921 1.78722i −0.593765 0.804639i \(-0.702359\pi\)
0.185844 0.982579i \(-0.440498\pi\)
\(572\) 26.5279 + 12.7752i 1.10919 + 0.534156i
\(573\) 0 0
\(574\) −4.49317 + 0.766576i −0.187541 + 0.0319963i
\(575\) 10.5337 8.40032i 0.439284 0.350317i
\(576\) 0 0
\(577\) 19.5509 15.5913i 0.813913 0.649074i −0.125411 0.992105i \(-0.540025\pi\)
0.939324 + 0.343031i \(0.111454\pi\)
\(578\) −3.13110 + 6.50180i −0.130237 + 0.270439i
\(579\) 0 0
\(580\) −5.47229 11.3633i −0.227225 0.471837i
\(581\) 27.4022 + 1.52011i 1.13683 + 0.0630649i
\(582\) 0 0
\(583\) 32.0563 15.4375i 1.32763 0.639355i
\(584\) 1.54810 6.78268i 0.0640609 0.280669i
\(585\) 0 0
\(586\) −0.908725 + 0.724684i −0.0375391 + 0.0299364i
\(587\) −10.6126 −0.438027 −0.219014 0.975722i \(-0.570284\pi\)
−0.219014 + 0.975722i \(0.570284\pi\)
\(588\) 0 0
\(589\) −2.26308 −0.0932485
\(590\) −3.40300 + 2.71380i −0.140099 + 0.111725i
\(591\) 0 0
\(592\) −4.95407 + 21.7052i −0.203611 + 0.892078i
\(593\) 16.6237 8.00554i 0.682652 0.328748i −0.0602163 0.998185i \(-0.519179\pi\)
0.742869 + 0.669437i \(0.233465\pi\)
\(594\) 0 0
\(595\) 13.3580 46.4859i 0.547625 1.90574i
\(596\) 11.7742 + 24.4494i 0.482290 + 1.00148i
\(597\) 0 0
\(598\) 3.65500 7.58968i 0.149464 0.310365i
\(599\) −28.6007 + 22.8083i −1.16859 + 0.931920i −0.998567 0.0535196i \(-0.982956\pi\)
−0.170024 + 0.985440i \(0.554385\pi\)
\(600\) 0 0
\(601\) 7.34653 5.85866i 0.299671 0.238980i −0.462097 0.886829i \(-0.652903\pi\)
0.761768 + 0.647850i \(0.224331\pi\)
\(602\) 4.02027 + 3.58780i 0.163854 + 0.146228i
\(603\) 0 0
\(604\) 35.2867 + 16.9932i 1.43580 + 0.691443i
\(605\) 2.67415 + 11.7162i 0.108720 + 0.476333i
\(606\) 0 0
\(607\) 9.77984i 0.396951i −0.980106 0.198476i \(-0.936401\pi\)
0.980106 0.198476i \(-0.0635991\pi\)
\(608\) −0.277626 1.21636i −0.0112592 0.0493299i
\(609\) 0 0
\(610\) −1.58478 + 6.94336i −0.0641658 + 0.281129i
\(611\) −26.9277 6.14606i −1.08938 0.248643i
\(612\) 0 0
\(613\) 16.9488 21.2532i 0.684557 0.858407i −0.311208 0.950342i \(-0.600734\pi\)
0.995765 + 0.0919348i \(0.0293051\pi\)
\(614\) −0.955227 + 4.18512i −0.0385498 + 0.168898i
\(615\) 0 0
\(616\) −1.16826 6.84761i −0.0470707 0.275898i
\(617\) −8.45955 + 1.93084i −0.340569 + 0.0777326i −0.389385 0.921075i \(-0.627312\pi\)
0.0488161 + 0.998808i \(0.484455\pi\)
\(618\) 0 0
\(619\) 27.4830i 1.10463i 0.833634 + 0.552317i \(0.186256\pi\)
−0.833634 + 0.552317i \(0.813744\pi\)
\(620\) −27.8154 + 6.34868i −1.11709 + 0.254969i
\(621\) 0 0
\(622\) 2.51633 + 2.00670i 0.100896 + 0.0804615i
\(623\) −6.70256 0.371819i −0.268532 0.0148966i
\(624\) 0 0
\(625\) 6.95350 + 30.4653i 0.278140 + 1.21861i
\(626\) −0.0684916 0.0858858i −0.00273748 0.00343269i
\(627\) 0 0
\(628\) −5.09445 4.06269i −0.203291 0.162119i
\(629\) 37.2879 17.9569i 1.48677 0.715989i
\(630\) 0 0
\(631\) 44.8832 + 21.6146i 1.78677 + 0.860464i 0.949560 + 0.313585i \(0.101530\pi\)
0.837212 + 0.546879i \(0.184184\pi\)
\(632\) 0.391720 + 0.813415i 0.0155818 + 0.0323559i
\(633\) 0 0
\(634\) −2.49872 + 1.20332i −0.0992367 + 0.0477899i
\(635\) 35.6132 + 44.6575i 1.41327 + 1.77218i
\(636\) 0 0
\(637\) 13.7635 + 39.1624i 0.545331 + 1.55167i
\(638\) 1.59490i 0.0631426i
\(639\) 0 0
\(640\) −9.04212 18.7762i −0.357421 0.742193i
\(641\) 23.9383 + 5.46375i 0.945504 + 0.215805i 0.667361 0.744734i \(-0.267424\pi\)
0.278143 + 0.960540i \(0.410281\pi\)
\(642\) 0 0
\(643\) −11.9790 + 24.8747i −0.472407 + 0.980964i 0.519556 + 0.854436i \(0.326097\pi\)
−0.991963 + 0.126527i \(0.959617\pi\)
\(644\) 27.5518 4.70059i 1.08569 0.185229i
\(645\) 0 0
\(646\) −0.454011 + 0.569312i −0.0178628 + 0.0223993i
\(647\) 32.9977 + 15.8909i 1.29727 + 0.624734i 0.949771 0.312945i \(-0.101315\pi\)
0.347503 + 0.937679i \(0.387030\pi\)
\(648\) 0 0
\(649\) −15.3568 + 3.50509i −0.602808 + 0.137587i
\(650\) −2.36796 2.96932i −0.0928789 0.116466i
\(651\) 0 0
\(652\) 21.6842 27.1912i 0.849220 1.06489i
\(653\) 13.0041 27.0033i 0.508889 1.05672i −0.475337 0.879804i \(-0.657674\pi\)
0.984226 0.176915i \(-0.0566119\pi\)
\(654\) 0 0
\(655\) −34.3615 −1.34262
\(656\) −23.8632 −0.931703
\(657\) 0 0
\(658\) 1.22745 + 2.95762i 0.0478510 + 0.115300i
\(659\) 37.4925 + 8.55743i 1.46050 + 0.333350i 0.877679 0.479249i \(-0.159091\pi\)
0.582823 + 0.812599i \(0.301948\pi\)
\(660\) 0 0
\(661\) 5.88490 + 4.69305i 0.228896 + 0.182539i 0.731221 0.682140i \(-0.238951\pi\)
−0.502325 + 0.864679i \(0.667522\pi\)
\(662\) −3.35297 2.67391i −0.130317 0.103924i
\(663\) 0 0
\(664\) −10.3342 2.35871i −0.401045 0.0915359i
\(665\) 1.46256 2.65057i 0.0567156 0.102785i
\(666\) 0 0
\(667\) −13.0586 −0.505631
\(668\) −18.0918 −0.699991
\(669\) 0 0
\(670\) −2.58055 + 5.35856i −0.0996952 + 0.207019i
\(671\) −16.0697 + 20.1507i −0.620362 + 0.777910i
\(672\) 0 0
\(673\) −13.2415 16.6043i −0.510422 0.640048i 0.458123 0.888889i \(-0.348522\pi\)
−0.968544 + 0.248840i \(0.919951\pi\)
\(674\) −6.16457 + 1.40702i −0.237450 + 0.0541965i
\(675\) 0 0
\(676\) 38.5929 + 18.5854i 1.48434 + 0.714822i
\(677\) −29.2857 + 36.7231i −1.12554 + 1.41138i −0.226228 + 0.974074i \(0.572640\pi\)
−0.899312 + 0.437308i \(0.855932\pi\)
\(678\) 0 0
\(679\) 8.37728 5.95260i 0.321491 0.228440i
\(680\) −8.10542 + 16.8311i −0.310829 + 0.645443i
\(681\) 0 0
\(682\) 3.51740 + 0.802824i 0.134688 + 0.0307417i
\(683\) 7.96499 + 16.5395i 0.304772 + 0.632865i 0.995959 0.0898106i \(-0.0286262\pi\)
−0.691187 + 0.722676i \(0.742912\pi\)
\(684\) 0 0
\(685\) 14.5514i 0.555980i
\(686\) 2.77689 3.93069i 0.106022 0.150074i
\(687\) 0 0
\(688\) 17.5888 + 22.0556i 0.670566 + 0.840863i
\(689\) 73.9868 35.6302i 2.81867 1.35740i
\(690\) 0 0
\(691\) −21.2272 44.0788i −0.807521 1.67684i −0.733610 0.679571i \(-0.762166\pi\)
−0.0739115 0.997265i \(-0.523548\pi\)
\(692\) −44.4931 21.4267i −1.69137 0.814523i
\(693\) 0 0
\(694\) 0.966726 0.465551i 0.0366964 0.0176721i
\(695\) −5.02330 4.00595i −0.190544 0.151954i
\(696\) 0 0
\(697\) 27.6583 + 34.6824i 1.04763 + 1.31369i
\(698\) −0.583565 2.55677i −0.0220883 0.0967750i
\(699\) 0 0
\(700\) 3.48019 12.1111i 0.131539 0.457755i
\(701\) −19.8849 15.8577i −0.751042 0.598936i 0.171341 0.985212i \(-0.445190\pi\)
−0.922383 + 0.386275i \(0.873761\pi\)
\(702\) 0 0
\(703\) 2.52544 0.576416i 0.0952489 0.0217399i
\(704\) 16.5071i 0.622133i
\(705\) 0 0
\(706\) 9.25336 2.11202i 0.348255 0.0794869i
\(707\) 24.2153 + 13.3617i 0.910709 + 0.502520i
\(708\) 0 0
\(709\) 3.82546 16.7604i 0.143668 0.629452i −0.850897 0.525333i \(-0.823941\pi\)
0.994565 0.104119i \(-0.0332022\pi\)
\(710\) −2.88247 + 3.61450i −0.108177 + 0.135650i
\(711\) 0 0
\(712\) 2.52774 + 0.576941i 0.0947311 + 0.0216218i
\(713\) −6.57331 + 28.7995i −0.246172 + 1.07855i
\(714\) 0 0
\(715\) −9.26305 40.5841i −0.346418 1.51776i
\(716\) 28.8671i 1.07881i
\(717\) 0 0
\(718\) 0.872721 + 3.82364i 0.0325697 + 0.142697i
\(719\) 41.3285 + 19.9028i 1.54129 + 0.742248i 0.995418 0.0956182i \(-0.0304828\pi\)
0.545876 + 0.837866i \(0.316197\pi\)
\(720\) 0 0
\(721\) 10.1099 18.3220i 0.376512 0.682347i
\(722\) 3.82450 3.04994i 0.142333 0.113507i
\(723\) 0 0
\(724\) 5.41570 4.31888i 0.201273 0.160510i
\(725\) −2.55447 + 5.30441i −0.0948706 + 0.197001i
\(726\) 0 0
\(727\) 20.1261 + 41.7923i 0.746435 + 1.54999i 0.832705 + 0.553717i \(0.186791\pi\)
−0.0862692 + 0.996272i \(0.527495\pi\)
\(728\) −2.69639 15.8045i −0.0999349 0.585753i
\(729\) 0 0
\(730\) −4.35488 + 2.09720i −0.161181 + 0.0776209i
\(731\) 11.6693 51.1264i 0.431604 1.89098i
\(732\) 0 0
\(733\) 32.6020 25.9992i 1.20418 0.960303i 0.204355 0.978897i \(-0.434490\pi\)
0.999827 + 0.0185935i \(0.00591884\pi\)
\(734\) 4.36890 0.161259
\(735\) 0 0
\(736\) −16.2856 −0.600294
\(737\) −16.8280 + 13.4198i −0.619866 + 0.494326i
\(738\) 0 0
\(739\) 4.98595 21.8449i 0.183411 0.803577i −0.796579 0.604534i \(-0.793359\pi\)
0.979991 0.199043i \(-0.0637835\pi\)
\(740\) 29.4231 14.1694i 1.08161 0.520877i
\(741\) 0 0
\(742\) −8.33587 4.59965i −0.306020 0.168858i
\(743\) −5.94655 12.3481i −0.218158 0.453009i 0.762954 0.646453i \(-0.223749\pi\)
−0.981111 + 0.193444i \(0.938034\pi\)
\(744\) 0 0
\(745\) 16.6464 34.5667i 0.609878 1.26642i
\(746\) −2.96948 + 2.36808i −0.108720 + 0.0867017i
\(747\) 0 0
\(748\) −25.9743 + 20.7138i −0.949713 + 0.757371i
\(749\) −1.85042 + 33.3564i −0.0676128 + 1.21882i
\(750\) 0 0
\(751\) −43.7822 21.0844i −1.59764 0.769381i −0.598148 0.801386i \(-0.704097\pi\)
−0.999488 + 0.0320048i \(0.989811\pi\)
\(752\) 3.73050 + 16.3444i 0.136037 + 0.596018i
\(753\) 0 0
\(754\) 3.68108i 0.134057i
\(755\) −12.3215 53.9839i −0.448424 1.96467i
\(756\) 0 0
\(757\) −3.71116 + 16.2597i −0.134884 + 0.590967i 0.861629 + 0.507538i \(0.169444\pi\)
−0.996514 + 0.0834290i \(0.973413\pi\)
\(758\) −2.01120 0.459043i −0.0730501 0.0166732i
\(759\) 0 0
\(760\) −0.729019 + 0.914161i −0.0264443 + 0.0331601i
\(761\) −2.33924 + 10.2489i −0.0847974 + 0.371522i −0.999466 0.0326835i \(-0.989595\pi\)
0.914668 + 0.404205i \(0.132452\pi\)
\(762\) 0 0
\(763\) −3.15337 + 10.9737i −0.114160 + 0.397276i
\(764\) 9.45715 2.15853i 0.342148 0.0780930i
\(765\) 0 0
\(766\) 1.04616i 0.0377992i
\(767\) −35.4440 + 8.08987i −1.27981 + 0.292108i
\(768\) 0 0
\(769\) −26.3184 20.9882i −0.949066 0.756855i 0.0209789 0.999780i \(-0.493322\pi\)
−0.970045 + 0.242925i \(0.921893\pi\)
\(770\) −3.21348 + 3.60083i −0.115806 + 0.129765i
\(771\) 0 0
\(772\) 3.79088 + 16.6089i 0.136437 + 0.597768i
\(773\) 26.2873 + 32.9633i 0.945490 + 1.18561i 0.982495 + 0.186291i \(0.0596468\pi\)
−0.0370050 + 0.999315i \(0.511782\pi\)
\(774\) 0 0
\(775\) 10.4125 + 8.30372i 0.374029 + 0.298279i
\(776\) −3.57618 + 1.72220i −0.128377 + 0.0618233i
\(777\) 0 0
\(778\) −8.39804 4.04428i −0.301084 0.144994i
\(779\) 1.20469 + 2.50157i 0.0431626 + 0.0896282i
\(780\) 0 0
\(781\) −15.0739 + 7.25919i −0.539385 + 0.259754i
\(782\) 5.92625 + 7.43129i 0.211922 + 0.265742i
\(783\) 0 0
\(784\) 17.7918 17.8404i 0.635422 0.637159i
\(785\) 9.21243i 0.328806i
\(786\) 0 0
\(787\) −14.2218 29.5319i −0.506952 1.05270i −0.984709 0.174205i \(-0.944264\pi\)
0.477757 0.878492i \(-0.341450\pi\)
\(788\) 16.3665 + 3.73554i 0.583032 + 0.133073i
\(789\) 0 0
\(790\) 0.272153 0.565132i 0.00968277 0.0201065i
\(791\) 1.93184 34.8242i 0.0686885 1.23821i
\(792\) 0 0
\(793\) −37.0893 + 46.5085i −1.31708 + 1.65156i
\(794\) −0.962389 0.463462i −0.0341539 0.0164477i
\(795\) 0 0
\(796\) 13.2459 3.02329i 0.469488 0.107158i
\(797\) −6.14356 7.70378i −0.217616 0.272882i 0.661026 0.750363i \(-0.270121\pi\)
−0.878642 + 0.477481i \(0.841550\pi\)
\(798\) 0 0
\(799\) 19.4309 24.3655i 0.687415 0.861991i
\(800\) −3.18571 + 6.61520i −0.112632 + 0.233883i
\(801\) 0 0
\(802\) 4.34163 0.153308
\(803\) −17.4923 −0.617289
\(804\) 0 0
\(805\) −29.4826 26.3111i −1.03912 0.927344i
\(806\) 8.11827 + 1.85294i 0.285954 + 0.0652671i
\(807\) 0 0
\(808\) −8.35165 6.66022i −0.293810 0.234306i
\(809\) 8.09230 + 6.45339i 0.284510 + 0.226889i 0.755337 0.655336i \(-0.227473\pi\)
−0.470827 + 0.882225i \(0.656044\pi\)
\(810\) 0 0
\(811\) −13.1978 3.01231i −0.463437 0.105776i −0.0155740 0.999879i \(-0.504958\pi\)
−0.447863 + 0.894102i \(0.647815\pi\)
\(812\) −9.95606 + 7.07442i −0.349389 + 0.248263i
\(813\) 0 0
\(814\) −4.12967 −0.144745
\(815\) −49.1705 −1.72237
\(816\) 0 0
\(817\) 1.42414 2.95726i 0.0498244 0.103462i
\(818\) 2.34408 2.93939i 0.0819589 0.102773i
\(819\) 0 0
\(820\) 21.8246 + 27.3671i 0.762147 + 0.955702i
\(821\) 33.7764 7.70923i 1.17880 0.269054i 0.412150 0.911116i \(-0.364778\pi\)
0.766653 + 0.642062i \(0.221921\pi\)
\(822\) 0 0
\(823\) −11.2473 5.41641i −0.392056 0.188804i 0.227462 0.973787i \(-0.426957\pi\)
−0.619517 + 0.784983i \(0.712672\pi\)
\(824\) −5.03932 + 6.31911i −0.175553 + 0.220137i
\(825\) 0 0
\(826\) 3.14477 + 2.80648i 0.109421 + 0.0976501i
\(827\) 4.23589 8.79591i 0.147296 0.305864i −0.814246 0.580519i \(-0.802850\pi\)
0.961543 + 0.274656i \(0.0885638\pi\)
\(828\) 0 0
\(829\) −49.7946 11.3653i −1.72944 0.394733i −0.761948 0.647638i \(-0.775757\pi\)
−0.967491 + 0.252905i \(0.918614\pi\)
\(830\) 3.19533 + 6.63517i 0.110911 + 0.230310i
\(831\) 0 0
\(832\) 38.0988i 1.32084i
\(833\) −46.5503 5.18062i −1.61287 0.179498i
\(834\) 0 0
\(835\) 15.9478 + 19.9979i 0.551895 + 0.692055i
\(836\) −1.87347 + 0.902216i −0.0647953 + 0.0312038i
\(837\) 0 0
\(838\) −0.663399 1.37756i −0.0229167 0.0475871i
\(839\) −4.43688 2.13669i −0.153178 0.0737667i 0.355724 0.934591i \(-0.384234\pi\)
−0.508902 + 0.860824i \(0.669949\pi\)
\(840\) 0 0
\(841\) −20.9869 + 10.1067i −0.723685 + 0.348508i
\(842\) −0.144283 0.115062i −0.00497233 0.00396530i
\(843\) 0 0
\(844\) −12.2121 15.3135i −0.420357 0.527111i
\(845\) −13.4759 59.0419i −0.463586 2.03110i
\(846\) 0 0
\(847\) 10.7486 4.46083i 0.369327 0.153276i
\(848\) −38.9698 31.0774i −1.33823 1.06720i
\(849\) 0 0
\(850\) 4.17786 0.953569i 0.143299 0.0327071i
\(851\) 33.8126i 1.15908i
\(852\) 0 0
\(853\) −7.17110 + 1.63676i −0.245534 + 0.0560415i −0.343517 0.939147i \(-0.611618\pi\)
0.0979827 + 0.995188i \(0.468761\pi\)
\(854\) 6.88614 + 0.382003i 0.235639 + 0.0130719i
\(855\) 0 0
\(856\) 2.87124 12.5797i 0.0981369 0.429966i
\(857\) 0.144754 0.181516i 0.00494472 0.00620048i −0.779353 0.626585i \(-0.784452\pi\)
0.784298 + 0.620385i \(0.213023\pi\)
\(858\) 0 0
\(859\) 37.0982 + 8.46741i 1.26577 + 0.288904i 0.802147 0.597127i \(-0.203691\pi\)
0.463626 + 0.886031i \(0.346548\pi\)
\(860\) 9.20797 40.3427i 0.313989 1.37568i
\(861\) 0 0
\(862\) 0.166522 + 0.729578i 0.00567175 + 0.0248495i
\(863\) 9.94315i 0.338469i 0.985576 + 0.169234i \(0.0541295\pi\)
−0.985576 + 0.169234i \(0.945871\pi\)
\(864\) 0 0
\(865\) 15.5362 + 68.0684i 0.528245 + 2.31439i
\(866\) −0.534194 0.257254i −0.0181526 0.00874185i
\(867\) 0 0
\(868\) 10.5904 + 25.5182i 0.359462 + 0.866145i
\(869\) 1.77473 1.41530i 0.0602037 0.0480108i
\(870\) 0 0
\(871\) −38.8395 + 30.9734i −1.31602 + 1.04949i
\(872\) 1.91341 3.97324i 0.0647964 0.134551i
\(873\) 0 0
\(874\) 0.258126 + 0.536004i 0.00873123 + 0.0181306i
\(875\) 16.9274 7.02509i 0.572250 0.237491i
\(876\) 0 0
\(877\) 29.8213 14.3612i 1.00699 0.484943i 0.143688 0.989623i \(-0.454104\pi\)
0.863306 + 0.504680i \(0.168390\pi\)
\(878\) 0.704549 3.08683i 0.0237774 0.104176i
\(879\) 0 0
\(880\) −19.7545 + 15.7537i −0.665924 + 0.531057i
\(881\) −15.2829 −0.514893 −0.257447 0.966293i \(-0.582881\pi\)
−0.257447 + 0.966293i \(0.582881\pi\)
\(882\) 0 0
\(883\) −26.6582 −0.897121 −0.448560 0.893753i \(-0.648063\pi\)
−0.448560 + 0.893753i \(0.648063\pi\)
\(884\) −59.9494 + 47.8081i −2.01632 + 1.60796i
\(885\) 0 0
\(886\) −0.146136 + 0.640262i −0.00490952 + 0.0215100i
\(887\) −1.60281 + 0.771874i −0.0538172 + 0.0259170i −0.460599 0.887608i \(-0.652365\pi\)
0.406782 + 0.913525i \(0.366651\pi\)
\(888\) 0 0
\(889\) 36.8294 41.2688i 1.23522 1.38411i
\(890\) −0.781576 1.62296i −0.0261985 0.0544017i
\(891\) 0 0
\(892\) −8.51300 + 17.6774i −0.285036 + 0.591884i
\(893\) 1.52505 1.21618i 0.0510337 0.0406980i
\(894\) 0 0
\(895\) 31.9085 25.4462i 1.06658 0.850572i
\(896\) −16.4508 + 11.6894i −0.549584 + 0.390515i
\(897\) 0 0
\(898\) −4.87724 2.34876i −0.162756 0.0783790i
\(899\) −2.87240 12.5848i −0.0957999 0.419727i
\(900\) 0 0
\(901\) 92.6577i 3.08688i
\(902\) −0.984973 4.31545i −0.0327960 0.143689i
\(903\) 0 0
\(904\) −2.99759 + 13.1333i −0.0996982 + 0.436806i
\(905\) −9.54781 2.17923i −0.317380 0.0724399i
\(906\) 0 0
\(907\) −8.36281 + 10.4866i −0.277683 + 0.348203i −0.901041 0.433733i \(-0.857196\pi\)
0.623359 + 0.781936i \(0.285768\pi\)
\(908\) −3.50689 + 15.3647i −0.116380 + 0.509895i
\(909\) 0 0
\(910\) −7.41680 + 8.31082i −0.245865 + 0.275501i
\(911\) 46.3632 10.5821i 1.53608 0.350600i 0.630980 0.775799i \(-0.282653\pi\)
0.905100 + 0.425199i \(0.139796\pi\)
\(912\) 0 0
\(913\) 26.6515i 0.882037i
\(914\) 5.37170 1.22605i 0.177680 0.0405543i
\(915\) 0 0
\(916\) 18.0358 + 14.3831i 0.595919 + 0.475230i
\(917\) 5.59616 + 32.8010i 0.184801 + 1.08319i
\(918\) 0 0
\(919\) 9.70410 + 42.5164i 0.320109 + 1.40249i 0.837359 + 0.546654i \(0.184099\pi\)
−0.517250 + 0.855834i \(0.673044\pi\)
\(920\) 9.51595 + 11.9326i 0.313732 + 0.393407i
\(921\) 0 0
\(922\) −0.570666 0.455091i −0.0187939 0.0149876i
\(923\) −34.7910 + 16.7544i −1.14516 + 0.551479i
\(924\) 0 0
\(925\) −13.7347 6.61428i −0.451594 0.217476i
\(926\) 1.47918 + 3.07155i 0.0486090 + 0.100938i
\(927\) 0 0
\(928\) 6.41170 3.08771i 0.210474 0.101359i
\(929\) −8.93091 11.1990i −0.293014 0.367428i 0.613434 0.789746i \(-0.289788\pi\)
−0.906447 + 0.422319i \(0.861216\pi\)
\(930\) 0 0
\(931\) −2.76839 0.964463i −0.0907304 0.0316090i
\(932\) 31.2749i 1.02444i
\(933\) 0 0
\(934\) 4.25884 + 8.84358i 0.139354 + 0.289371i
\(935\) 45.7923 + 10.4518i 1.49757 + 0.341810i
\(936\) 0 0
\(937\) 0.951794 1.97642i 0.0310938 0.0645669i −0.884843 0.465889i \(-0.845735\pi\)
0.915937 + 0.401322i \(0.131449\pi\)
\(938\) 5.53548 + 1.59065i 0.180740 + 0.0519367i
\(939\) 0 0
\(940\) 15.3325 19.2263i 0.500090 0.627093i
\(941\) −15.5215 7.47476i −0.505987 0.243670i 0.163434 0.986554i \(-0.447743\pi\)
−0.669420 + 0.742884i \(0.733457\pi\)
\(942\) 0 0
\(943\) 35.3337 8.06469i 1.15062 0.262622i
\(944\) 13.7585 + 17.2526i 0.447800 + 0.561523i
\(945\) 0 0
\(946\) −3.26257 + 4.09113i −0.106075 + 0.133014i
\(947\) −1.91534 + 3.97725i −0.0622403 + 0.129243i −0.929769 0.368145i \(-0.879993\pi\)
0.867528 + 0.497388i \(0.165707\pi\)
\(948\) 0 0
\(949\) −40.3727 −1.31055
\(950\) 0.268218 0.00870215
\(951\) 0 0
\(952\) 17.3868 + 4.99620i 0.563509 + 0.161928i
\(953\) −41.8564 9.55344i −1.35586 0.309466i −0.518014 0.855372i \(-0.673329\pi\)
−0.837847 + 0.545906i \(0.816186\pi\)
\(954\) 0 0
\(955\) −10.7224 8.55081i −0.346968 0.276698i
\(956\) 4.98144 + 3.97256i 0.161111 + 0.128482i
\(957\) 0 0
\(958\) −6.92707 1.58106i −0.223804 0.0510817i
\(959\) 13.8906 2.36986i 0.448550 0.0765267i
\(960\) 0 0
\(961\) 1.79950 0.0580484
\(962\) −9.53140 −0.307305
\(963\) 0 0
\(964\) 0.363178 0.754146i 0.0116972 0.0242894i
\(965\) 15.0172 18.8309i 0.483420 0.606189i
\(966\) 0 0
\(967\) −36.1786 45.3665i −1.16343 1.45889i −0.863086 0.505057i \(-0.831471\pi\)
−0.300339 0.953832i \(-0.597100\pi\)
\(968\) −4.38213 + 1.00019i −0.140847 + 0.0321474i
\(969\) 0 0
\(970\) 2.48460 + 1.19652i 0.0797758 + 0.0384180i
\(971\) 16.9370 21.2383i 0.543534 0.681570i −0.431885 0.901929i \(-0.642151\pi\)
0.975419 + 0.220359i \(0.0707228\pi\)
\(972\) 0 0
\(973\) −3.00592 + 5.44758i −0.0963654 + 0.174641i
\(974\) 0.456277 0.947469i 0.0146201 0.0303589i
\(975\) 0 0
\(976\) 35.2015 + 8.03452i 1.12677 + 0.257179i
\(977\) −20.6804 42.9432i −0.661624 1.37388i −0.913788 0.406191i \(-0.866857\pi\)
0.252164 0.967684i \(-0.418858\pi\)
\(978\) 0 0
\(979\) 6.51895i 0.208347i
\(980\) −36.7318 4.08791i −1.17335 0.130584i
\(981\) 0 0
\(982\) −3.84584 4.82253i −0.122726 0.153893i
\(983\) 23.4437 11.2899i 0.747739 0.360092i −0.0208947 0.999782i \(-0.506651\pi\)
0.768633 + 0.639690i \(0.220937\pi\)
\(984\) 0 0
\(985\) −10.2978 21.3837i −0.328116 0.681341i
\(986\) −3.74215 1.80213i −0.119174 0.0573914i
\(987\) 0 0
\(988\) −4.32403 + 2.08234i −0.137566 + 0.0662481i
\(989\) −33.4971 26.7130i −1.06514 0.849424i
\(990\) 0 0
\(991\) 20.8926 + 26.1985i 0.663676 + 0.832223i 0.993738 0.111736i \(-0.0356412\pi\)
−0.330062 + 0.943959i \(0.607070\pi\)
\(992\) −3.58221 15.6947i −0.113735 0.498307i
\(993\) 0 0
\(994\) 3.91979 + 2.16290i 0.124328 + 0.0686031i
\(995\) −15.0180 11.9764i −0.476102 0.379679i
\(996\) 0 0
\(997\) 0.991215 0.226238i 0.0313921 0.00716504i −0.206796 0.978384i \(-0.566304\pi\)
0.238188 + 0.971219i \(0.423447\pi\)
\(998\) 5.55114i 0.175718i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 441.2.w.a.188.12 yes 120
3.2 odd 2 inner 441.2.w.a.188.9 120
49.6 odd 14 inner 441.2.w.a.251.9 yes 120
147.104 even 14 inner 441.2.w.a.251.12 yes 120
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
441.2.w.a.188.9 120 3.2 odd 2 inner
441.2.w.a.188.12 yes 120 1.1 even 1 trivial
441.2.w.a.251.9 yes 120 49.6 odd 14 inner
441.2.w.a.251.12 yes 120 147.104 even 14 inner