Properties

Label 441.2.w.a.188.10
Level $441$
Weight $2$
Character 441.188
Analytic conductor $3.521$
Analytic rank $0$
Dimension $120$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [441,2,Mod(62,441)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(441, base_ring=CyclotomicField(14)) chi = DirichletCharacter(H, H._module([7, 11])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("441.62"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 441 = 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 441.w (of order \(14\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.52140272914\)
Analytic rank: \(0\)
Dimension: \(120\)
Relative dimension: \(20\) over \(\Q(\zeta_{14})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{14}]$

Embedding invariants

Embedding label 188.10
Character \(\chi\) \(=\) 441.188
Dual form 441.2.w.a.251.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.00441089 + 0.00351757i) q^{2} +(-0.445035 + 1.94982i) q^{4} +(-1.95912 + 0.943460i) q^{5} +(2.55289 - 0.694800i) q^{7} +(-0.00979136 - 0.0203320i) q^{8} +(0.00532276 - 0.0110528i) q^{10} +(-1.56142 + 1.24519i) q^{11} +(-1.10775 + 0.883399i) q^{13} +(-0.00881652 + 0.0120447i) q^{14} +(-3.60370 - 1.73545i) q^{16} +(0.751799 + 3.29385i) q^{17} +6.30461i q^{19} +(-0.967708 - 4.23980i) q^{20} +(0.00250721 - 0.0109848i) q^{22} +(-7.96285 - 1.81747i) q^{23} +(-0.169433 + 0.212462i) q^{25} +(0.00177874 - 0.00779316i) q^{26} +(0.218614 + 5.28690i) q^{28} +(-5.47364 + 1.24932i) q^{29} -5.21141i q^{31} +(0.0660021 - 0.0150646i) q^{32} +(-0.0149024 - 0.0118843i) q^{34} +(-4.34589 + 3.76975i) q^{35} +(1.55054 + 6.79337i) q^{37} +(-0.0221769 - 0.0278090i) q^{38} +(0.0383648 + 0.0305949i) q^{40} +(9.97587 - 4.80413i) q^{41} +(0.0684189 + 0.0329488i) q^{43} +(-1.73302 - 3.59865i) q^{44} +(0.0415164 - 0.0199932i) q^{46} +(3.46380 + 4.34347i) q^{47} +(6.03450 - 3.54750i) q^{49} -0.00153314i q^{50} +(-1.22949 - 2.55306i) q^{52} +(0.739555 + 0.168799i) q^{53} +(1.88422 - 3.91261i) q^{55} +(-0.0391230 - 0.0451023i) q^{56} +(0.0197491 - 0.0247646i) q^{58} +(9.30068 + 4.47897i) q^{59} +(7.51004 - 1.71412i) q^{61} +(0.0183315 + 0.0229870i) q^{62} +(4.98744 - 6.25405i) q^{64} +(1.33675 - 2.77580i) q^{65} -8.97651 q^{67} -6.75700 q^{68} +(0.00590892 - 0.0319149i) q^{70} +(14.3180 + 3.26798i) q^{71} +(2.21540 + 1.76672i) q^{73} +(-0.0307354 - 0.0245107i) q^{74} +(-12.2929 - 2.80577i) q^{76} +(-3.12098 + 4.26371i) q^{77} -5.29436 q^{79} +8.69740 q^{80} +(-0.0271036 + 0.0562813i) q^{82} +(1.21293 - 1.52097i) q^{83} +(-4.58047 - 5.74373i) q^{85} +(-0.000417688 + 9.53346e-5i) q^{86} +(0.0406057 + 0.0195547i) q^{88} +(-4.85674 + 6.09016i) q^{89} +(-2.21417 + 3.02489i) q^{91} +(7.08749 - 14.7173i) q^{92} +(-0.0305569 - 0.00697441i) q^{94} +(-5.94815 - 12.3515i) q^{95} -0.0843849i q^{97} +(-0.0141390 + 0.0368744i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 120 q + 24 q^{4} - 32 q^{16} - 44 q^{22} - 4 q^{25} - 56 q^{28} + 112 q^{34} - 76 q^{37} + 28 q^{40} + 8 q^{43} - 40 q^{46} - 84 q^{49} - 140 q^{52} + 12 q^{58} - 84 q^{61} + 24 q^{64} + 16 q^{67} + 112 q^{70}+ \cdots - 112 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/441\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(344\)
\(\chi(n)\) \(e\left(\frac{5}{14}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.00441089 + 0.00351757i −0.00311897 + 0.00248730i −0.625048 0.780586i \(-0.714921\pi\)
0.621929 + 0.783074i \(0.286349\pi\)
\(3\) 0 0
\(4\) −0.445035 + 1.94982i −0.222517 + 0.974912i
\(5\) −1.95912 + 0.943460i −0.876143 + 0.421928i −0.817214 0.576334i \(-0.804483\pi\)
−0.0589288 + 0.998262i \(0.518768\pi\)
\(6\) 0 0
\(7\) 2.55289 0.694800i 0.964902 0.262610i
\(8\) −0.00979136 0.0203320i −0.00346177 0.00718844i
\(9\) 0 0
\(10\) 0.00532276 0.0110528i 0.00168320 0.00349521i
\(11\) −1.56142 + 1.24519i −0.470786 + 0.375439i −0.829952 0.557834i \(-0.811633\pi\)
0.359166 + 0.933274i \(0.383061\pi\)
\(12\) 0 0
\(13\) −1.10775 + 0.883399i −0.307234 + 0.245011i −0.764953 0.644086i \(-0.777238\pi\)
0.457719 + 0.889097i \(0.348667\pi\)
\(14\) −0.00881652 + 0.0120447i −0.00235631 + 0.00321907i
\(15\) 0 0
\(16\) −3.60370 1.73545i −0.900926 0.433863i
\(17\) 0.751799 + 3.29385i 0.182338 + 0.798875i 0.980514 + 0.196450i \(0.0629414\pi\)
−0.798176 + 0.602425i \(0.794201\pi\)
\(18\) 0 0
\(19\) 6.30461i 1.44638i 0.690651 + 0.723188i \(0.257324\pi\)
−0.690651 + 0.723188i \(0.742676\pi\)
\(20\) −0.967708 4.23980i −0.216386 0.948049i
\(21\) 0 0
\(22\) 0.00250721 0.0109848i 0.000534539 0.00234197i
\(23\) −7.96285 1.81747i −1.66037 0.378969i −0.713517 0.700637i \(-0.752899\pi\)
−0.946852 + 0.321669i \(0.895756\pi\)
\(24\) 0 0
\(25\) −0.169433 + 0.212462i −0.0338865 + 0.0424924i
\(26\) 0.00177874 0.00779316i 0.000348839 0.00152836i
\(27\) 0 0
\(28\) 0.218614 + 5.28690i 0.0413141 + 0.999130i
\(29\) −5.47364 + 1.24932i −1.01643 + 0.231994i −0.698111 0.715990i \(-0.745976\pi\)
−0.318320 + 0.947983i \(0.603118\pi\)
\(30\) 0 0
\(31\) 5.21141i 0.935998i −0.883729 0.467999i \(-0.844975\pi\)
0.883729 0.467999i \(-0.155025\pi\)
\(32\) 0.0660021 0.0150646i 0.0116676 0.00266306i
\(33\) 0 0
\(34\) −0.0149024 0.0118843i −0.00255575 0.00203814i
\(35\) −4.34589 + 3.76975i −0.734590 + 0.637203i
\(36\) 0 0
\(37\) 1.55054 + 6.79337i 0.254907 + 1.11682i 0.926617 + 0.376007i \(0.122703\pi\)
−0.671709 + 0.740815i \(0.734440\pi\)
\(38\) −0.0221769 0.0278090i −0.00359757 0.00451121i
\(39\) 0 0
\(40\) 0.0383648 + 0.0305949i 0.00606601 + 0.00483748i
\(41\) 9.97587 4.80413i 1.55797 0.750278i 0.560981 0.827829i \(-0.310424\pi\)
0.996988 + 0.0775505i \(0.0247099\pi\)
\(42\) 0 0
\(43\) 0.0684189 + 0.0329488i 0.0104338 + 0.00502465i 0.439093 0.898441i \(-0.355300\pi\)
−0.428660 + 0.903466i \(0.641014\pi\)
\(44\) −1.73302 3.59865i −0.261262 0.542517i
\(45\) 0 0
\(46\) 0.0415164 0.0199932i 0.00612125 0.00294784i
\(47\) 3.46380 + 4.34347i 0.505247 + 0.633559i 0.967404 0.253239i \(-0.0814958\pi\)
−0.462157 + 0.886798i \(0.652924\pi\)
\(48\) 0 0
\(49\) 6.03450 3.54750i 0.862072 0.506786i
\(50\) 0.00153314i 0.000216818i
\(51\) 0 0
\(52\) −1.22949 2.55306i −0.170499 0.354045i
\(53\) 0.739555 + 0.168799i 0.101586 + 0.0231863i 0.273012 0.962011i \(-0.411980\pi\)
−0.171426 + 0.985197i \(0.554837\pi\)
\(54\) 0 0
\(55\) 1.88422 3.91261i 0.254068 0.527577i
\(56\) −0.0391230 0.0451023i −0.00522802 0.00602705i
\(57\) 0 0
\(58\) 0.0197491 0.0247646i 0.00259318 0.00325175i
\(59\) 9.30068 + 4.47897i 1.21084 + 0.583112i 0.926748 0.375683i \(-0.122592\pi\)
0.284097 + 0.958796i \(0.408306\pi\)
\(60\) 0 0
\(61\) 7.51004 1.71412i 0.961562 0.219470i 0.287199 0.957871i \(-0.407276\pi\)
0.674362 + 0.738401i \(0.264419\pi\)
\(62\) 0.0183315 + 0.0229870i 0.00232810 + 0.00291935i
\(63\) 0 0
\(64\) 4.98744 6.25405i 0.623430 0.781757i
\(65\) 1.33675 2.77580i 0.165804 0.344295i
\(66\) 0 0
\(67\) −8.97651 −1.09666 −0.548328 0.836263i \(-0.684735\pi\)
−0.548328 + 0.836263i \(0.684735\pi\)
\(68\) −6.75700 −0.819406
\(69\) 0 0
\(70\) 0.00590892 0.0319149i 0.000706251 0.00381456i
\(71\) 14.3180 + 3.26798i 1.69923 + 0.387838i 0.958753 0.284242i \(-0.0917419\pi\)
0.740478 + 0.672080i \(0.234599\pi\)
\(72\) 0 0
\(73\) 2.21540 + 1.76672i 0.259293 + 0.206779i 0.744504 0.667618i \(-0.232686\pi\)
−0.485211 + 0.874397i \(0.661257\pi\)
\(74\) −0.0307354 0.0245107i −0.00357292 0.00284931i
\(75\) 0 0
\(76\) −12.2929 2.80577i −1.41009 0.321844i
\(77\) −3.12098 + 4.26371i −0.355668 + 0.485895i
\(78\) 0 0
\(79\) −5.29436 −0.595662 −0.297831 0.954619i \(-0.596263\pi\)
−0.297831 + 0.954619i \(0.596263\pi\)
\(80\) 8.69740 0.972399
\(81\) 0 0
\(82\) −0.0271036 + 0.0562813i −0.00299310 + 0.00621523i
\(83\) 1.21293 1.52097i 0.133136 0.166948i −0.710794 0.703400i \(-0.751664\pi\)
0.843931 + 0.536452i \(0.180236\pi\)
\(84\) 0 0
\(85\) −4.58047 5.74373i −0.496822 0.622995i
\(86\) −0.000417688 0 9.53346e-5i −4.50405e−5 0 1.02802e-5i
\(87\) 0 0
\(88\) 0.0406057 + 0.0195547i 0.00432858 + 0.00208453i
\(89\) −4.85674 + 6.09016i −0.514814 + 0.645556i −0.969499 0.245096i \(-0.921180\pi\)
0.454685 + 0.890652i \(0.349752\pi\)
\(90\) 0 0
\(91\) −2.21417 + 3.02489i −0.232108 + 0.317094i
\(92\) 7.08749 14.7173i 0.738922 1.53439i
\(93\) 0 0
\(94\) −0.0305569 0.00697441i −0.00315170 0.000719355i
\(95\) −5.94815 12.3515i −0.610267 1.26723i
\(96\) 0 0
\(97\) 0.0843849i 0.00856799i −0.999991 0.00428399i \(-0.998636\pi\)
0.999991 0.00428399i \(-0.00136364\pi\)
\(98\) −0.0141390 + 0.0368744i −0.00142825 + 0.00372488i
\(99\) 0 0
\(100\) −0.338860 0.424917i −0.0338860 0.0424917i
\(101\) −5.10630 + 2.45906i −0.508096 + 0.244686i −0.670326 0.742067i \(-0.733846\pi\)
0.162230 + 0.986753i \(0.448131\pi\)
\(102\) 0 0
\(103\) −3.75711 7.80172i −0.370199 0.768726i 0.629769 0.776783i \(-0.283150\pi\)
−0.999968 + 0.00805686i \(0.997435\pi\)
\(104\) 0.0288076 + 0.0138730i 0.00282482 + 0.00136036i
\(105\) 0 0
\(106\) −0.00385586 + 0.00185688i −0.000374514 + 0.000180357i
\(107\) −0.719156 0.573508i −0.0695234 0.0554431i 0.588111 0.808780i \(-0.299872\pi\)
−0.657635 + 0.753337i \(0.728443\pi\)
\(108\) 0 0
\(109\) 0.286342 + 0.359062i 0.0274266 + 0.0343919i 0.795356 0.606143i \(-0.207284\pi\)
−0.767929 + 0.640535i \(0.778713\pi\)
\(110\) 0.00545182 + 0.0238860i 0.000519810 + 0.00227744i
\(111\) 0 0
\(112\) −10.4057 1.92657i −0.983242 0.182043i
\(113\) 10.8556 + 8.65707i 1.02121 + 0.814389i 0.982763 0.184872i \(-0.0591869\pi\)
0.0384487 + 0.999261i \(0.487758\pi\)
\(114\) 0 0
\(115\) 17.3149 3.95200i 1.61462 0.368526i
\(116\) 11.2286i 1.04255i
\(117\) 0 0
\(118\) −0.0567794 + 0.0129595i −0.00522697 + 0.00119302i
\(119\) 4.20782 + 7.88648i 0.385731 + 0.722952i
\(120\) 0 0
\(121\) −1.56020 + 6.83567i −0.141836 + 0.621425i
\(122\) −0.0270964 + 0.0339779i −0.00245320 + 0.00307621i
\(123\) 0 0
\(124\) 10.1613 + 2.31926i 0.912516 + 0.208276i
\(125\) 2.55080 11.1758i 0.228150 0.999591i
\(126\) 0 0
\(127\) −1.48826 6.52048i −0.132061 0.578599i −0.997046 0.0768013i \(-0.975529\pi\)
0.864985 0.501798i \(-0.167328\pi\)
\(128\) 0.180529i 0.0159566i
\(129\) 0 0
\(130\) 0.00386778 + 0.0169459i 0.000339227 + 0.00148625i
\(131\) 17.0656 + 8.21835i 1.49103 + 0.718040i 0.989151 0.146900i \(-0.0469295\pi\)
0.501875 + 0.864940i \(0.332644\pi\)
\(132\) 0 0
\(133\) 4.38044 + 16.0950i 0.379833 + 1.39561i
\(134\) 0.0395944 0.0315755i 0.00342044 0.00272771i
\(135\) 0 0
\(136\) 0.0596093 0.0475368i 0.00511145 0.00407625i
\(137\) 7.35687 15.2767i 0.628540 1.30518i −0.306918 0.951736i \(-0.599298\pi\)
0.935457 0.353440i \(-0.114988\pi\)
\(138\) 0 0
\(139\) −6.52132 13.5417i −0.553131 1.14859i −0.970778 0.239979i \(-0.922859\pi\)
0.417647 0.908609i \(-0.362855\pi\)
\(140\) −5.41627 10.1514i −0.457758 0.857950i
\(141\) 0 0
\(142\) −0.0746504 + 0.0359497i −0.00626452 + 0.00301684i
\(143\) 0.629659 2.75872i 0.0526547 0.230696i
\(144\) 0 0
\(145\) 9.54481 7.61173i 0.792654 0.632120i
\(146\) −0.0159864 −0.00132305
\(147\) 0 0
\(148\) −13.9359 −1.14553
\(149\) −7.96334 + 6.35056i −0.652383 + 0.520258i −0.892824 0.450406i \(-0.851279\pi\)
0.240441 + 0.970664i \(0.422708\pi\)
\(150\) 0 0
\(151\) 1.86646 8.17748i 0.151890 0.665474i −0.840445 0.541897i \(-0.817706\pi\)
0.992335 0.123577i \(-0.0394366\pi\)
\(152\) 0.128185 0.0617307i 0.0103972 0.00500702i
\(153\) 0 0
\(154\) −0.00123161 0.0297850i −9.92463e−5 0.00240015i
\(155\) 4.91676 + 10.2098i 0.394924 + 0.820068i
\(156\) 0 0
\(157\) 1.92513 3.99758i 0.153642 0.319041i −0.809913 0.586550i \(-0.800486\pi\)
0.963556 + 0.267508i \(0.0862002\pi\)
\(158\) 0.0233528 0.0186233i 0.00185785 0.00148159i
\(159\) 0 0
\(160\) −0.115093 + 0.0917836i −0.00909890 + 0.00725613i
\(161\) −21.5911 + 0.892792i −1.70162 + 0.0703619i
\(162\) 0 0
\(163\) 19.5157 + 9.39829i 1.52859 + 0.736131i 0.994041 0.109006i \(-0.0347669\pi\)
0.534550 + 0.845137i \(0.320481\pi\)
\(164\) 4.92759 + 21.5892i 0.384780 + 1.68583i
\(165\) 0 0
\(166\) 0.0109754i 0.000851855i
\(167\) 2.41521 + 10.5817i 0.186895 + 0.818839i 0.978241 + 0.207471i \(0.0665233\pi\)
−0.791347 + 0.611368i \(0.790620\pi\)
\(168\) 0 0
\(169\) −2.44606 + 10.7169i −0.188159 + 0.824377i
\(170\) 0.0404079 + 0.00922285i 0.00309915 + 0.000707360i
\(171\) 0 0
\(172\) −0.0946932 + 0.118742i −0.00722029 + 0.00905396i
\(173\) −4.19091 + 18.3616i −0.318629 + 1.39600i 0.521331 + 0.853355i \(0.325436\pi\)
−0.839960 + 0.542649i \(0.817421\pi\)
\(174\) 0 0
\(175\) −0.284925 + 0.660114i −0.0215383 + 0.0498999i
\(176\) 7.78787 1.77753i 0.587033 0.133986i
\(177\) 0 0
\(178\) 0.0439470i 0.00329397i
\(179\) −7.92157 + 1.80805i −0.592086 + 0.135140i −0.508057 0.861324i \(-0.669636\pi\)
−0.0840291 + 0.996463i \(0.526779\pi\)
\(180\) 0 0
\(181\) 0.621193 + 0.495385i 0.0461729 + 0.0368217i 0.646304 0.763080i \(-0.276314\pi\)
−0.600131 + 0.799901i \(0.704885\pi\)
\(182\) −0.000873767 0.0211310i −6.47679e−5 0.00156633i
\(183\) 0 0
\(184\) 0.0410145 + 0.179696i 0.00302363 + 0.0132474i
\(185\) −9.44696 11.8461i −0.694554 0.870944i
\(186\) 0 0
\(187\) −5.27534 4.20695i −0.385771 0.307642i
\(188\) −10.0105 + 4.82081i −0.730091 + 0.351593i
\(189\) 0 0
\(190\) 0.0696837 + 0.0335579i 0.00505539 + 0.00243455i
\(191\) −2.97564 6.17897i −0.215310 0.447095i 0.765140 0.643863i \(-0.222670\pi\)
−0.980450 + 0.196769i \(0.936955\pi\)
\(192\) 0 0
\(193\) −21.8437 + 10.5194i −1.57234 + 0.757200i −0.998108 0.0614911i \(-0.980414\pi\)
−0.574234 + 0.818691i \(0.694700\pi\)
\(194\) 0.000296830 0 0.000372213i 2.13111e−5 0 2.67233e-5i
\(195\) 0 0
\(196\) 4.23144 + 13.3450i 0.302246 + 0.953213i
\(197\) 13.1835i 0.939284i −0.882857 0.469642i \(-0.844383\pi\)
0.882857 0.469642i \(-0.155617\pi\)
\(198\) 0 0
\(199\) 5.36518 + 11.1409i 0.380328 + 0.789759i 0.999988 + 0.00488858i \(0.00155609\pi\)
−0.619660 + 0.784870i \(0.712730\pi\)
\(200\) 0.00597875 + 0.00136461i 0.000422761 + 9.64925e-5i
\(201\) 0 0
\(202\) 0.0138734 0.0288084i 0.000976130 0.00202695i
\(203\) −13.1056 + 6.99248i −0.919832 + 0.490776i
\(204\) 0 0
\(205\) −15.0114 + 18.8237i −1.04844 + 1.31470i
\(206\) 0.0440153 + 0.0211966i 0.00306669 + 0.00147684i
\(207\) 0 0
\(208\) 5.52509 1.26107i 0.383096 0.0874392i
\(209\) −7.85045 9.84415i −0.543027 0.680934i
\(210\) 0 0
\(211\) 12.6490 15.8613i 0.870793 1.09194i −0.124226 0.992254i \(-0.539645\pi\)
0.995019 0.0996861i \(-0.0317839\pi\)
\(212\) −0.658256 + 1.36688i −0.0452092 + 0.0938778i
\(213\) 0 0
\(214\) 0.00518947 0.000354745
\(215\) −0.165126 −0.0112615
\(216\) 0 0
\(217\) −3.62089 13.3042i −0.245802 0.903146i
\(218\) −0.00252605 0.000576554i −0.000171086 3.90492e-5i
\(219\) 0 0
\(220\) 6.79037 + 5.41514i 0.457807 + 0.365089i
\(221\) −3.74258 2.98461i −0.251753 0.200767i
\(222\) 0 0
\(223\) 9.56540 + 2.18324i 0.640547 + 0.146201i 0.530444 0.847720i \(-0.322025\pi\)
0.110102 + 0.993920i \(0.464882\pi\)
\(224\) 0.158029 0.0843165i 0.0105588 0.00563363i
\(225\) 0 0
\(226\) −0.0783349 −0.00521076
\(227\) 0.229766 0.0152501 0.00762505 0.999971i \(-0.497573\pi\)
0.00762505 + 0.999971i \(0.497573\pi\)
\(228\) 0 0
\(229\) −5.92639 + 12.3063i −0.391627 + 0.813222i 0.608184 + 0.793796i \(0.291898\pi\)
−0.999811 + 0.0194260i \(0.993816\pi\)
\(230\) −0.0624725 + 0.0783381i −0.00411932 + 0.00516546i
\(231\) 0 0
\(232\) 0.0789957 + 0.0990574i 0.00518632 + 0.00650344i
\(233\) −17.3937 + 3.96999i −1.13950 + 0.260083i −0.750316 0.661079i \(-0.770099\pi\)
−0.389180 + 0.921162i \(0.627242\pi\)
\(234\) 0 0
\(235\) −10.8839 5.24139i −0.709985 0.341911i
\(236\) −12.8723 + 16.1414i −0.837917 + 1.05072i
\(237\) 0 0
\(238\) −0.0463015 0.0199851i −0.00300128 0.00129544i
\(239\) 4.82970 10.0290i 0.312408 0.648721i −0.684353 0.729151i \(-0.739915\pi\)
0.996760 + 0.0804301i \(0.0256294\pi\)
\(240\) 0 0
\(241\) −16.8259 3.84041i −1.08385 0.247382i −0.356951 0.934123i \(-0.616184\pi\)
−0.726902 + 0.686741i \(0.759041\pi\)
\(242\) −0.0171631 0.0356395i −0.00110328 0.00229099i
\(243\) 0 0
\(244\) 15.4061i 0.986274i
\(245\) −8.47537 + 12.6433i −0.541471 + 0.807749i
\(246\) 0 0
\(247\) −5.56949 6.98392i −0.354378 0.444376i
\(248\) −0.105958 + 0.0510269i −0.00672836 + 0.00324021i
\(249\) 0 0
\(250\) 0.0280603 + 0.0582677i 0.00177469 + 0.00368517i
\(251\) 16.8505 + 8.11476i 1.06359 + 0.512199i 0.882036 0.471181i \(-0.156172\pi\)
0.181556 + 0.983381i \(0.441887\pi\)
\(252\) 0 0
\(253\) 14.6965 7.07744i 0.923959 0.444955i
\(254\) 0.0295008 + 0.0235261i 0.00185104 + 0.00147616i
\(255\) 0 0
\(256\) 9.97425 + 12.5073i 0.623391 + 0.781707i
\(257\) −6.48011 28.3912i −0.404218 1.77099i −0.610005 0.792397i \(-0.708833\pi\)
0.205787 0.978597i \(-0.434024\pi\)
\(258\) 0 0
\(259\) 8.67840 + 16.2654i 0.539249 + 1.01068i
\(260\) 4.81742 + 3.84176i 0.298764 + 0.238256i
\(261\) 0 0
\(262\) −0.104183 + 0.0237791i −0.00643645 + 0.00146908i
\(263\) 26.8737i 1.65710i −0.559912 0.828552i \(-0.689165\pi\)
0.559912 0.828552i \(-0.310835\pi\)
\(264\) 0 0
\(265\) −1.60813 + 0.367045i −0.0987866 + 0.0225474i
\(266\) −0.0759369 0.0555847i −0.00465599 0.00340812i
\(267\) 0 0
\(268\) 3.99486 17.5026i 0.244025 1.06914i
\(269\) −2.49263 + 3.12566i −0.151979 + 0.190575i −0.851992 0.523554i \(-0.824606\pi\)
0.700014 + 0.714129i \(0.253177\pi\)
\(270\) 0 0
\(271\) 25.7952 + 5.88759i 1.56695 + 0.357646i 0.915905 0.401395i \(-0.131475\pi\)
0.651043 + 0.759041i \(0.274332\pi\)
\(272\) 3.00705 13.1748i 0.182329 0.798837i
\(273\) 0 0
\(274\) 0.0212865 + 0.0932621i 0.00128596 + 0.00563417i
\(275\) 0.542719i 0.0327272i
\(276\) 0 0
\(277\) 2.05960 + 9.02368i 0.123749 + 0.542180i 0.998354 + 0.0573448i \(0.0182634\pi\)
−0.874605 + 0.484836i \(0.838879\pi\)
\(278\) 0.0763985 + 0.0367916i 0.00458208 + 0.00220661i
\(279\) 0 0
\(280\) 0.119199 + 0.0514496i 0.00712348 + 0.00307470i
\(281\) −12.0953 + 9.64571i −0.721547 + 0.575415i −0.913914 0.405908i \(-0.866955\pi\)
0.192367 + 0.981323i \(0.438384\pi\)
\(282\) 0 0
\(283\) −10.6669 + 8.50654i −0.634079 + 0.505661i −0.886966 0.461835i \(-0.847191\pi\)
0.252887 + 0.967496i \(0.418620\pi\)
\(284\) −12.7440 + 26.4632i −0.756217 + 1.57030i
\(285\) 0 0
\(286\) 0.00692662 + 0.0143833i 0.000409580 + 0.000850501i
\(287\) 22.1294 19.1956i 1.30626 1.13308i
\(288\) 0 0
\(289\) 5.03226 2.42341i 0.296015 0.142553i
\(290\) −0.0153263 + 0.0671491i −0.000899994 + 0.00394313i
\(291\) 0 0
\(292\) −4.43073 + 3.53339i −0.259289 + 0.206776i
\(293\) −2.88801 −0.168720 −0.0843598 0.996435i \(-0.526885\pi\)
−0.0843598 + 0.996435i \(0.526885\pi\)
\(294\) 0 0
\(295\) −22.4468 −1.30691
\(296\) 0.122941 0.0980419i 0.00714578 0.00569857i
\(297\) 0 0
\(298\) 0.0127869 0.0560232i 0.000740727 0.00324534i
\(299\) 10.4264 5.02108i 0.602973 0.290377i
\(300\) 0 0
\(301\) 0.197559 + 0.0365772i 0.0113871 + 0.00210828i
\(302\) 0.0205321 + 0.0426354i 0.00118149 + 0.00245339i
\(303\) 0 0
\(304\) 10.9413 22.7199i 0.627529 1.30308i
\(305\) −13.0958 + 10.4436i −0.749865 + 0.597997i
\(306\) 0 0
\(307\) −13.0948 + 10.4428i −0.747361 + 0.596001i −0.921344 0.388748i \(-0.872908\pi\)
0.173983 + 0.984749i \(0.444336\pi\)
\(308\) −6.92455 7.98286i −0.394563 0.454866i
\(309\) 0 0
\(310\) −0.0576009 0.0277391i −0.00327151 0.00157548i
\(311\) 4.95676 + 21.7170i 0.281072 + 1.23146i 0.896421 + 0.443203i \(0.146158\pi\)
−0.615349 + 0.788254i \(0.710985\pi\)
\(312\) 0 0
\(313\) 11.6294i 0.657335i 0.944446 + 0.328667i \(0.106600\pi\)
−0.944446 + 0.328667i \(0.893400\pi\)
\(314\) 0.00557021 + 0.0244047i 0.000314345 + 0.00137724i
\(315\) 0 0
\(316\) 2.35617 10.3231i 0.132545 0.580718i
\(317\) −3.39782 0.775530i −0.190841 0.0435581i 0.126032 0.992026i \(-0.459776\pi\)
−0.316873 + 0.948468i \(0.602633\pi\)
\(318\) 0 0
\(319\) 6.99102 8.76646i 0.391422 0.490827i
\(320\) −3.87052 + 16.9579i −0.216369 + 0.947974i
\(321\) 0 0
\(322\) 0.0920955 0.0798861i 0.00513228 0.00445188i
\(323\) −20.7664 + 4.73980i −1.15547 + 0.263729i
\(324\) 0 0
\(325\) 0.385031i 0.0213577i
\(326\) −0.119141 + 0.0271931i −0.00659861 + 0.00150609i
\(327\) 0 0
\(328\) −0.195355 0.155790i −0.0107867 0.00860208i
\(329\) 11.8605 + 8.68174i 0.653893 + 0.478640i
\(330\) 0 0
\(331\) −0.637151 2.79154i −0.0350210 0.153437i 0.954394 0.298549i \(-0.0965028\pi\)
−0.989415 + 0.145112i \(0.953646\pi\)
\(332\) 2.42582 + 3.04188i 0.133134 + 0.166945i
\(333\) 0 0
\(334\) −0.0478752 0.0381792i −0.00261962 0.00208907i
\(335\) 17.5860 8.46898i 0.960827 0.462710i
\(336\) 0 0
\(337\) 12.0356 + 5.79603i 0.655620 + 0.315730i 0.731956 0.681352i \(-0.238608\pi\)
−0.0763357 + 0.997082i \(0.524322\pi\)
\(338\) −0.0269081 0.0558753i −0.00146361 0.00303921i
\(339\) 0 0
\(340\) 13.2377 6.37496i 0.717917 0.345731i
\(341\) 6.48921 + 8.13721i 0.351410 + 0.440655i
\(342\) 0 0
\(343\) 12.9406 13.2492i 0.698728 0.715387i
\(344\) 0.00171371i 9.23968e-5i
\(345\) 0 0
\(346\) −0.0461024 0.0957327i −0.00247848 0.00514662i
\(347\) 28.8400 + 6.58255i 1.54821 + 0.353370i 0.909377 0.415973i \(-0.136559\pi\)
0.638837 + 0.769342i \(0.279416\pi\)
\(348\) 0 0
\(349\) 3.66406 7.60850i 0.196133 0.407273i −0.779588 0.626293i \(-0.784571\pi\)
0.975721 + 0.219019i \(0.0702858\pi\)
\(350\) −0.00106522 0.00391393i −5.69386e−5 0.000209209i
\(351\) 0 0
\(352\) −0.0842988 + 0.105707i −0.00449314 + 0.00563422i
\(353\) 3.11324 + 1.49926i 0.165701 + 0.0797975i 0.514896 0.857253i \(-0.327831\pi\)
−0.349195 + 0.937050i \(0.613545\pi\)
\(354\) 0 0
\(355\) −31.1338 + 7.10608i −1.65241 + 0.377152i
\(356\) −9.71333 12.1801i −0.514805 0.645546i
\(357\) 0 0
\(358\) 0.0285813 0.0358398i 0.00151057 0.00189419i
\(359\) 0.761364 1.58099i 0.0401832 0.0834414i −0.879911 0.475139i \(-0.842398\pi\)
0.920094 + 0.391698i \(0.128112\pi\)
\(360\) 0 0
\(361\) −20.7481 −1.09200
\(362\) −0.00448257 −0.000235599
\(363\) 0 0
\(364\) −4.91261 5.66343i −0.257491 0.296844i
\(365\) −6.00705 1.37107i −0.314423 0.0717651i
\(366\) 0 0
\(367\) −18.1667 14.4874i −0.948292 0.756237i 0.0216020 0.999767i \(-0.493123\pi\)
−0.969894 + 0.243529i \(0.921695\pi\)
\(368\) 25.5416 + 20.3688i 1.33145 + 1.06180i
\(369\) 0 0
\(370\) 0.0833390 + 0.0190216i 0.00433259 + 0.000988886i
\(371\) 2.00529 0.0829187i 0.104109 0.00430492i
\(372\) 0 0
\(373\) −11.8862 −0.615444 −0.307722 0.951476i \(-0.599567\pi\)
−0.307722 + 0.951476i \(0.599567\pi\)
\(374\) 0.0380672 0.00196841
\(375\) 0 0
\(376\) 0.0543959 0.112954i 0.00280526 0.00582517i
\(377\) 4.95977 6.21935i 0.255441 0.320313i
\(378\) 0 0
\(379\) 5.68424 + 7.12782i 0.291980 + 0.366131i 0.906087 0.423091i \(-0.139055\pi\)
−0.614107 + 0.789223i \(0.710484\pi\)
\(380\) 26.7303 6.10102i 1.37124 0.312976i
\(381\) 0 0
\(382\) 0.0348602 + 0.0167878i 0.00178360 + 0.000858938i
\(383\) 17.3778 21.7911i 0.887967 1.11347i −0.104928 0.994480i \(-0.533461\pi\)
0.992895 0.118995i \(-0.0379672\pi\)
\(384\) 0 0
\(385\) 2.09171 11.2976i 0.106603 0.575780i
\(386\) 0.0593475 0.123236i 0.00302071 0.00627257i
\(387\) 0 0
\(388\) 0.164536 + 0.0375542i 0.00835304 + 0.00190653i
\(389\) −0.260129 0.540163i −0.0131891 0.0273873i 0.894270 0.447527i \(-0.147695\pi\)
−0.907459 + 0.420140i \(0.861981\pi\)
\(390\) 0 0
\(391\) 27.5948i 1.39553i
\(392\) −0.131214 0.0879586i −0.00662729 0.00444258i
\(393\) 0 0
\(394\) 0.0463738 + 0.0581509i 0.00233628 + 0.00292960i
\(395\) 10.3723 4.99502i 0.521885 0.251327i
\(396\) 0 0
\(397\) −11.9753 24.8669i −0.601021 1.24803i −0.950394 0.311049i \(-0.899320\pi\)
0.349373 0.936984i \(-0.386395\pi\)
\(398\) −0.0628542 0.0302690i −0.00315060 0.00151725i
\(399\) 0 0
\(400\) 0.979302 0.471607i 0.0489651 0.0235804i
\(401\) −19.0713 15.2089i −0.952376 0.759495i 0.0183131 0.999832i \(-0.494170\pi\)
−0.970689 + 0.240338i \(0.922742\pi\)
\(402\) 0 0
\(403\) 4.60376 + 5.77293i 0.229330 + 0.287570i
\(404\) −2.52226 11.0508i −0.125487 0.549796i
\(405\) 0 0
\(406\) 0.0332108 0.0769429i 0.00164822 0.00381861i
\(407\) −10.8801 8.67658i −0.539306 0.430082i
\(408\) 0 0
\(409\) 9.36470 2.13743i 0.463055 0.105689i 0.0153722 0.999882i \(-0.495107\pi\)
0.447682 + 0.894193i \(0.352250\pi\)
\(410\) 0.135833i 0.00670830i
\(411\) 0 0
\(412\) 16.8840 3.85367i 0.831816 0.189857i
\(413\) 26.8556 + 4.97221i 1.32148 + 0.244666i
\(414\) 0 0
\(415\) −0.941299 + 4.12410i −0.0462065 + 0.202444i
\(416\) −0.0598057 + 0.0749940i −0.00293222 + 0.00367688i
\(417\) 0 0
\(418\) 0.0692550 + 0.0158070i 0.00338737 + 0.000773145i
\(419\) −2.86994 + 12.5740i −0.140206 + 0.614282i 0.855180 + 0.518331i \(0.173446\pi\)
−0.995386 + 0.0959514i \(0.969411\pi\)
\(420\) 0 0
\(421\) 6.87283 + 30.1118i 0.334961 + 1.46756i 0.809392 + 0.587268i \(0.199797\pi\)
−0.474431 + 0.880293i \(0.657346\pi\)
\(422\) 0.114456i 0.00557165i
\(423\) 0 0
\(424\) −0.00380924 0.0166894i −0.000184993 0.000810508i
\(425\) −0.827196 0.398356i −0.0401249 0.0193231i
\(426\) 0 0
\(427\) 17.9813 9.59393i 0.870178 0.464283i
\(428\) 1.43829 1.14700i 0.0695223 0.0554422i
\(429\) 0 0
\(430\) 0.000728355 0 0.000580844i 3.51244e−5 0 2.80108e-5i
\(431\) 2.74151 5.69280i 0.132054 0.274213i −0.824449 0.565937i \(-0.808515\pi\)
0.956503 + 0.291724i \(0.0942289\pi\)
\(432\) 0 0
\(433\) 3.96743 + 8.23846i 0.190663 + 0.395915i 0.974284 0.225324i \(-0.0723440\pi\)
−0.783621 + 0.621239i \(0.786630\pi\)
\(434\) 0.0627697 + 0.0459465i 0.00301304 + 0.00220550i
\(435\) 0 0
\(436\) −0.827539 + 0.398522i −0.0396319 + 0.0190857i
\(437\) 11.4584 50.2027i 0.548131 2.40152i
\(438\) 0 0
\(439\) 2.36090 1.88276i 0.112680 0.0898590i −0.565529 0.824728i \(-0.691328\pi\)
0.678209 + 0.734869i \(0.262757\pi\)
\(440\) −0.0980002 −0.00467198
\(441\) 0 0
\(442\) 0.0270067 0.00128458
\(443\) 4.28966 3.42089i 0.203808 0.162531i −0.516267 0.856428i \(-0.672679\pi\)
0.720075 + 0.693896i \(0.244107\pi\)
\(444\) 0 0
\(445\) 3.76909 16.5135i 0.178672 0.782814i
\(446\) −0.0498717 + 0.0240169i −0.00236149 + 0.00113723i
\(447\) 0 0
\(448\) 8.38708 19.4312i 0.396252 0.918038i
\(449\) 1.88400 + 3.91217i 0.0889115 + 0.184627i 0.940683 0.339287i \(-0.110186\pi\)
−0.851771 + 0.523914i \(0.824471\pi\)
\(450\) 0 0
\(451\) −9.59448 + 19.9231i −0.451786 + 0.938144i
\(452\) −21.7109 + 17.3139i −1.02120 + 0.814376i
\(453\) 0 0
\(454\) −0.00101347 0.000808218i −4.75646e−5 3.79315e-5i
\(455\) 1.48396 8.01509i 0.0695692 0.375753i
\(456\) 0 0
\(457\) −28.7245 13.8330i −1.34368 0.647080i −0.382741 0.923856i \(-0.625020\pi\)
−0.960935 + 0.276776i \(0.910734\pi\)
\(458\) −0.0171475 0.0751282i −0.000801251 0.00351051i
\(459\) 0 0
\(460\) 35.5197i 1.65612i
\(461\) 0.764762 + 3.35064i 0.0356185 + 0.156055i 0.989610 0.143780i \(-0.0459256\pi\)
−0.953991 + 0.299835i \(0.903069\pi\)
\(462\) 0 0
\(463\) −2.98438 + 13.0754i −0.138696 + 0.607667i 0.857026 + 0.515273i \(0.172309\pi\)
−0.995722 + 0.0923947i \(0.970548\pi\)
\(464\) 21.8935 + 4.99706i 1.01638 + 0.231982i
\(465\) 0 0
\(466\) 0.0627569 0.0786946i 0.00290716 0.00364546i
\(467\) 2.77375 12.1526i 0.128354 0.562356i −0.869324 0.494243i \(-0.835445\pi\)
0.997678 0.0681125i \(-0.0216977\pi\)
\(468\) 0 0
\(469\) −22.9161 + 6.23689i −1.05817 + 0.287993i
\(470\) 0.0664445 0.0151655i 0.00306486 0.000699534i
\(471\) 0 0
\(472\) 0.232956i 0.0107227i
\(473\) −0.147858 + 0.0337477i −0.00679853 + 0.00155172i
\(474\) 0 0
\(475\) −1.33949 1.06821i −0.0614600 0.0490127i
\(476\) −17.2499 + 4.69476i −0.790647 + 0.215184i
\(477\) 0 0
\(478\) 0.0139743 + 0.0612256i 0.000639172 + 0.00280039i
\(479\) −20.1015 25.2064i −0.918460 1.15171i −0.988050 0.154136i \(-0.950740\pi\)
0.0695899 0.997576i \(-0.477831\pi\)
\(480\) 0 0
\(481\) −7.71886 6.15559i −0.351950 0.280671i
\(482\) 0.0877262 0.0422467i 0.00399582 0.00192429i
\(483\) 0 0
\(484\) −12.6340 6.08422i −0.574273 0.276556i
\(485\) 0.0796138 + 0.165320i 0.00361508 + 0.00750678i
\(486\) 0 0
\(487\) 6.02530 2.90163i 0.273032 0.131485i −0.292358 0.956309i \(-0.594440\pi\)
0.565390 + 0.824824i \(0.308726\pi\)
\(488\) −0.108385 0.135910i −0.00490635 0.00615237i
\(489\) 0 0
\(490\) −0.00708967 0.0855808i −0.000320279 0.00386615i
\(491\) 13.6184i 0.614588i 0.951615 + 0.307294i \(0.0994235\pi\)
−0.951615 + 0.307294i \(0.900577\pi\)
\(492\) 0 0
\(493\) −8.23016 17.0901i −0.370668 0.769699i
\(494\) 0.0491328 + 0.0112142i 0.00221059 + 0.000504553i
\(495\) 0 0
\(496\) −9.04416 + 18.7804i −0.406095 + 0.843264i
\(497\) 38.8228 1.60533i 1.74144 0.0720087i
\(498\) 0 0
\(499\) 26.4561 33.1748i 1.18434 1.48511i 0.347479 0.937688i \(-0.387038\pi\)
0.836856 0.547422i \(-0.184391\pi\)
\(500\) 20.6556 + 9.94721i 0.923747 + 0.444853i
\(501\) 0 0
\(502\) −0.102870 + 0.0234794i −0.00459131 + 0.00104794i
\(503\) 15.7566 + 19.7581i 0.702550 + 0.880970i 0.997211 0.0746320i \(-0.0237782\pi\)
−0.294661 + 0.955602i \(0.595207\pi\)
\(504\) 0 0
\(505\) 7.68380 9.63518i 0.341925 0.428760i
\(506\) −0.0399291 + 0.0829137i −0.00177507 + 0.00368596i
\(507\) 0 0
\(508\) 13.3761 0.593469
\(509\) −44.4455 −1.97001 −0.985006 0.172523i \(-0.944808\pi\)
−0.985006 + 0.172523i \(0.944808\pi\)
\(510\) 0 0
\(511\) 6.88319 + 2.97099i 0.304494 + 0.131429i
\(512\) −0.439995 0.100426i −0.0194452 0.00443825i
\(513\) 0 0
\(514\) 0.128451 + 0.102436i 0.00566573 + 0.00451827i
\(515\) 14.7212 + 11.7398i 0.648694 + 0.517317i
\(516\) 0 0
\(517\) −10.8169 2.46889i −0.475726 0.108581i
\(518\) −0.0954942 0.0412181i −0.00419577 0.00181102i
\(519\) 0 0
\(520\) −0.0695261 −0.00304892
\(521\) −20.3446 −0.891314 −0.445657 0.895204i \(-0.647030\pi\)
−0.445657 + 0.895204i \(0.647030\pi\)
\(522\) 0 0
\(523\) 17.8019 36.9660i 0.778421 1.61641i −0.00897326 0.999960i \(-0.502856\pi\)
0.787395 0.616449i \(-0.211429\pi\)
\(524\) −23.6191 + 29.6174i −1.03181 + 1.29384i
\(525\) 0 0
\(526\) 0.0945302 + 0.118537i 0.00412171 + 0.00516846i
\(527\) 17.1656 3.91793i 0.747745 0.170668i
\(528\) 0 0
\(529\) 39.3816 + 18.9652i 1.71224 + 0.824572i
\(530\) 0.00580218 0.00727570i 0.000252031 0.000316036i
\(531\) 0 0
\(532\) −33.3318 + 1.37827i −1.44512 + 0.0597557i
\(533\) −6.80679 + 14.1344i −0.294835 + 0.612231i
\(534\) 0 0
\(535\) 1.94999 + 0.445073i 0.0843055 + 0.0192422i
\(536\) 0.0878923 + 0.182510i 0.00379637 + 0.00788324i
\(537\) 0 0
\(538\) 0.0225550i 0.000972414i
\(539\) −5.00509 + 13.0533i −0.215584 + 0.562244i
\(540\) 0 0
\(541\) 11.8503 + 14.8599i 0.509486 + 0.638875i 0.968340 0.249637i \(-0.0803112\pi\)
−0.458854 + 0.888512i \(0.651740\pi\)
\(542\) −0.134490 + 0.0647669i −0.00577684 + 0.00278198i
\(543\) 0 0
\(544\) 0.0992406 + 0.206075i 0.00425491 + 0.00883540i
\(545\) −0.899738 0.433291i −0.0385405 0.0185601i
\(546\) 0 0
\(547\) −29.3752 + 14.1463i −1.25599 + 0.604853i −0.939111 0.343613i \(-0.888349\pi\)
−0.316879 + 0.948466i \(0.602635\pi\)
\(548\) 26.5128 + 21.1433i 1.13257 + 0.903195i
\(549\) 0 0
\(550\) 0.00190905 + 0.00239387i 8.14022e−5 + 0.000102075i
\(551\) −7.87650 34.5092i −0.335550 1.47014i
\(552\) 0 0
\(553\) −13.5159 + 3.67852i −0.574755 + 0.156427i
\(554\) −0.0408261 0.0325577i −0.00173453 0.00138324i
\(555\) 0 0
\(556\) 29.3061 6.68892i 1.24285 0.283673i
\(557\) 7.44376i 0.315402i −0.987487 0.157701i \(-0.949592\pi\)
0.987487 0.157701i \(-0.0504082\pi\)
\(558\) 0 0
\(559\) −0.104898 + 0.0239423i −0.00443671 + 0.00101265i
\(560\) 22.2035 6.04296i 0.938270 0.255362i
\(561\) 0 0
\(562\) 0.0194218 0.0850924i 0.000819258 0.00358940i
\(563\) −16.5053 + 20.6970i −0.695617 + 0.872276i −0.996688 0.0813261i \(-0.974084\pi\)
0.301071 + 0.953602i \(0.402656\pi\)
\(564\) 0 0
\(565\) −29.4350 6.71835i −1.23834 0.282643i
\(566\) 0.0171280 0.0750428i 0.000719945 0.00315429i
\(567\) 0 0
\(568\) −0.0737479 0.323111i −0.00309439 0.0135574i
\(569\) 23.8408i 0.999457i 0.866182 + 0.499729i \(0.166567\pi\)
−0.866182 + 0.499729i \(0.833433\pi\)
\(570\) 0 0
\(571\) 3.87073 + 16.9588i 0.161985 + 0.709702i 0.989048 + 0.147593i \(0.0471526\pi\)
−0.827063 + 0.562109i \(0.809990\pi\)
\(572\) 5.09879 + 2.45545i 0.213191 + 0.102668i
\(573\) 0 0
\(574\) −0.0300884 + 0.162512i −0.00125586 + 0.00678310i
\(575\) 1.73531 1.38386i 0.0723674 0.0577111i
\(576\) 0 0
\(577\) −36.5255 + 29.1281i −1.52058 + 1.21262i −0.614931 + 0.788581i \(0.710816\pi\)
−0.905644 + 0.424038i \(0.860612\pi\)
\(578\) −0.0136722 + 0.0283907i −0.000568690 + 0.00118090i
\(579\) 0 0
\(580\) 10.5938 + 21.9982i 0.439883 + 0.913426i
\(581\) 2.03971 4.72560i 0.0846214 0.196051i
\(582\) 0 0
\(583\) −1.36494 + 0.657322i −0.0565302 + 0.0272235i
\(584\) 0.0142292 0.0623420i 0.000588807 0.00257973i
\(585\) 0 0
\(586\) 0.0127387 0.0101588i 0.000526232 0.000419656i
\(587\) −29.2649 −1.20789 −0.603946 0.797025i \(-0.706406\pi\)
−0.603946 + 0.797025i \(0.706406\pi\)
\(588\) 0 0
\(589\) 32.8559 1.35380
\(590\) 0.0990106 0.0789583i 0.00407620 0.00325066i
\(591\) 0 0
\(592\) 6.20187 27.1722i 0.254895 1.11677i
\(593\) 33.7375 16.2471i 1.38543 0.667190i 0.415284 0.909692i \(-0.363682\pi\)
0.970151 + 0.242502i \(0.0779680\pi\)
\(594\) 0 0
\(595\) −15.6842 11.4806i −0.642989 0.470659i
\(596\) −8.83850 18.3533i −0.362039 0.751782i
\(597\) 0 0
\(598\) −0.0283277 + 0.0588230i −0.00115840 + 0.00240545i
\(599\) −22.5664 + 17.9961i −0.922037 + 0.735300i −0.964579 0.263795i \(-0.915026\pi\)
0.0425421 + 0.999095i \(0.486454\pi\)
\(600\) 0 0
\(601\) 17.0095 13.5646i 0.693832 0.553313i −0.211833 0.977306i \(-0.567943\pi\)
0.905665 + 0.423993i \(0.139372\pi\)
\(602\) −0.00100007 0.000533589i −4.07600e−5 2.17475e-5i
\(603\) 0 0
\(604\) 15.1140 + 7.27853i 0.614981 + 0.296159i
\(605\) −3.39258 14.8639i −0.137928 0.604301i
\(606\) 0 0
\(607\) 1.99217i 0.0808597i −0.999182 0.0404299i \(-0.987127\pi\)
0.999182 0.0404299i \(-0.0128727\pi\)
\(608\) 0.0949761 + 0.416118i 0.00385179 + 0.0168758i
\(609\) 0 0
\(610\) 0.0210283 0.0921310i 0.000851411 0.00373027i
\(611\) −7.67403 1.75155i −0.310458 0.0708600i
\(612\) 0 0
\(613\) 27.5141 34.5016i 1.11128 1.39351i 0.200964 0.979599i \(-0.435592\pi\)
0.910319 0.413907i \(-0.135836\pi\)
\(614\) 0.0210267 0.0921239i 0.000848568 0.00371782i
\(615\) 0 0
\(616\) 0.117248 + 0.0217081i 0.00472407 + 0.000874643i
\(617\) −30.1981 + 6.89252i −1.21573 + 0.277482i −0.781837 0.623483i \(-0.785717\pi\)
−0.433892 + 0.900965i \(0.642860\pi\)
\(618\) 0 0
\(619\) 46.2835i 1.86029i 0.367191 + 0.930145i \(0.380319\pi\)
−0.367191 + 0.930145i \(0.619681\pi\)
\(620\) −22.0954 + 5.04313i −0.887372 + 0.202537i
\(621\) 0 0
\(622\) −0.0982547 0.0783555i −0.00393966 0.00314177i
\(623\) −8.16729 + 18.9220i −0.327215 + 0.758093i
\(624\) 0 0
\(625\) 5.24424 + 22.9765i 0.209770 + 0.919061i
\(626\) −0.0409074 0.0512962i −0.00163499 0.00205021i
\(627\) 0 0
\(628\) 6.93782 + 5.53273i 0.276849 + 0.220780i
\(629\) −21.2106 + 10.2145i −0.845722 + 0.407278i
\(630\) 0 0
\(631\) −16.5277 7.95934i −0.657959 0.316856i 0.0749456 0.997188i \(-0.476122\pi\)
−0.732905 + 0.680331i \(0.761836\pi\)
\(632\) 0.0518390 + 0.107645i 0.00206204 + 0.00428188i
\(633\) 0 0
\(634\) 0.0177154 0.00853129i 0.000703568 0.000338821i
\(635\) 9.06748 + 11.3703i 0.359832 + 0.451215i
\(636\) 0 0
\(637\) −3.55085 + 9.26061i −0.140690 + 0.366919i
\(638\) 0.0632593i 0.00250446i
\(639\) 0 0
\(640\) −0.170322 0.353676i −0.00673255 0.0139803i
\(641\) 35.5468 + 8.11333i 1.40401 + 0.320457i 0.856417 0.516285i \(-0.172685\pi\)
0.547598 + 0.836742i \(0.315542\pi\)
\(642\) 0 0
\(643\) 6.23020 12.9371i 0.245695 0.510191i −0.741254 0.671225i \(-0.765769\pi\)
0.986949 + 0.161034i \(0.0514828\pi\)
\(644\) 7.86799 42.4961i 0.310042 1.67458i
\(645\) 0 0
\(646\) 0.0749258 0.0939540i 0.00294792 0.00369657i
\(647\) −29.3751 14.1463i −1.15485 0.556148i −0.244365 0.969683i \(-0.578580\pi\)
−0.910488 + 0.413535i \(0.864294\pi\)
\(648\) 0 0
\(649\) −20.0994 + 4.58757i −0.788972 + 0.180078i
\(650\) 0.00135437 + 0.00169833i 5.31229e−5 + 6.66140e-5i
\(651\) 0 0
\(652\) −27.0102 + 33.8697i −1.05780 + 1.32644i
\(653\) 0.582912 1.21043i 0.0228111 0.0473677i −0.889252 0.457418i \(-0.848774\pi\)
0.912063 + 0.410050i \(0.134489\pi\)
\(654\) 0 0
\(655\) −41.1871 −1.60931
\(656\) −44.2874 −1.72913
\(657\) 0 0
\(658\) −0.0828542 + 0.00342603i −0.00322999 + 0.000133560i
\(659\) −17.0491 3.89134i −0.664138 0.151585i −0.122854 0.992425i \(-0.539205\pi\)
−0.541284 + 0.840840i \(0.682062\pi\)
\(660\) 0 0
\(661\) 37.0956 + 29.5827i 1.44285 + 1.15063i 0.961737 + 0.273976i \(0.0883389\pi\)
0.481113 + 0.876658i \(0.340233\pi\)
\(662\) 0.0126298 + 0.0100720i 0.000490873 + 0.000391458i
\(663\) 0 0
\(664\) −0.0428005 0.00976893i −0.00166098 0.000379108i
\(665\) −23.7668 27.3991i −0.921636 1.06249i
\(666\) 0 0
\(667\) 45.8564 1.77557
\(668\) −21.7074 −0.839884
\(669\) 0 0
\(670\) −0.0477798 + 0.0992159i −0.00184590 + 0.00383304i
\(671\) −9.59192 + 12.0279i −0.370292 + 0.464332i
\(672\) 0 0
\(673\) 29.6815 + 37.2194i 1.14414 + 1.43470i 0.882981 + 0.469408i \(0.155533\pi\)
0.261157 + 0.965296i \(0.415896\pi\)
\(674\) −0.0734756 + 0.0167703i −0.00283017 + 0.000645969i
\(675\) 0 0
\(676\) −19.8075 9.53878i −0.761826 0.366876i
\(677\) 20.2146 25.3483i 0.776909 0.974214i −0.223090 0.974798i \(-0.571614\pi\)
1.00000 0.000584095i \(0.000185923\pi\)
\(678\) 0 0
\(679\) −0.0586307 0.215425i −0.00225004 0.00826727i
\(680\) −0.0719323 + 0.149369i −0.00275848 + 0.00572804i
\(681\) 0 0
\(682\) −0.0572464 0.0130661i −0.00219208 0.000500328i
\(683\) −11.1029 23.0554i −0.424840 0.882189i −0.998028 0.0627652i \(-0.980008\pi\)
0.573189 0.819423i \(-0.305706\pi\)
\(684\) 0 0
\(685\) 36.8697i 1.40872i
\(686\) −0.0104749 + 0.103960i −0.000399934 + 0.00396922i
\(687\) 0 0
\(688\) −0.189380 0.237475i −0.00722006 0.00905367i
\(689\) −0.968357 + 0.466336i −0.0368915 + 0.0177660i
\(690\) 0 0
\(691\) −7.95316 16.5149i −0.302552 0.628257i 0.693157 0.720786i \(-0.256219\pi\)
−0.995710 + 0.0925295i \(0.970505\pi\)
\(692\) −33.9367 16.3431i −1.29008 0.621270i
\(693\) 0 0
\(694\) −0.150365 + 0.0724119i −0.00570777 + 0.00274872i
\(695\) 25.5520 + 20.3771i 0.969244 + 0.772946i
\(696\) 0 0
\(697\) 23.3239 + 29.2472i 0.883455 + 1.10782i
\(698\) 0.0106016 + 0.0464488i 0.000401278 + 0.00175811i
\(699\) 0 0
\(700\) −1.16031 0.849327i −0.0438554 0.0321015i
\(701\) −4.02702 3.21144i −0.152098 0.121294i 0.544484 0.838771i \(-0.316726\pi\)
−0.696582 + 0.717477i \(0.745297\pi\)
\(702\) 0 0
\(703\) −42.8295 + 9.77556i −1.61535 + 0.368692i
\(704\) 15.9755i 0.602101i
\(705\) 0 0
\(706\) −0.0190059 + 0.00433798i −0.000715297 + 0.000163262i
\(707\) −11.3273 + 9.82558i −0.426006 + 0.369529i
\(708\) 0 0
\(709\) 1.59463 6.98652i 0.0598875 0.262384i −0.936117 0.351689i \(-0.885607\pi\)
0.996004 + 0.0893049i \(0.0284646\pi\)
\(710\) 0.112332 0.140859i 0.00421573 0.00528636i
\(711\) 0 0
\(712\) 0.171379 + 0.0391162i 0.00642271 + 0.00146594i
\(713\) −9.47158 + 41.4977i −0.354714 + 1.55410i
\(714\) 0 0
\(715\) 1.36917 + 5.99870i 0.0512039 + 0.224339i
\(716\) 16.2503i 0.607303i
\(717\) 0 0
\(718\) 0.00220294 + 0.00965172i 8.22131e−5 + 0.000360199i
\(719\) 16.5077 + 7.94970i 0.615634 + 0.296474i 0.715593 0.698518i \(-0.246157\pi\)
−0.0999587 + 0.994992i \(0.531871\pi\)
\(720\) 0 0
\(721\) −15.0121 17.3065i −0.559081 0.644527i
\(722\) 0.0915176 0.0729828i 0.00340593 0.00271614i
\(723\) 0 0
\(724\) −1.24237 + 0.990754i −0.0461722 + 0.0368211i
\(725\) 0.661981 1.37462i 0.0245853 0.0510520i
\(726\) 0 0
\(727\) −0.660640 1.37183i −0.0245018 0.0508785i 0.888359 0.459150i \(-0.151846\pi\)
−0.912861 + 0.408272i \(0.866132\pi\)
\(728\) 0.0831817 + 0.0154008i 0.00308292 + 0.000570790i
\(729\) 0 0
\(730\) 0.0313193 0.0150826i 0.00115918 0.000558231i
\(731\) −0.0570910 + 0.250132i −0.00211159 + 0.00925147i
\(732\) 0 0
\(733\) 17.7905 14.1874i 0.657106 0.524025i −0.237211 0.971458i \(-0.576233\pi\)
0.894317 + 0.447434i \(0.147662\pi\)
\(734\) 0.131092 0.00483868
\(735\) 0 0
\(736\) −0.552945 −0.0203818
\(737\) 14.0161 11.1775i 0.516290 0.411728i
\(738\) 0 0
\(739\) 1.29406 5.66966i 0.0476029 0.208562i −0.945533 0.325525i \(-0.894459\pi\)
0.993136 + 0.116963i \(0.0373160\pi\)
\(740\) 27.3021 13.1480i 1.00364 0.483330i
\(741\) 0 0
\(742\) −0.00855343 + 0.00741948i −0.000314006 + 0.000272378i
\(743\) −6.53479 13.5696i −0.239738 0.497821i 0.746034 0.665908i \(-0.231956\pi\)
−0.985772 + 0.168086i \(0.946241\pi\)
\(744\) 0 0
\(745\) 9.60961 19.9546i 0.352069 0.731079i
\(746\) 0.0524288 0.0418105i 0.00191955 0.00153079i
\(747\) 0 0
\(748\) 10.5505 8.41376i 0.385765 0.307637i
\(749\) −2.23440 0.964433i −0.0816432 0.0352396i
\(750\) 0 0
\(751\) −21.3873 10.2996i −0.780435 0.375838i 0.000859983 1.00000i \(-0.499726\pi\)
−0.781295 + 0.624162i \(0.785441\pi\)
\(752\) −4.94462 21.6638i −0.180312 0.789998i
\(753\) 0 0
\(754\) 0.0448792i 0.00163440i
\(755\) 4.05852 + 17.7816i 0.147705 + 0.647137i
\(756\) 0 0
\(757\) 4.66663 20.4458i 0.169612 0.743117i −0.816543 0.577285i \(-0.804112\pi\)
0.986154 0.165832i \(-0.0530308\pi\)
\(758\) −0.0501452 0.0114453i −0.00182135 0.000415712i
\(759\) 0 0
\(760\) −0.192889 + 0.241875i −0.00699682 + 0.00877374i
\(761\) −6.54605 + 28.6801i −0.237294 + 1.03965i 0.706134 + 0.708078i \(0.250438\pi\)
−0.943428 + 0.331576i \(0.892420\pi\)
\(762\) 0 0
\(763\) 0.980476 + 0.717695i 0.0354956 + 0.0259823i
\(764\) 13.3722 3.05211i 0.483788 0.110422i
\(765\) 0 0
\(766\) 0.157246i 0.00568153i
\(767\) −14.2595 + 3.25464i −0.514882 + 0.117518i
\(768\) 0 0
\(769\) 38.7385 + 30.8929i 1.39695 + 1.11403i 0.978608 + 0.205735i \(0.0659586\pi\)
0.418338 + 0.908291i \(0.362613\pi\)
\(770\) 0.0305139 + 0.0571904i 0.00109964 + 0.00206100i
\(771\) 0 0
\(772\) −10.7897 47.2728i −0.388330 1.70139i
\(773\) −22.2514 27.9024i −0.800328 1.00358i −0.999720 0.0236603i \(-0.992468\pi\)
0.199392 0.979920i \(-0.436103\pi\)
\(774\) 0 0
\(775\) 1.10723 + 0.882984i 0.0397728 + 0.0317177i
\(776\) −0.00171571 0.000826243i −6.15905e−5 2.96604e-5i
\(777\) 0 0
\(778\) 0.00304746 + 0.00146758i 0.000109257 + 5.26153e-5i
\(779\) 30.2881 + 62.8940i 1.08518 + 2.25341i
\(780\) 0 0
\(781\) −26.4257 + 12.7259i −0.945584 + 0.455369i
\(782\) 0.0970665 + 0.121718i 0.00347109 + 0.00435261i
\(783\) 0 0
\(784\) −27.9031 + 2.31154i −0.996539 + 0.0825550i
\(785\) 9.64800i 0.344352i
\(786\) 0 0
\(787\) −6.38240 13.2532i −0.227508 0.472425i 0.755699 0.654919i \(-0.227297\pi\)
−0.983207 + 0.182494i \(0.941583\pi\)
\(788\) 25.7055 + 5.86711i 0.915720 + 0.209007i
\(789\) 0 0
\(790\) −0.0281806 + 0.0585176i −0.00100262 + 0.00208196i
\(791\) 33.7282 + 14.5581i 1.19924 + 0.517625i
\(792\) 0 0
\(793\) −6.80498 + 8.53317i −0.241652 + 0.303022i
\(794\) 0.140293 + 0.0675613i 0.00497880 + 0.00239766i
\(795\) 0 0
\(796\) −24.1105 + 5.50307i −0.854575 + 0.195051i
\(797\) 21.7888 + 27.3224i 0.771801 + 0.967807i 0.999983 0.00581107i \(-0.00184973\pi\)
−0.228183 + 0.973618i \(0.573278\pi\)
\(798\) 0 0
\(799\) −11.7026 + 14.6746i −0.414009 + 0.519151i
\(800\) −0.00798227 + 0.0165754i −0.000282216 + 0.000586027i
\(801\) 0 0
\(802\) 0.137620 0.00485952
\(803\) −5.65908 −0.199704
\(804\) 0 0
\(805\) 41.4571 22.1194i 1.46117 0.779607i
\(806\) −0.0406134 0.00926974i −0.00143055 0.000326513i
\(807\) 0 0
\(808\) 0.0999953 + 0.0797436i 0.00351782 + 0.00280537i
\(809\) 36.8227 + 29.3651i 1.29462 + 1.03242i 0.996973 + 0.0777470i \(0.0247727\pi\)
0.297645 + 0.954677i \(0.403799\pi\)
\(810\) 0 0
\(811\) 40.5108 + 9.24633i 1.42253 + 0.324682i 0.863450 0.504434i \(-0.168299\pi\)
0.559076 + 0.829116i \(0.311156\pi\)
\(812\) −7.80166 28.6655i −0.273785 1.00596i
\(813\) 0 0
\(814\) 0.0785114 0.00275182
\(815\) −47.1005 −1.64986
\(816\) 0 0
\(817\) −0.207729 + 0.431354i −0.00726753 + 0.0150912i
\(818\) −0.0337881 + 0.0423690i −0.00118137 + 0.00148140i
\(819\) 0 0
\(820\) −30.0223 37.6468i −1.04842 1.31468i
\(821\) −34.5435 + 7.88433i −1.20558 + 0.275165i −0.777679 0.628662i \(-0.783603\pi\)
−0.427898 + 0.903827i \(0.640746\pi\)
\(822\) 0 0
\(823\) 11.7532 + 5.66002i 0.409689 + 0.197296i 0.627365 0.778725i \(-0.284133\pi\)
−0.217676 + 0.976021i \(0.569848\pi\)
\(824\) −0.121837 + 0.152779i −0.00424440 + 0.00532230i
\(825\) 0 0
\(826\) −0.135947 + 0.0725346i −0.00473021 + 0.00252380i
\(827\) −15.2882 + 31.7462i −0.531622 + 1.10392i 0.446287 + 0.894890i \(0.352746\pi\)
−0.977908 + 0.209034i \(0.932968\pi\)
\(828\) 0 0
\(829\) −34.4974 7.87381i −1.19814 0.273469i −0.423518 0.905888i \(-0.639205\pi\)
−0.774627 + 0.632419i \(0.782062\pi\)
\(830\) −0.0103548 0.0215020i −0.000359422 0.000746347i
\(831\) 0 0
\(832\) 11.3338i 0.392930i
\(833\) 16.2216 + 17.2097i 0.562047 + 0.596281i
\(834\) 0 0
\(835\) −14.7151 18.4522i −0.509238 0.638564i
\(836\) 22.6881 10.9260i 0.784684 0.377884i
\(837\) 0 0
\(838\) −0.0315711 0.0655580i −0.00109060 0.00226466i
\(839\) 6.36467 + 3.06506i 0.219733 + 0.105818i 0.540512 0.841336i \(-0.318231\pi\)
−0.320779 + 0.947154i \(0.603945\pi\)
\(840\) 0 0
\(841\) 2.27187 1.09407i 0.0783403 0.0377267i
\(842\) −0.136236 0.108644i −0.00469499 0.00374413i
\(843\) 0 0
\(844\) 25.2976 + 31.7222i 0.870779 + 1.09192i
\(845\) −5.31885 23.3034i −0.182974 0.801661i
\(846\) 0 0
\(847\) 0.766413 + 18.5347i 0.0263343 + 0.636861i
\(848\) −2.37220 1.89176i −0.0814615 0.0649634i
\(849\) 0 0
\(850\) 0.00504992 0.00115261i 0.000173211 3.95342e-5i
\(851\) 56.9126i 1.95094i
\(852\) 0 0
\(853\) −34.9523 + 7.97763i −1.19674 + 0.273149i −0.774051 0.633124i \(-0.781772\pi\)
−0.422693 + 0.906273i \(0.638915\pi\)
\(854\) −0.0455664 + 0.105568i −0.00155925 + 0.00361248i
\(855\) 0 0
\(856\) −0.00461903 + 0.0202373i −0.000157875 + 0.000691696i
\(857\) −6.55916 + 8.22493i −0.224057 + 0.280958i −0.881136 0.472864i \(-0.843220\pi\)
0.657079 + 0.753822i \(0.271792\pi\)
\(858\) 0 0
\(859\) 30.9867 + 7.07251i 1.05725 + 0.241311i 0.715596 0.698514i \(-0.246155\pi\)
0.341656 + 0.939825i \(0.389012\pi\)
\(860\) 0.0734870 0.321968i 0.00250589 0.0109790i
\(861\) 0 0
\(862\) 0.00793233 + 0.0347538i 0.000270176 + 0.00118372i
\(863\) 15.3468i 0.522412i −0.965283 0.261206i \(-0.915880\pi\)
0.965283 0.261206i \(-0.0841202\pi\)
\(864\) 0 0
\(865\) −9.11293 39.9264i −0.309849 1.35754i
\(866\) −0.0464793 0.0223832i −0.00157943 0.000760613i
\(867\) 0 0
\(868\) 27.5522 1.13929i 0.935184 0.0386699i
\(869\) 8.26672 6.59249i 0.280429 0.223635i
\(870\) 0 0
\(871\) 9.94371 7.92985i 0.336930 0.268693i
\(872\) 0.00449675 0.00933760i 0.000152279 0.000316211i
\(873\) 0 0
\(874\) 0.126049 + 0.261744i 0.00426369 + 0.00885364i
\(875\) −1.25302 30.3028i −0.0423599 1.02442i
\(876\) 0 0
\(877\) 24.2808 11.6930i 0.819906 0.394846i 0.0235862 0.999722i \(-0.492492\pi\)
0.796320 + 0.604876i \(0.206777\pi\)
\(878\) −0.00379096 + 0.0166093i −0.000127939 + 0.000560536i
\(879\) 0 0
\(880\) −13.5803 + 10.8299i −0.457792 + 0.365077i
\(881\) 8.72065 0.293806 0.146903 0.989151i \(-0.453069\pi\)
0.146903 + 0.989151i \(0.453069\pi\)
\(882\) 0 0
\(883\) 43.9331 1.47847 0.739233 0.673449i \(-0.235188\pi\)
0.739233 + 0.673449i \(0.235188\pi\)
\(884\) 7.48505 5.96913i 0.251749 0.200764i
\(885\) 0 0
\(886\) −0.00688801 + 0.0301783i −0.000231407 + 0.00101386i
\(887\) 51.2104 24.6616i 1.71948 0.828056i 0.729985 0.683464i \(-0.239527\pi\)
0.989491 0.144592i \(-0.0461871\pi\)
\(888\) 0 0
\(889\) −8.32979 15.6120i −0.279372 0.523611i
\(890\) 0.0414622 + 0.0860972i 0.00138982 + 0.00288598i
\(891\) 0 0
\(892\) −8.51387 + 17.6792i −0.285066 + 0.591945i
\(893\) −27.3838 + 21.8379i −0.916366 + 0.730777i
\(894\) 0 0
\(895\) 13.8134 11.0159i 0.461733 0.368220i
\(896\) 0.125431 + 0.460870i 0.00419037 + 0.0153966i
\(897\) 0 0
\(898\) −0.0220714 0.0106290i −0.000736533 0.000354696i
\(899\) 6.51074 + 28.5254i 0.217145 + 0.951376i
\(900\) 0 0
\(901\) 2.56288i 0.0853820i
\(902\) −0.0277608 0.121628i −0.000924334 0.00404977i
\(903\) 0 0
\(904\) 0.0697240 0.305481i 0.00231899 0.0101601i
\(905\) −1.68437 0.384445i −0.0559902 0.0127794i
\(906\) 0 0
\(907\) 10.9203 13.6936i 0.362602 0.454688i −0.566747 0.823892i \(-0.691798\pi\)
0.929348 + 0.369204i \(0.120370\pi\)
\(908\) −0.102254 + 0.448003i −0.00339341 + 0.0148675i
\(909\) 0 0
\(910\) 0.0216480 + 0.0405736i 0.000717625 + 0.00134500i
\(911\) 43.1521 9.84919i 1.42969 0.326318i 0.563537 0.826091i \(-0.309440\pi\)
0.866157 + 0.499773i \(0.166583\pi\)
\(912\) 0 0
\(913\) 3.88520i 0.128581i
\(914\) 0.175359 0.0400246i 0.00580037 0.00132390i
\(915\) 0 0
\(916\) −21.3576 17.0321i −0.705676 0.562758i
\(917\) 49.2767 + 9.12338i 1.62726 + 0.301280i
\(918\) 0 0
\(919\) −6.82258 29.8917i −0.225056 0.986036i −0.953609 0.301047i \(-0.902664\pi\)
0.728553 0.684989i \(-0.240193\pi\)
\(920\) −0.249888 0.313350i −0.00823857 0.0103308i
\(921\) 0 0
\(922\) −0.0151594 0.0120892i −0.000499248 0.000398137i
\(923\) −18.7476 + 9.02839i −0.617086 + 0.297173i
\(924\) 0 0
\(925\) −1.70604 0.821587i −0.0560944 0.0270136i
\(926\) −0.0328300 0.0681721i −0.00107886 0.00224028i
\(927\) 0 0
\(928\) −0.342452 + 0.164916i −0.0112415 + 0.00541363i
\(929\) −3.37043 4.22638i −0.110580 0.138663i 0.723461 0.690365i \(-0.242550\pi\)
−0.834041 + 0.551702i \(0.813979\pi\)
\(930\) 0 0
\(931\) 22.3656 + 38.0452i 0.733003 + 1.24688i
\(932\) 35.6814i 1.16878i
\(933\) 0 0
\(934\) 0.0305129 + 0.0633607i 0.000998413 + 0.00207323i
\(935\) 14.3041 + 3.26482i 0.467794 + 0.106771i
\(936\) 0 0
\(937\) 3.38589 7.03087i 0.110612 0.229689i −0.838313 0.545189i \(-0.816458\pi\)
0.948926 + 0.315500i \(0.102172\pi\)
\(938\) 0.0791416 0.108119i 0.00258407 0.00353021i
\(939\) 0 0
\(940\) 15.0635 18.8890i 0.491317 0.616092i
\(941\) 34.3424 + 16.5384i 1.11953 + 0.539137i 0.899747 0.436412i \(-0.143751\pi\)
0.219782 + 0.975549i \(0.429465\pi\)
\(942\) 0 0
\(943\) −88.1677 + 20.1237i −2.87114 + 0.655318i
\(944\) −25.7438 32.2818i −0.837891 1.05068i
\(945\) 0 0
\(946\) 0.000533477 0 0.000668959i 1.73448e−5 0 2.17497e-5i
\(947\) −2.54345 + 5.28154i −0.0826512 + 0.171627i −0.938198 0.346098i \(-0.887507\pi\)
0.855547 + 0.517725i \(0.173221\pi\)
\(948\) 0 0
\(949\) −4.01482 −0.130327
\(950\) 0.00966583 0.000313601
\(951\) 0 0
\(952\) 0.119147 0.162773i 0.00386159 0.00527550i
\(953\) −43.7518 9.98607i −1.41726 0.323481i −0.555805 0.831313i \(-0.687590\pi\)
−0.861456 + 0.507832i \(0.830447\pi\)
\(954\) 0 0
\(955\) 11.6592 + 9.29793i 0.377284 + 0.300874i
\(956\) 17.4054 + 13.8803i 0.562930 + 0.448922i
\(957\) 0 0
\(958\) 0.177331 + 0.0404746i 0.00572930 + 0.00130768i
\(959\) 8.16703 44.1113i 0.263727 1.42443i
\(960\) 0 0
\(961\) 3.84116 0.123909
\(962\) 0.0556998 0.00179583
\(963\) 0 0
\(964\) 14.9762 31.0985i 0.482352 1.00161i
\(965\) 32.8697 41.2173i 1.05811 1.32683i
\(966\) 0 0
\(967\) 4.56688 + 5.72668i 0.146861 + 0.184158i 0.849821 0.527072i \(-0.176710\pi\)
−0.702960 + 0.711230i \(0.748139\pi\)
\(968\) 0.154259 0.0352086i 0.00495808 0.00113165i
\(969\) 0 0
\(970\) −0.000932692 0 0.000449161i −2.99469e−5 0 1.44217e-5i
\(971\) 3.38600 4.24591i 0.108662 0.136258i −0.724527 0.689247i \(-0.757942\pi\)
0.833188 + 0.552989i \(0.186513\pi\)
\(972\) 0 0
\(973\) −26.0570 30.0394i −0.835348 0.963018i
\(974\) −0.0163703 + 0.0339932i −0.000524537 + 0.00108921i
\(975\) 0 0
\(976\) −30.0387 6.85614i −0.961516 0.219460i
\(977\) 15.9199 + 33.0581i 0.509324 + 1.05762i 0.984116 + 0.177524i \(0.0568088\pi\)
−0.474793 + 0.880098i \(0.657477\pi\)
\(978\) 0 0
\(979\) 15.5569i 0.497200i
\(980\) −20.8803 22.1522i −0.666998 0.707625i
\(981\) 0 0
\(982\) −0.0479035 0.0600691i −0.00152866 0.00191688i
\(983\) 53.9924 26.0014i 1.72209 0.829314i 0.733316 0.679888i \(-0.237971\pi\)
0.988773 0.149427i \(-0.0477429\pi\)
\(984\) 0 0
\(985\) 12.4381 + 25.8280i 0.396310 + 0.822947i
\(986\) 0.0964179 + 0.0464324i 0.00307057 + 0.00147871i
\(987\) 0 0
\(988\) 16.0960 7.75144i 0.512083 0.246606i
\(989\) −0.484926 0.386716i −0.0154198 0.0122968i
\(990\) 0 0
\(991\) −16.0589 20.1372i −0.510128 0.639681i 0.458352 0.888771i \(-0.348440\pi\)
−0.968480 + 0.249090i \(0.919868\pi\)
\(992\) −0.0785076 0.343964i −0.00249262 0.0109209i
\(993\) 0 0
\(994\) −0.165596 + 0.143643i −0.00525240 + 0.00455608i
\(995\) −21.0220 16.7645i −0.666443 0.531471i
\(996\) 0 0
\(997\) −13.1821 + 3.00872i −0.417480 + 0.0952872i −0.426101 0.904676i \(-0.640113\pi\)
0.00862045 + 0.999963i \(0.497256\pi\)
\(998\) 0.239392i 0.00757781i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 441.2.w.a.188.10 120
3.2 odd 2 inner 441.2.w.a.188.11 yes 120
49.6 odd 14 inner 441.2.w.a.251.11 yes 120
147.104 even 14 inner 441.2.w.a.251.10 yes 120
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
441.2.w.a.188.10 120 1.1 even 1 trivial
441.2.w.a.188.11 yes 120 3.2 odd 2 inner
441.2.w.a.251.10 yes 120 147.104 even 14 inner
441.2.w.a.251.11 yes 120 49.6 odd 14 inner