Properties

Label 441.2.bb.f.46.1
Level $441$
Weight $2$
Character 441.46
Analytic conductor $3.521$
Analytic rank $0$
Dimension $72$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [441,2,Mod(37,441)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(441, base_ring=CyclotomicField(42)) chi = DirichletCharacter(H, H._module([0, 32])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("441.37"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 441 = 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 441.bb (of order \(21\), degree \(12\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [72,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.52140272914\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(6\) over \(\Q(\zeta_{21})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{21}]$

Embedding invariants

Embedding label 46.1
Character \(\chi\) \(=\) 441.46
Dual form 441.2.bb.f.163.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00262 + 2.55465i) q^{2} +(-4.05486 - 3.76236i) q^{4} +(1.62281 + 1.10641i) q^{5} +(1.40782 - 2.24010i) q^{7} +(8.73185 - 4.20504i) q^{8} +(-4.45356 + 3.03638i) q^{10} +(-2.60758 + 0.393029i) q^{11} +(1.31197 + 1.64516i) q^{13} +(4.31114 + 5.84246i) q^{14} +(1.16088 + 15.4908i) q^{16} +(7.39542 + 2.28118i) q^{17} +(2.72747 + 4.72412i) q^{19} +(-2.41754 - 10.5919i) q^{20} +(1.61037 - 7.05551i) q^{22} +(-2.66318 + 0.821483i) q^{23} +(-0.417347 - 1.06338i) q^{25} +(-5.51821 + 1.70214i) q^{26} +(-14.1366 + 3.78655i) q^{28} +(1.03128 + 4.51833i) q^{29} +(-0.390994 + 0.677221i) q^{31} +(-22.2155 - 6.85257i) q^{32} +(-13.2424 + 16.6055i) q^{34} +(4.76309 - 2.07762i) q^{35} +(6.16124 - 5.71680i) q^{37} +(-14.8031 + 2.23121i) q^{38} +(18.8226 + 2.83705i) q^{40} +(1.43808 - 0.692542i) q^{41} +(-4.24459 - 2.04409i) q^{43} +(12.0521 + 8.21698i) q^{44} +(0.571574 - 7.62713i) q^{46} +(-2.00825 + 5.11693i) q^{47} +(-3.03608 - 6.30731i) q^{49} +3.13501 q^{50} +(0.869824 - 11.6070i) q^{52} +(2.53557 + 2.35267i) q^{53} +(-4.66645 - 2.24725i) q^{55} +(2.87318 - 25.4801i) q^{56} +(-12.5767 - 1.89563i) q^{58} +(-1.82008 + 1.24091i) q^{59} +(7.21614 - 6.69560i) q^{61} +(-1.33804 - 1.67785i) q^{62} +(20.4087 - 25.5917i) q^{64} +(0.308853 + 4.12135i) q^{65} +(1.83620 - 3.18040i) q^{67} +(-21.4047 - 37.0741i) q^{68} +(0.531987 + 14.2511i) q^{70} +(-1.29074 + 5.65511i) q^{71} +(5.44147 + 13.8646i) q^{73} +(8.42698 + 21.4716i) q^{74} +(6.71433 - 29.4174i) q^{76} +(-2.79058 + 6.39455i) q^{77} +(5.58327 + 9.67050i) q^{79} +(-15.2554 + 26.4231i) q^{80} +(0.327347 + 4.36814i) q^{82} +(2.89258 - 3.62718i) q^{83} +(9.47741 + 11.8843i) q^{85} +(9.47766 - 8.79398i) q^{86} +(-21.1163 + 14.3968i) q^{88} +(-13.0708 - 1.97011i) q^{89} +(5.53234 - 0.622853i) q^{91} +(13.8895 + 6.68885i) q^{92} +(-11.0584 - 10.2607i) q^{94} +(-0.800659 + 10.6840i) q^{95} +0.286958 q^{97} +(19.1570 - 1.43224i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q + 14 q^{4} - 28 q^{7} + 42 q^{13} - 26 q^{16} + 28 q^{19} + 8 q^{22} - 24 q^{25} - 28 q^{28} + 28 q^{31} + 28 q^{34} - 106 q^{37} + 70 q^{40} - 2 q^{43} + 60 q^{46} + 28 q^{49} + 70 q^{52} - 42 q^{55}+ \cdots + 56 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/441\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(344\)
\(\chi(n)\) \(e\left(\frac{11}{21}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00262 + 2.55465i −0.708963 + 1.80641i −0.129207 + 0.991618i \(0.541243\pi\)
−0.579755 + 0.814791i \(0.696852\pi\)
\(3\) 0 0
\(4\) −4.05486 3.76236i −2.02743 1.88118i
\(5\) 1.62281 + 1.10641i 0.725742 + 0.494802i 0.868956 0.494889i \(-0.164791\pi\)
−0.143214 + 0.989692i \(0.545744\pi\)
\(6\) 0 0
\(7\) 1.40782 2.24010i 0.532106 0.846678i
\(8\) 8.73185 4.20504i 3.08718 1.48671i
\(9\) 0 0
\(10\) −4.45356 + 3.03638i −1.40834 + 0.960189i
\(11\) −2.60758 + 0.393029i −0.786215 + 0.118503i −0.529866 0.848081i \(-0.677758\pi\)
−0.256349 + 0.966584i \(0.582520\pi\)
\(12\) 0 0
\(13\) 1.31197 + 1.64516i 0.363875 + 0.456285i 0.929742 0.368212i \(-0.120030\pi\)
−0.565867 + 0.824497i \(0.691458\pi\)
\(14\) 4.31114 + 5.84246i 1.15220 + 1.56146i
\(15\) 0 0
\(16\) 1.16088 + 15.4908i 0.290220 + 3.87271i
\(17\) 7.39542 + 2.28118i 1.79365 + 0.553268i 0.998581 0.0532489i \(-0.0169577\pi\)
0.795070 + 0.606517i \(0.207434\pi\)
\(18\) 0 0
\(19\) 2.72747 + 4.72412i 0.625725 + 1.08379i 0.988400 + 0.151872i \(0.0485302\pi\)
−0.362675 + 0.931916i \(0.618136\pi\)
\(20\) −2.41754 10.5919i −0.540578 2.36843i
\(21\) 0 0
\(22\) 1.61037 7.05551i 0.343333 1.50424i
\(23\) −2.66318 + 0.821483i −0.555312 + 0.171291i −0.559694 0.828699i \(-0.689081\pi\)
0.00438222 + 0.999990i \(0.498605\pi\)
\(24\) 0 0
\(25\) −0.417347 1.06338i −0.0834693 0.212676i
\(26\) −5.51821 + 1.70214i −1.08221 + 0.333818i
\(27\) 0 0
\(28\) −14.1366 + 3.78655i −2.67156 + 0.715592i
\(29\) 1.03128 + 4.51833i 0.191504 + 0.839032i 0.975803 + 0.218650i \(0.0701653\pi\)
−0.784300 + 0.620382i \(0.786978\pi\)
\(30\) 0 0
\(31\) −0.390994 + 0.677221i −0.0702245 + 0.121632i −0.899000 0.437949i \(-0.855705\pi\)
0.828775 + 0.559582i \(0.189038\pi\)
\(32\) −22.2155 6.85257i −3.92718 1.21137i
\(33\) 0 0
\(34\) −13.2424 + 16.6055i −2.27106 + 2.84782i
\(35\) 4.76309 2.07762i 0.805110 0.351182i
\(36\) 0 0
\(37\) 6.16124 5.71680i 1.01290 0.939835i 0.0147067 0.999892i \(-0.495319\pi\)
0.998195 + 0.0600565i \(0.0191281\pi\)
\(38\) −14.8031 + 2.23121i −2.40138 + 0.361950i
\(39\) 0 0
\(40\) 18.8226 + 2.83705i 2.97612 + 0.448577i
\(41\) 1.43808 0.692542i 0.224590 0.108157i −0.318205 0.948022i \(-0.603080\pi\)
0.542795 + 0.839865i \(0.317366\pi\)
\(42\) 0 0
\(43\) −4.24459 2.04409i −0.647294 0.311720i 0.0812760 0.996692i \(-0.474100\pi\)
−0.728570 + 0.684971i \(0.759815\pi\)
\(44\) 12.0521 + 8.21698i 1.81692 + 1.23876i
\(45\) 0 0
\(46\) 0.571574 7.62713i 0.0842740 1.12456i
\(47\) −2.00825 + 5.11693i −0.292933 + 0.746382i 0.706326 + 0.707887i \(0.250351\pi\)
−0.999259 + 0.0384945i \(0.987744\pi\)
\(48\) 0 0
\(49\) −3.03608 6.30731i −0.433726 0.901045i
\(50\) 3.13501 0.443357
\(51\) 0 0
\(52\) 0.869824 11.6070i 0.120623 1.60960i
\(53\) 2.53557 + 2.35267i 0.348288 + 0.323164i 0.834845 0.550485i \(-0.185557\pi\)
−0.486557 + 0.873649i \(0.661748\pi\)
\(54\) 0 0
\(55\) −4.66645 2.24725i −0.629225 0.303019i
\(56\) 2.87318 25.4801i 0.383945 3.40493i
\(57\) 0 0
\(58\) −12.5767 1.89563i −1.65140 0.248909i
\(59\) −1.82008 + 1.24091i −0.236954 + 0.161553i −0.675976 0.736924i \(-0.736278\pi\)
0.439022 + 0.898477i \(0.355325\pi\)
\(60\) 0 0
\(61\) 7.21614 6.69560i 0.923932 0.857284i −0.0661449 0.997810i \(-0.521070\pi\)
0.990077 + 0.140526i \(0.0448795\pi\)
\(62\) −1.33804 1.67785i −0.169931 0.213087i
\(63\) 0 0
\(64\) 20.4087 25.5917i 2.55109 3.19897i
\(65\) 0.308853 + 4.12135i 0.0383085 + 0.511191i
\(66\) 0 0
\(67\) 1.83620 3.18040i 0.224328 0.388547i −0.731790 0.681531i \(-0.761315\pi\)
0.956118 + 0.292983i \(0.0946480\pi\)
\(68\) −21.4047 37.0741i −2.59571 4.49589i
\(69\) 0 0
\(70\) 0.531987 + 14.2511i 0.0635846 + 1.70333i
\(71\) −1.29074 + 5.65511i −0.153183 + 0.671139i 0.838765 + 0.544493i \(0.183278\pi\)
−0.991948 + 0.126645i \(0.959579\pi\)
\(72\) 0 0
\(73\) 5.44147 + 13.8646i 0.636876 + 1.62273i 0.774738 + 0.632282i \(0.217882\pi\)
−0.137862 + 0.990451i \(0.544023\pi\)
\(74\) 8.42698 + 21.4716i 0.979617 + 2.49602i
\(75\) 0 0
\(76\) 6.71433 29.4174i 0.770186 3.37441i
\(77\) −2.79058 + 6.39455i −0.318016 + 0.728727i
\(78\) 0 0
\(79\) 5.58327 + 9.67050i 0.628167 + 1.08802i 0.987919 + 0.154969i \(0.0495277\pi\)
−0.359753 + 0.933048i \(0.617139\pi\)
\(80\) −15.2554 + 26.4231i −1.70560 + 2.95419i
\(81\) 0 0
\(82\) 0.327347 + 4.36814i 0.0361494 + 0.482380i
\(83\) 2.89258 3.62718i 0.317502 0.398135i −0.597313 0.802008i \(-0.703765\pi\)
0.914815 + 0.403874i \(0.132336\pi\)
\(84\) 0 0
\(85\) 9.47741 + 11.8843i 1.02797 + 1.28903i
\(86\) 9.47766 8.79398i 1.02200 0.948279i
\(87\) 0 0
\(88\) −21.1163 + 14.3968i −2.25100 + 1.53471i
\(89\) −13.0708 1.97011i −1.38550 0.208831i −0.586399 0.810023i \(-0.699455\pi\)
−0.799105 + 0.601192i \(0.794693\pi\)
\(90\) 0 0
\(91\) 5.53234 0.622853i 0.579946 0.0652928i
\(92\) 13.8895 + 6.68885i 1.44808 + 0.697361i
\(93\) 0 0
\(94\) −11.0584 10.2607i −1.14059 1.05831i
\(95\) −0.800659 + 10.6840i −0.0821459 + 1.09616i
\(96\) 0 0
\(97\) 0.286958 0.0291361 0.0145681 0.999894i \(-0.495363\pi\)
0.0145681 + 0.999894i \(0.495363\pi\)
\(98\) 19.1570 1.43224i 1.93515 0.144678i
\(99\) 0 0
\(100\) −2.30854 + 5.88207i −0.230854 + 0.588207i
\(101\) 1.28197 17.1066i 0.127560 1.70217i −0.455899 0.890032i \(-0.650682\pi\)
0.583459 0.812142i \(-0.301699\pi\)
\(102\) 0 0
\(103\) −12.4145 8.46406i −1.22324 0.833989i −0.232877 0.972506i \(-0.574814\pi\)
−0.990360 + 0.138517i \(0.955766\pi\)
\(104\) 18.3739 + 8.84839i 1.80171 + 0.867656i
\(105\) 0 0
\(106\) −8.55247 + 4.11865i −0.830689 + 0.400039i
\(107\) −4.87053 0.734115i −0.470852 0.0709695i −0.0906696 0.995881i \(-0.528901\pi\)
−0.380182 + 0.924911i \(0.624139\pi\)
\(108\) 0 0
\(109\) 1.35946 0.204905i 0.130212 0.0196263i −0.0836128 0.996498i \(-0.526646\pi\)
0.213825 + 0.976872i \(0.431408\pi\)
\(110\) 10.4196 9.66800i 0.993472 0.921807i
\(111\) 0 0
\(112\) 36.3353 + 19.2079i 3.43337 + 1.81497i
\(113\) −5.43368 + 6.81362i −0.511158 + 0.640972i −0.968705 0.248214i \(-0.920157\pi\)
0.457548 + 0.889185i \(0.348728\pi\)
\(114\) 0 0
\(115\) −5.23073 1.61347i −0.487768 0.150457i
\(116\) 12.8179 22.2012i 1.19011 2.06133i
\(117\) 0 0
\(118\) −1.34523 5.89382i −0.123838 0.542571i
\(119\) 15.5215 13.3550i 1.42285 1.22425i
\(120\) 0 0
\(121\) −3.86630 + 1.19260i −0.351482 + 0.108418i
\(122\) 9.86981 + 25.1479i 0.893571 + 2.27678i
\(123\) 0 0
\(124\) 4.13337 1.27498i 0.371188 0.114496i
\(125\) 2.68452 11.7617i 0.240111 1.05199i
\(126\) 0 0
\(127\) 1.42041 + 6.22321i 0.126041 + 0.552220i 0.998032 + 0.0626998i \(0.0199711\pi\)
−0.871992 + 0.489521i \(0.837172\pi\)
\(128\) 21.6672 + 37.5287i 1.91513 + 3.31710i
\(129\) 0 0
\(130\) −10.8383 3.34316i −0.950579 0.293215i
\(131\) 0.565680 + 7.54847i 0.0494237 + 0.659513i 0.965815 + 0.259231i \(0.0834689\pi\)
−0.916392 + 0.400282i \(0.868912\pi\)
\(132\) 0 0
\(133\) 14.4223 + 0.540910i 1.25057 + 0.0469029i
\(134\) 6.28377 + 7.87960i 0.542835 + 0.680693i
\(135\) 0 0
\(136\) 74.1681 11.1790i 6.35986 0.958595i
\(137\) 10.5639 7.20233i 0.902534 0.615337i −0.0206120 0.999788i \(-0.506561\pi\)
0.923146 + 0.384451i \(0.125609\pi\)
\(138\) 0 0
\(139\) 10.5063 5.05956i 0.891132 0.429147i 0.0684541 0.997654i \(-0.478193\pi\)
0.822678 + 0.568508i \(0.192479\pi\)
\(140\) −27.1304 9.49602i −2.29294 0.802560i
\(141\) 0 0
\(142\) −13.1527 8.96735i −1.10375 0.752523i
\(143\) −4.06766 3.77424i −0.340155 0.315618i
\(144\) 0 0
\(145\) −3.32556 + 8.47339i −0.276173 + 0.703677i
\(146\) −40.8750 −3.38284
\(147\) 0 0
\(148\) −46.4916 −3.82159
\(149\) 4.81589 12.2707i 0.394533 1.00525i −0.586246 0.810133i \(-0.699395\pi\)
0.980779 0.195121i \(-0.0625101\pi\)
\(150\) 0 0
\(151\) 2.99764 + 2.78140i 0.243945 + 0.226347i 0.792663 0.609659i \(-0.208694\pi\)
−0.548719 + 0.836007i \(0.684884\pi\)
\(152\) 43.6810 + 29.7812i 3.54300 + 2.41557i
\(153\) 0 0
\(154\) −13.5379 13.5403i −1.09092 1.09111i
\(155\) −1.38379 + 0.666399i −0.111149 + 0.0535265i
\(156\) 0 0
\(157\) −5.33071 + 3.63441i −0.425437 + 0.290058i −0.757049 0.653358i \(-0.773360\pi\)
0.331613 + 0.943416i \(0.392407\pi\)
\(158\) −30.3026 + 4.56739i −2.41075 + 0.363362i
\(159\) 0 0
\(160\) −28.4697 35.6999i −2.25073 2.82232i
\(161\) −1.90908 + 7.12229i −0.150457 + 0.561315i
\(162\) 0 0
\(163\) −1.59257 21.2513i −0.124740 1.66453i −0.611685 0.791101i \(-0.709508\pi\)
0.486946 0.873432i \(-0.338111\pi\)
\(164\) −8.43680 2.60241i −0.658803 0.203214i
\(165\) 0 0
\(166\) 6.36599 + 11.0262i 0.494097 + 0.855801i
\(167\) −2.68891 11.7809i −0.208074 0.911631i −0.965847 0.259113i \(-0.916570\pi\)
0.757773 0.652518i \(-0.226287\pi\)
\(168\) 0 0
\(169\) 1.90749 8.35727i 0.146730 0.642867i
\(170\) −39.8625 + 12.2959i −3.05731 + 0.943056i
\(171\) 0 0
\(172\) 9.52063 + 24.2582i 0.725941 + 1.84967i
\(173\) −14.4541 + 4.45849i −1.09892 + 0.338973i −0.790615 0.612314i \(-0.790239\pi\)
−0.308308 + 0.951287i \(0.599763\pi\)
\(174\) 0 0
\(175\) −2.96963 0.562154i −0.224483 0.0424948i
\(176\) −9.11544 39.9374i −0.687102 3.01039i
\(177\) 0 0
\(178\) 18.1381 31.4160i 1.35950 2.35473i
\(179\) −9.56093 2.94916i −0.714618 0.220430i −0.0839351 0.996471i \(-0.526749\pi\)
−0.630683 + 0.776041i \(0.717225\pi\)
\(180\) 0 0
\(181\) −0.755969 + 0.947955i −0.0561907 + 0.0704609i −0.809133 0.587626i \(-0.800063\pi\)
0.752942 + 0.658087i \(0.228634\pi\)
\(182\) −3.95569 + 14.7577i −0.293215 + 1.09391i
\(183\) 0 0
\(184\) −19.8001 + 18.3718i −1.45969 + 1.35439i
\(185\) 16.3236 2.46039i 1.20014 0.180892i
\(186\) 0 0
\(187\) −20.1807 3.04175i −1.47576 0.222435i
\(188\) 27.3949 13.1927i 1.99798 0.962176i
\(189\) 0 0
\(190\) −26.4912 12.7575i −1.92187 0.925526i
\(191\) −15.9211 10.8548i −1.15201 0.785429i −0.172144 0.985072i \(-0.555069\pi\)
−0.979869 + 0.199643i \(0.936022\pi\)
\(192\) 0 0
\(193\) −1.43572 + 19.1584i −0.103346 + 1.37905i 0.668722 + 0.743513i \(0.266842\pi\)
−0.772068 + 0.635540i \(0.780777\pi\)
\(194\) −0.287711 + 0.733075i −0.0206564 + 0.0526318i
\(195\) 0 0
\(196\) −11.4195 + 36.9981i −0.815679 + 2.64272i
\(197\) −6.02438 −0.429219 −0.214610 0.976700i \(-0.568848\pi\)
−0.214610 + 0.976700i \(0.568848\pi\)
\(198\) 0 0
\(199\) 0.922189 12.3058i 0.0653722 0.872332i −0.864072 0.503369i \(-0.832094\pi\)
0.929444 0.368963i \(-0.120287\pi\)
\(200\) −8.11577 7.53033i −0.573871 0.532475i
\(201\) 0 0
\(202\) 42.4161 + 20.4265i 2.98439 + 1.43720i
\(203\) 11.5734 + 4.05083i 0.812290 + 0.284313i
\(204\) 0 0
\(205\) 3.09996 + 0.467244i 0.216511 + 0.0326337i
\(206\) 34.0698 23.2284i 2.37375 1.61840i
\(207\) 0 0
\(208\) −23.9619 + 22.2334i −1.66146 + 1.54161i
\(209\) −8.96882 11.2465i −0.620386 0.777940i
\(210\) 0 0
\(211\) 8.73027 10.9474i 0.601017 0.753651i −0.384519 0.923117i \(-0.625633\pi\)
0.985536 + 0.169466i \(0.0542042\pi\)
\(212\) −1.42981 19.0795i −0.0981997 1.31038i
\(213\) 0 0
\(214\) 6.75872 11.7064i 0.462017 0.800236i
\(215\) −4.62655 8.01343i −0.315528 0.546511i
\(216\) 0 0
\(217\) 0.966592 + 1.82927i 0.0656165 + 0.124179i
\(218\) −0.839564 + 3.67837i −0.0568625 + 0.249131i
\(219\) 0 0
\(220\) 10.4669 + 26.6691i 0.705676 + 1.79803i
\(221\) 5.94965 + 15.1595i 0.400217 + 1.01974i
\(222\) 0 0
\(223\) 1.29428 5.67062i 0.0866715 0.379733i −0.912925 0.408127i \(-0.866182\pi\)
0.999597 + 0.0283940i \(0.00903930\pi\)
\(224\) −46.6258 + 40.1177i −3.11532 + 2.68047i
\(225\) 0 0
\(226\) −11.9585 20.7126i −0.795464 1.37778i
\(227\) 8.53849 14.7891i 0.566720 0.981587i −0.430168 0.902749i \(-0.641546\pi\)
0.996887 0.0788382i \(-0.0251211\pi\)
\(228\) 0 0
\(229\) −0.0321065 0.428431i −0.00212166 0.0283115i 0.996042 0.0888783i \(-0.0283282\pi\)
−0.998164 + 0.0605668i \(0.980709\pi\)
\(230\) 9.36630 11.7450i 0.617595 0.774440i
\(231\) 0 0
\(232\) 28.0047 + 35.1168i 1.83860 + 2.30553i
\(233\) −10.9126 + 10.1254i −0.714907 + 0.663337i −0.951281 0.308326i \(-0.900231\pi\)
0.236374 + 0.971662i \(0.424041\pi\)
\(234\) 0 0
\(235\) −8.92044 + 6.08185i −0.581905 + 0.396736i
\(236\) 12.0489 + 1.81608i 0.784317 + 0.118217i
\(237\) 0 0
\(238\) 18.5550 + 53.0420i 1.20274 + 3.43820i
\(239\) −8.15721 3.92830i −0.527646 0.254101i 0.151042 0.988527i \(-0.451737\pi\)
−0.678688 + 0.734426i \(0.737451\pi\)
\(240\) 0 0
\(241\) 5.69089 + 5.28037i 0.366582 + 0.340139i 0.841859 0.539698i \(-0.181461\pi\)
−0.475277 + 0.879836i \(0.657652\pi\)
\(242\) 0.829788 11.0728i 0.0533408 0.711784i
\(243\) 0 0
\(244\) −54.4517 −3.48591
\(245\) 2.05151 13.5947i 0.131066 0.868534i
\(246\) 0 0
\(247\) −4.19357 + 10.6850i −0.266830 + 0.679872i
\(248\) −0.566359 + 7.55753i −0.0359638 + 0.479904i
\(249\) 0 0
\(250\) 27.3553 + 18.6505i 1.73010 + 1.17956i
\(251\) 2.25422 + 1.08557i 0.142285 + 0.0685208i 0.503671 0.863895i \(-0.331982\pi\)
−0.361387 + 0.932416i \(0.617697\pi\)
\(252\) 0 0
\(253\) 6.62159 3.18879i 0.416296 0.200478i
\(254\) −17.3222 2.61091i −1.08689 0.163823i
\(255\) 0 0
\(256\) −52.8619 + 7.96764i −3.30387 + 0.497978i
\(257\) −8.81597 + 8.18003i −0.549925 + 0.510256i −0.905474 0.424402i \(-0.860484\pi\)
0.355549 + 0.934658i \(0.384294\pi\)
\(258\) 0 0
\(259\) −4.13226 21.8500i −0.256766 1.35769i
\(260\) 14.2537 17.8735i 0.883975 1.10847i
\(261\) 0 0
\(262\) −19.8508 6.12317i −1.22639 0.378291i
\(263\) −1.29549 + 2.24386i −0.0798836 + 0.138362i −0.903200 0.429221i \(-0.858788\pi\)
0.823316 + 0.567583i \(0.192122\pi\)
\(264\) 0 0
\(265\) 1.51173 + 6.62332i 0.0928648 + 0.406867i
\(266\) −15.8420 + 36.3015i −0.971334 + 2.22579i
\(267\) 0 0
\(268\) −19.4113 + 5.98761i −1.18574 + 0.365751i
\(269\) −5.53096 14.0927i −0.337229 0.859245i −0.994417 0.105518i \(-0.966350\pi\)
0.657189 0.753726i \(-0.271745\pi\)
\(270\) 0 0
\(271\) −7.53727 + 2.32494i −0.457856 + 0.141230i −0.515100 0.857130i \(-0.672245\pi\)
0.0572433 + 0.998360i \(0.481769\pi\)
\(272\) −26.7523 + 117.209i −1.62210 + 7.10687i
\(273\) 0 0
\(274\) 7.80781 + 34.2082i 0.471687 + 2.06660i
\(275\) 1.50620 + 2.60882i 0.0908276 + 0.157318i
\(276\) 0 0
\(277\) 1.15421 + 0.356026i 0.0693496 + 0.0213915i 0.329236 0.944248i \(-0.393209\pi\)
−0.259886 + 0.965639i \(0.583685\pi\)
\(278\) 2.39153 + 31.9127i 0.143434 + 1.91400i
\(279\) 0 0
\(280\) 32.8542 38.1704i 1.96341 2.28112i
\(281\) −11.3165 14.1904i −0.675085 0.846530i 0.319806 0.947483i \(-0.396382\pi\)
−0.994891 + 0.100953i \(0.967811\pi\)
\(282\) 0 0
\(283\) −10.2154 + 1.53973i −0.607245 + 0.0915274i −0.445465 0.895299i \(-0.646962\pi\)
−0.161780 + 0.986827i \(0.551723\pi\)
\(284\) 26.5104 18.0745i 1.57310 1.07252i
\(285\) 0 0
\(286\) 13.7202 6.60729i 0.811292 0.390698i
\(287\) 0.473195 4.19641i 0.0279318 0.247706i
\(288\) 0 0
\(289\) 35.4423 + 24.1642i 2.08484 + 1.42142i
\(290\) −18.3122 16.9913i −1.07533 0.997762i
\(291\) 0 0
\(292\) 30.0994 76.6919i 1.76143 4.48806i
\(293\) −0.832475 −0.0486337 −0.0243169 0.999704i \(-0.507741\pi\)
−0.0243169 + 0.999704i \(0.507741\pi\)
\(294\) 0 0
\(295\) −4.32659 −0.251904
\(296\) 29.7597 75.8264i 1.72975 4.40732i
\(297\) 0 0
\(298\) 26.5188 + 24.6058i 1.53619 + 1.42538i
\(299\) −4.84548 3.30359i −0.280222 0.191052i
\(300\) 0 0
\(301\) −10.5546 + 6.63059i −0.608356 + 0.382181i
\(302\) −10.1110 + 4.86921i −0.581824 + 0.280191i
\(303\) 0 0
\(304\) −70.0144 + 47.7350i −4.01560 + 2.73779i
\(305\) 19.1185 2.88165i 1.09472 0.165003i
\(306\) 0 0
\(307\) −15.6748 19.6556i −0.894610 1.12181i −0.991960 0.126556i \(-0.959608\pi\)
0.0973492 0.995250i \(-0.468964\pi\)
\(308\) 35.3740 15.4298i 2.01562 0.879196i
\(309\) 0 0
\(310\) −0.314990 4.20325i −0.0178902 0.238728i
\(311\) 14.4006 + 4.44200i 0.816583 + 0.251882i 0.674786 0.738013i \(-0.264236\pi\)
0.141797 + 0.989896i \(0.454712\pi\)
\(312\) 0 0
\(313\) −11.5723 20.0439i −0.654107 1.13295i −0.982117 0.188272i \(-0.939711\pi\)
0.328010 0.944674i \(-0.393622\pi\)
\(314\) −3.93994 17.2620i −0.222344 0.974152i
\(315\) 0 0
\(316\) 13.7445 60.2188i 0.773191 3.38757i
\(317\) 3.05986 0.943843i 0.171859 0.0530115i −0.207631 0.978207i \(-0.566575\pi\)
0.379491 + 0.925196i \(0.376099\pi\)
\(318\) 0 0
\(319\) −4.46498 11.3766i −0.249991 0.636966i
\(320\) 61.4345 18.9500i 3.43429 1.05934i
\(321\) 0 0
\(322\) −16.2808 12.0180i −0.907296 0.669738i
\(323\) 9.39421 + 41.1587i 0.522708 + 2.29013i
\(324\) 0 0
\(325\) 1.20189 2.08173i 0.0666686 0.115473i
\(326\) 55.8864 + 17.2387i 3.09526 + 0.954762i
\(327\) 0 0
\(328\) 9.64492 12.0943i 0.532551 0.667798i
\(329\) 8.63518 + 11.7024i 0.476073 + 0.645174i
\(330\) 0 0
\(331\) −14.9403 + 13.8626i −0.821194 + 0.761957i −0.974060 0.226290i \(-0.927340\pi\)
0.152866 + 0.988247i \(0.451150\pi\)
\(332\) −25.3758 + 3.82478i −1.39268 + 0.209912i
\(333\) 0 0
\(334\) 32.7919 + 4.94259i 1.79429 + 0.270446i
\(335\) 6.49863 3.12958i 0.355058 0.170987i
\(336\) 0 0
\(337\) 7.04355 + 3.39199i 0.383686 + 0.184774i 0.615777 0.787921i \(-0.288842\pi\)
−0.232090 + 0.972694i \(0.574557\pi\)
\(338\) 19.4374 + 13.2522i 1.05725 + 0.720823i
\(339\) 0 0
\(340\) 6.28343 83.8466i 0.340767 4.54722i
\(341\) 0.753379 1.91958i 0.0407978 0.103951i
\(342\) 0 0
\(343\) −18.4033 2.07845i −0.993683 0.112226i
\(344\) −45.6586 −2.46175
\(345\) 0 0
\(346\) 3.10215 41.3953i 0.166772 2.22542i
\(347\) 20.4713 + 18.9946i 1.09896 + 1.01968i 0.999697 + 0.0246206i \(0.00783777\pi\)
0.0992592 + 0.995062i \(0.468353\pi\)
\(348\) 0 0
\(349\) 7.45595 + 3.59059i 0.399108 + 0.192200i 0.622661 0.782492i \(-0.286051\pi\)
−0.223554 + 0.974692i \(0.571766\pi\)
\(350\) 4.41353 7.02272i 0.235913 0.375380i
\(351\) 0 0
\(352\) 60.6219 + 9.13728i 3.23116 + 0.487019i
\(353\) −8.31737 + 5.67069i −0.442689 + 0.301820i −0.764074 0.645128i \(-0.776804\pi\)
0.321385 + 0.946948i \(0.395852\pi\)
\(354\) 0 0
\(355\) −8.35151 + 7.74907i −0.443252 + 0.411278i
\(356\) 45.5881 + 57.1656i 2.41616 + 3.02977i
\(357\) 0 0
\(358\) 17.1201 21.4679i 0.904825 1.13461i
\(359\) −2.31317 30.8671i −0.122084 1.62910i −0.636301 0.771441i \(-0.719536\pi\)
0.514216 0.857661i \(-0.328083\pi\)
\(360\) 0 0
\(361\) −5.37822 + 9.31534i −0.283064 + 0.490281i
\(362\) −1.66374 2.88168i −0.0874441 0.151458i
\(363\) 0 0
\(364\) −24.7762 18.2891i −1.29863 0.958607i
\(365\) −6.50954 + 28.5202i −0.340725 + 1.49281i
\(366\) 0 0
\(367\) 7.60620 + 19.3803i 0.397041 + 1.01164i 0.979974 + 0.199123i \(0.0638094\pi\)
−0.582934 + 0.812520i \(0.698095\pi\)
\(368\) −15.8171 40.3013i −0.824523 2.10085i
\(369\) 0 0
\(370\) −10.0811 + 44.1680i −0.524089 + 2.29618i
\(371\) 8.83984 2.36780i 0.458942 0.122930i
\(372\) 0 0
\(373\) 1.11045 + 1.92335i 0.0574968 + 0.0995874i 0.893341 0.449379i \(-0.148355\pi\)
−0.835844 + 0.548967i \(0.815021\pi\)
\(374\) 28.0043 48.5049i 1.44807 2.50813i
\(375\) 0 0
\(376\) 3.98117 + 53.1251i 0.205313 + 2.73972i
\(377\) −6.08036 + 7.62453i −0.313154 + 0.392683i
\(378\) 0 0
\(379\) −1.83216 2.29746i −0.0941118 0.118012i 0.732546 0.680718i \(-0.238332\pi\)
−0.826658 + 0.562705i \(0.809761\pi\)
\(380\) 43.4438 40.3100i 2.22862 2.06786i
\(381\) 0 0
\(382\) 43.6932 29.7895i 2.23554 1.52416i
\(383\) −7.88201 1.18802i −0.402752 0.0607051i −0.0554570 0.998461i \(-0.517662\pi\)
−0.347295 + 0.937756i \(0.612900\pi\)
\(384\) 0 0
\(385\) −11.6036 + 7.28960i −0.591373 + 0.371512i
\(386\) −47.5035 22.8765i −2.41786 1.16438i
\(387\) 0 0
\(388\) −1.16357 1.07964i −0.0590715 0.0548103i
\(389\) −1.58516 + 21.1524i −0.0803706 + 1.07247i 0.800569 + 0.599241i \(0.204531\pi\)
−0.880939 + 0.473229i \(0.843088\pi\)
\(390\) 0 0
\(391\) −21.5693 −1.09081
\(392\) −53.0331 42.3077i −2.67858 2.13686i
\(393\) 0 0
\(394\) 6.04019 15.3902i 0.304301 0.775345i
\(395\) −1.63899 + 21.8708i −0.0824664 + 1.10044i
\(396\) 0 0
\(397\) 6.55751 + 4.47083i 0.329112 + 0.224385i 0.716591 0.697494i \(-0.245702\pi\)
−0.387479 + 0.921879i \(0.626654\pi\)
\(398\) 30.5122 + 14.6939i 1.52944 + 0.736540i
\(399\) 0 0
\(400\) 15.9882 7.69951i 0.799410 0.384975i
\(401\) −27.8295 4.19462i −1.38974 0.209469i −0.588830 0.808257i \(-0.700411\pi\)
−0.800908 + 0.598787i \(0.795649\pi\)
\(402\) 0 0
\(403\) −1.62711 + 0.245247i −0.0810520 + 0.0122166i
\(404\) −69.5595 + 64.5418i −3.46072 + 3.21107i
\(405\) 0 0
\(406\) −21.9522 + 25.5044i −1.08947 + 1.26576i
\(407\) −13.8191 + 17.3286i −0.684985 + 0.858944i
\(408\) 0 0
\(409\) −11.8769 3.66353i −0.587273 0.181150i −0.0131426 0.999914i \(-0.504184\pi\)
−0.574130 + 0.818764i \(0.694660\pi\)
\(410\) −4.30174 + 7.45083i −0.212448 + 0.367970i
\(411\) 0 0
\(412\) 18.4942 + 81.0284i 0.911144 + 3.99198i
\(413\) 0.217412 + 5.82413i 0.0106982 + 0.286587i
\(414\) 0 0
\(415\) 8.70725 2.68583i 0.427422 0.131842i
\(416\) −17.8725 45.5383i −0.876270 2.23270i
\(417\) 0 0
\(418\) 37.7233 11.6361i 1.84511 0.569140i
\(419\) −1.96081 + 8.59089i −0.0957920 + 0.419692i −0.999972 0.00745902i \(-0.997626\pi\)
0.904180 + 0.427151i \(0.140483\pi\)
\(420\) 0 0
\(421\) −1.65715 7.26046i −0.0807647 0.353853i 0.918357 0.395753i \(-0.129516\pi\)
−0.999122 + 0.0418994i \(0.986659\pi\)
\(422\) 19.2136 + 33.2789i 0.935303 + 1.61999i
\(423\) 0 0
\(424\) 32.0333 + 9.88097i 1.55568 + 0.479862i
\(425\) −0.660682 8.81619i −0.0320478 0.427648i
\(426\) 0 0
\(427\) −4.83977 25.5911i −0.234213 1.23844i
\(428\) 16.9873 + 21.3014i 0.821113 + 1.02964i
\(429\) 0 0
\(430\) 25.1102 3.78475i 1.21092 0.182517i
\(431\) −13.4148 + 9.14605i −0.646168 + 0.440550i −0.841551 0.540177i \(-0.818357\pi\)
0.195384 + 0.980727i \(0.437405\pi\)
\(432\) 0 0
\(433\) −2.29606 + 1.10572i −0.110342 + 0.0531377i −0.488240 0.872709i \(-0.662361\pi\)
0.377899 + 0.925847i \(0.376647\pi\)
\(434\) −5.64227 + 0.635230i −0.270837 + 0.0304920i
\(435\) 0 0
\(436\) −6.28333 4.28390i −0.300917 0.205162i
\(437\) −11.1445 10.3406i −0.533116 0.494659i
\(438\) 0 0
\(439\) −6.74813 + 17.1940i −0.322071 + 0.820623i 0.674530 + 0.738247i \(0.264346\pi\)
−0.996601 + 0.0823761i \(0.973749\pi\)
\(440\) −50.1965 −2.39303
\(441\) 0 0
\(442\) −44.6924 −2.12580
\(443\) −0.0408306 + 0.104035i −0.00193992 + 0.00494284i −0.931840 0.362868i \(-0.881797\pi\)
0.929901 + 0.367811i \(0.119893\pi\)
\(444\) 0 0
\(445\) −19.0317 17.6588i −0.902188 0.837108i
\(446\) 13.1887 + 8.99194i 0.624505 + 0.425781i
\(447\) 0 0
\(448\) −28.5962 81.7462i −1.35104 3.86214i
\(449\) 31.2561 15.0522i 1.47507 0.710355i 0.488327 0.872660i \(-0.337607\pi\)
0.986741 + 0.162305i \(0.0518929\pi\)
\(450\) 0 0
\(451\) −3.47771 + 2.37107i −0.163759 + 0.111649i
\(452\) 47.6681 7.18481i 2.24212 0.337945i
\(453\) 0 0
\(454\) 29.2200 + 36.6408i 1.37136 + 1.71964i
\(455\) 9.66705 + 5.11027i 0.453198 + 0.239573i
\(456\) 0 0
\(457\) 0.481692 + 6.42773i 0.0225326 + 0.300676i 0.997072 + 0.0764622i \(0.0243625\pi\)
−0.974540 + 0.224214i \(0.928018\pi\)
\(458\) 1.12668 + 0.347535i 0.0526464 + 0.0162393i
\(459\) 0 0
\(460\) 15.1394 + 26.2223i 0.705880 + 1.22262i
\(461\) 0.797540 + 3.49425i 0.0371451 + 0.162743i 0.990099 0.140373i \(-0.0448301\pi\)
−0.952954 + 0.303116i \(0.901973\pi\)
\(462\) 0 0
\(463\) −4.15107 + 18.1870i −0.192917 + 0.845224i 0.782111 + 0.623139i \(0.214143\pi\)
−0.975028 + 0.222084i \(0.928714\pi\)
\(464\) −68.7955 + 21.2206i −3.19375 + 0.985142i
\(465\) 0 0
\(466\) −14.9256 38.0298i −0.691414 1.76169i
\(467\) 29.4973 9.09871i 1.36497 0.421038i 0.476180 0.879348i \(-0.342021\pi\)
0.888792 + 0.458310i \(0.151545\pi\)
\(468\) 0 0
\(469\) −4.53936 8.59070i −0.209608 0.396682i
\(470\) −6.59313 28.8864i −0.304118 1.33243i
\(471\) 0 0
\(472\) −10.6746 + 18.4889i −0.491338 + 0.851022i
\(473\) 11.8715 + 3.66187i 0.545852 + 0.168373i
\(474\) 0 0
\(475\) 3.88524 4.87194i 0.178267 0.223540i
\(476\) −113.184 4.24497i −5.18776 0.194568i
\(477\) 0 0
\(478\) 18.2140 16.9002i 0.833091 0.772996i
\(479\) 37.2936 5.62111i 1.70399 0.256835i 0.776347 0.630306i \(-0.217071\pi\)
0.927642 + 0.373471i \(0.121833\pi\)
\(480\) 0 0
\(481\) 17.4884 + 2.63595i 0.797402 + 0.120189i
\(482\) −19.1953 + 9.24398i −0.874323 + 0.421052i
\(483\) 0 0
\(484\) 20.1643 + 9.71060i 0.916558 + 0.441391i
\(485\) 0.465677 + 0.317493i 0.0211453 + 0.0144166i
\(486\) 0 0
\(487\) −2.12852 + 28.4031i −0.0964525 + 1.28707i 0.713534 + 0.700621i \(0.247093\pi\)
−0.809987 + 0.586449i \(0.800526\pi\)
\(488\) 34.8550 88.8091i 1.57781 4.02020i
\(489\) 0 0
\(490\) 32.6728 + 18.8713i 1.47601 + 0.852518i
\(491\) 17.3428 0.782671 0.391336 0.920248i \(-0.372013\pi\)
0.391336 + 0.920248i \(0.372013\pi\)
\(492\) 0 0
\(493\) −2.68040 + 35.7674i −0.120719 + 1.61088i
\(494\) −23.0919 21.4262i −1.03895 0.964008i
\(495\) 0 0
\(496\) −10.9446 5.27065i −0.491428 0.236659i
\(497\) 10.8509 + 10.8528i 0.486728 + 0.486814i
\(498\) 0 0
\(499\) −16.6572 2.51067i −0.745678 0.112393i −0.234797 0.972044i \(-0.575443\pi\)
−0.510881 + 0.859651i \(0.670681\pi\)
\(500\) −55.1369 + 37.5917i −2.46580 + 1.68115i
\(501\) 0 0
\(502\) −5.03339 + 4.67031i −0.224651 + 0.208446i
\(503\) −25.7194 32.2511i −1.14677 1.43800i −0.880462 0.474117i \(-0.842767\pi\)
−0.266309 0.963888i \(-0.585804\pi\)
\(504\) 0 0
\(505\) 21.0074 26.3424i 0.934815 1.17222i
\(506\) 1.50726 + 20.1130i 0.0670059 + 0.894131i
\(507\) 0 0
\(508\) 17.6544 30.5783i 0.783287 1.35669i
\(509\) 21.6358 + 37.4742i 0.958988 + 1.66102i 0.724965 + 0.688785i \(0.241856\pi\)
0.234023 + 0.972231i \(0.424811\pi\)
\(510\) 0 0
\(511\) 38.7188 + 7.32950i 1.71282 + 0.324238i
\(512\) 13.3605 58.5360i 0.590454 2.58695i
\(513\) 0 0
\(514\) −12.0580 30.7232i −0.531854 1.35514i
\(515\) −10.7816 27.4711i −0.475094 1.21052i
\(516\) 0 0
\(517\) 3.22556 14.1321i 0.141860 0.621530i
\(518\) 59.9622 + 11.3509i 2.63459 + 0.498730i
\(519\) 0 0
\(520\) 20.0273 + 34.6883i 0.878256 + 1.52118i
\(521\) 6.87049 11.9000i 0.301002 0.521350i −0.675361 0.737487i \(-0.736012\pi\)
0.976363 + 0.216137i \(0.0693457\pi\)
\(522\) 0 0
\(523\) −1.99863 26.6698i −0.0873938 1.16619i −0.852657 0.522472i \(-0.825010\pi\)
0.765263 0.643718i \(-0.222609\pi\)
\(524\) 26.1063 32.7363i 1.14046 1.43009i
\(525\) 0 0
\(526\) −4.43338 5.55928i −0.193305 0.242396i
\(527\) −4.43642 + 4.11640i −0.193254 + 0.179313i
\(528\) 0 0
\(529\) −12.5858 + 8.58085i −0.547208 + 0.373080i
\(530\) −18.4359 2.77877i −0.800806 0.120702i
\(531\) 0 0
\(532\) −56.4453 56.4552i −2.44721 2.44764i
\(533\) 3.02606 + 1.45727i 0.131073 + 0.0631214i
\(534\) 0 0
\(535\) −7.09170 6.58014i −0.306601 0.284484i
\(536\) 2.65976 35.4921i 0.114884 1.53302i
\(537\) 0 0
\(538\) 41.5472 1.79123
\(539\) 10.3958 + 15.2536i 0.447778 + 0.657017i
\(540\) 0 0
\(541\) −7.34435 + 18.7131i −0.315758 + 0.804538i 0.681588 + 0.731736i \(0.261290\pi\)
−0.997346 + 0.0728026i \(0.976806\pi\)
\(542\) 1.61765 21.5861i 0.0694842 0.927203i
\(543\) 0 0
\(544\) −148.661 101.355i −6.37377 4.34557i
\(545\) 2.43284 + 1.17160i 0.104212 + 0.0501856i
\(546\) 0 0
\(547\) 0.751658 0.361980i 0.0321386 0.0154771i −0.417745 0.908564i \(-0.637180\pi\)
0.449884 + 0.893087i \(0.351465\pi\)
\(548\) −69.9328 10.5407i −2.98738 0.450276i
\(549\) 0 0
\(550\) −8.17478 + 1.23215i −0.348574 + 0.0525391i
\(551\) −18.5323 + 17.1955i −0.789504 + 0.732553i
\(552\) 0 0
\(553\) 29.5231 + 1.10727i 1.25545 + 0.0470859i
\(554\) −2.06676 + 2.59163i −0.0878082 + 0.110108i
\(555\) 0 0
\(556\) −61.6374 19.0126i −2.61401 0.806315i
\(557\) −14.1490 + 24.5068i −0.599513 + 1.03839i 0.393380 + 0.919376i \(0.371306\pi\)
−0.992893 + 0.119011i \(0.962028\pi\)
\(558\) 0 0
\(559\) −2.20593 9.66481i −0.0933009 0.408778i
\(560\) 37.7135 + 71.3725i 1.59368 + 3.01604i
\(561\) 0 0
\(562\) 47.5977 14.6820i 2.00779 0.619321i
\(563\) 8.05541 + 20.5249i 0.339495 + 0.865020i 0.994042 + 0.108998i \(0.0347642\pi\)
−0.654547 + 0.756021i \(0.727141\pi\)
\(564\) 0 0
\(565\) −16.3565 + 5.04531i −0.688123 + 0.212258i
\(566\) 6.30879 27.6406i 0.265178 1.16182i
\(567\) 0 0
\(568\) 12.5094 + 54.8072i 0.524882 + 2.29966i
\(569\) −2.01868 3.49646i −0.0846275 0.146579i 0.820605 0.571496i \(-0.193637\pi\)
−0.905232 + 0.424917i \(0.860303\pi\)
\(570\) 0 0
\(571\) −33.6551 10.3812i −1.40842 0.434441i −0.504973 0.863135i \(-0.668497\pi\)
−0.903449 + 0.428695i \(0.858974\pi\)
\(572\) 2.29375 + 30.6080i 0.0959067 + 1.27979i
\(573\) 0 0
\(574\) 10.2459 + 5.41627i 0.427656 + 0.226071i
\(575\) 1.98502 + 2.48914i 0.0827810 + 0.103804i
\(576\) 0 0
\(577\) −19.0426 + 2.87021i −0.792753 + 0.119488i −0.532921 0.846165i \(-0.678906\pi\)
−0.259833 + 0.965654i \(0.583667\pi\)
\(578\) −97.2662 + 66.3150i −4.04574 + 2.75834i
\(579\) 0 0
\(580\) 45.3647 21.8465i 1.88366 0.907125i
\(581\) −4.05300 11.5861i −0.168147 0.480672i
\(582\) 0 0
\(583\) −7.53638 5.13822i −0.312125 0.212803i
\(584\) 105.815 + 98.1824i 4.37867 + 4.06282i
\(585\) 0 0
\(586\) 0.834660 2.12668i 0.0344795 0.0878523i
\(587\) −26.6941 −1.10178 −0.550892 0.834577i \(-0.685712\pi\)
−0.550892 + 0.834577i \(0.685712\pi\)
\(588\) 0 0
\(589\) −4.26570 −0.175765
\(590\) 4.33795 11.0529i 0.178591 0.455041i
\(591\) 0 0
\(592\) 95.7105 + 88.8063i 3.93368 + 3.64992i
\(593\) −22.3898 15.2651i −0.919441 0.626864i 0.00835012 0.999965i \(-0.497342\pi\)
−0.927791 + 0.373101i \(0.878294\pi\)
\(594\) 0 0
\(595\) 39.9645 4.49937i 1.63838 0.184456i
\(596\) −65.6946 + 31.6368i −2.69095 + 1.29590i
\(597\) 0 0
\(598\) 13.2977 9.06623i 0.543784 0.370746i
\(599\) 29.6592 4.47040i 1.21184 0.182656i 0.488138 0.872767i \(-0.337676\pi\)
0.723703 + 0.690111i \(0.242438\pi\)
\(600\) 0 0
\(601\) −10.3796 13.0156i −0.423391 0.530916i 0.523691 0.851909i \(-0.324555\pi\)
−0.947082 + 0.320993i \(0.895983\pi\)
\(602\) −6.35654 33.6112i −0.259073 1.36989i
\(603\) 0 0
\(604\) −1.69037 22.5564i −0.0687802 0.917807i
\(605\) −7.59376 2.34236i −0.308730 0.0952307i
\(606\) 0 0
\(607\) −1.85040 3.20499i −0.0751056 0.130087i 0.826027 0.563631i \(-0.190596\pi\)
−0.901132 + 0.433544i \(0.857263\pi\)
\(608\) −28.2197 123.639i −1.14446 5.01421i
\(609\) 0 0
\(610\) −11.8071 + 51.7302i −0.478055 + 2.09450i
\(611\) −11.0529 + 3.40938i −0.447154 + 0.137929i
\(612\) 0 0
\(613\) −4.06433 10.3557i −0.164157 0.418264i 0.824999 0.565134i \(-0.191175\pi\)
−0.989156 + 0.146870i \(0.953080\pi\)
\(614\) 65.9292 20.3365i 2.66068 0.820713i
\(615\) 0 0
\(616\) 2.52239 + 67.5708i 0.101630 + 2.72250i
\(617\) −6.26447 27.4464i −0.252198 1.10495i −0.929377 0.369133i \(-0.879655\pi\)
0.677179 0.735819i \(-0.263202\pi\)
\(618\) 0 0
\(619\) 5.62821 9.74834i 0.226217 0.391819i −0.730467 0.682948i \(-0.760698\pi\)
0.956684 + 0.291129i \(0.0940309\pi\)
\(620\) 8.11832 + 2.50417i 0.326039 + 0.100570i
\(621\) 0 0
\(622\) −25.7861 + 32.3348i −1.03393 + 1.29651i
\(623\) −22.8146 + 26.5063i −0.914048 + 1.06195i
\(624\) 0 0
\(625\) 13.1827 12.2318i 0.527308 0.489270i
\(626\) 62.8077 9.46673i 2.51030 0.378367i
\(627\) 0 0
\(628\) 35.2892 + 5.31900i 1.40819 + 0.212251i
\(629\) 58.6060 28.2232i 2.33677 1.12533i
\(630\) 0 0
\(631\) 41.7178 + 20.0903i 1.66076 + 0.799780i 0.998734 + 0.0502999i \(0.0160177\pi\)
0.662027 + 0.749480i \(0.269697\pi\)
\(632\) 89.4171 + 60.9635i 3.55682 + 2.42500i
\(633\) 0 0
\(634\) −0.656711 + 8.76319i −0.0260813 + 0.348031i
\(635\) −4.58038 + 11.6706i −0.181767 + 0.463135i
\(636\) 0 0
\(637\) 6.39329 13.2698i 0.253311 0.525770i
\(638\) 33.5398 1.32785
\(639\) 0 0
\(640\) −6.36049 + 84.8748i −0.251420 + 3.35497i
\(641\) 3.49450 + 3.24242i 0.138024 + 0.128068i 0.746164 0.665762i \(-0.231893\pi\)
−0.608140 + 0.793830i \(0.708084\pi\)
\(642\) 0 0
\(643\) −40.8484 19.6716i −1.61090 0.775770i −0.611029 0.791608i \(-0.709244\pi\)
−0.999875 + 0.0158379i \(0.994958\pi\)
\(644\) 34.5377 21.6972i 1.36097 0.854991i
\(645\) 0 0
\(646\) −114.565 17.2679i −4.50749 0.679395i
\(647\) −17.4007 + 11.8636i −0.684092 + 0.466406i −0.854828 0.518911i \(-0.826338\pi\)
0.170737 + 0.985317i \(0.445385\pi\)
\(648\) 0 0
\(649\) 4.25829 3.95111i 0.167152 0.155095i
\(650\) 4.11303 + 5.15758i 0.161326 + 0.202297i
\(651\) 0 0
\(652\) −73.4975 + 92.1630i −2.87839 + 3.60938i
\(653\) 0.841479 + 11.2288i 0.0329296 + 0.439415i 0.989164 + 0.146814i \(0.0469018\pi\)
−0.956235 + 0.292601i \(0.905479\pi\)
\(654\) 0 0
\(655\) −7.43373 + 12.8756i −0.290460 + 0.503091i
\(656\) 12.3975 + 21.4731i 0.484041 + 0.838383i
\(657\) 0 0
\(658\) −38.5534 + 10.3267i −1.50297 + 0.402577i
\(659\) 2.22799 9.76147i 0.0867902 0.380253i −0.912814 0.408375i \(-0.866096\pi\)
0.999604 + 0.0281221i \(0.00895274\pi\)
\(660\) 0 0
\(661\) 15.0468 + 38.3386i 0.585253 + 1.49120i 0.849947 + 0.526868i \(0.176634\pi\)
−0.264694 + 0.964332i \(0.585271\pi\)
\(662\) −20.4345 52.0662i −0.794209 2.02361i
\(663\) 0 0
\(664\) 10.0051 43.8354i 0.388275 1.70114i
\(665\) 22.8061 + 16.8348i 0.884384 + 0.652825i
\(666\) 0 0
\(667\) −6.45821 11.1859i −0.250063 0.433122i
\(668\) −33.4207 + 57.8864i −1.29309 + 2.23969i
\(669\) 0 0
\(670\) 1.47927 + 19.7395i 0.0571492 + 0.762604i
\(671\) −16.1851 + 20.2955i −0.624819 + 0.783498i
\(672\) 0 0
\(673\) −16.8858 21.1741i −0.650901 0.816203i 0.341418 0.939912i \(-0.389093\pi\)
−0.992319 + 0.123708i \(0.960521\pi\)
\(674\) −15.7274 + 14.5929i −0.605796 + 0.562097i
\(675\) 0 0
\(676\) −39.1777 + 26.7109i −1.50683 + 1.02734i
\(677\) −5.63331 0.849085i −0.216506 0.0326330i 0.0398935 0.999204i \(-0.487298\pi\)
−0.256399 + 0.966571i \(0.582536\pi\)
\(678\) 0 0
\(679\) 0.403985 0.642813i 0.0155035 0.0246689i
\(680\) 132.729 + 63.9190i 5.08993 + 2.45118i
\(681\) 0 0
\(682\) 4.14849 + 3.84924i 0.158854 + 0.147395i
\(683\) 2.41079 32.1698i 0.0922465 1.23094i −0.738485 0.674270i \(-0.764458\pi\)
0.830731 0.556674i \(-0.187923\pi\)
\(684\) 0 0
\(685\) 25.1119 0.959476
\(686\) 23.7613 44.9299i 0.907210 1.71543i
\(687\) 0 0
\(688\) 26.7372 68.1253i 1.01935 2.59725i
\(689\) −0.543916 + 7.25805i −0.0207215 + 0.276510i
\(690\) 0 0
\(691\) 13.0523 + 8.89894i 0.496535 + 0.338532i 0.785556 0.618791i \(-0.212377\pi\)
−0.289021 + 0.957323i \(0.593330\pi\)
\(692\) 75.3837 + 36.3029i 2.86566 + 1.38003i
\(693\) 0 0
\(694\) −69.0495 + 33.2525i −2.62108 + 1.26225i
\(695\) 22.6477 + 3.41358i 0.859074 + 0.129485i
\(696\) 0 0
\(697\) 12.2150 1.84111i 0.462676 0.0697372i
\(698\) −16.6482 + 15.4473i −0.630144 + 0.584689i
\(699\) 0 0
\(700\) 9.92640 + 13.4523i 0.375183 + 0.508448i
\(701\) 21.2222 26.6118i 0.801552 1.00511i −0.198137 0.980174i \(-0.563489\pi\)
0.999689 0.0249398i \(-0.00793941\pi\)
\(702\) 0 0
\(703\) 43.8115 + 13.5140i 1.65238 + 0.509692i
\(704\) −43.1591 + 74.7538i −1.62662 + 2.81739i
\(705\) 0 0
\(706\) −6.14740 26.9335i −0.231360 1.01366i
\(707\) −36.5158 26.9548i −1.37332 1.01374i
\(708\) 0 0
\(709\) 26.9344 8.30816i 1.01154 0.312020i 0.255688 0.966759i \(-0.417698\pi\)
0.755854 + 0.654740i \(0.227222\pi\)
\(710\) −11.4227 29.1046i −0.428686 1.09228i
\(711\) 0 0
\(712\) −122.417 + 37.7606i −4.58776 + 1.41514i
\(713\) 0.484962 2.12476i 0.0181620 0.0795727i
\(714\) 0 0
\(715\) −2.42517 10.6254i −0.0906963 0.397366i
\(716\) 27.6725 + 47.9301i 1.03417 + 1.79123i
\(717\) 0 0
\(718\) 81.1737 + 25.0388i 3.02938 + 0.934439i
\(719\) −1.78788 23.8576i −0.0666766 0.889737i −0.925811 0.377987i \(-0.876616\pi\)
0.859134 0.511750i \(-0.171003\pi\)
\(720\) 0 0
\(721\) −36.4377 + 15.8938i −1.35701 + 0.591917i
\(722\) −18.4051 23.0792i −0.684966 0.858920i
\(723\) 0 0
\(724\) 6.63190 0.999598i 0.246472 0.0371497i
\(725\) 4.37431 2.98235i 0.162458 0.110762i
\(726\) 0 0
\(727\) −36.7941 + 17.7191i −1.36462 + 0.657165i −0.965661 0.259806i \(-0.916341\pi\)
−0.398955 + 0.916970i \(0.630627\pi\)
\(728\) 45.6884 28.7023i 1.69332 1.06378i
\(729\) 0 0
\(730\) −66.3323 45.2246i −2.45507 1.67384i
\(731\) −26.7276 24.7996i −0.988555 0.917245i
\(732\) 0 0
\(733\) −1.79465 + 4.57270i −0.0662870 + 0.168896i −0.960179 0.279386i \(-0.909869\pi\)
0.893892 + 0.448283i \(0.147964\pi\)
\(734\) −57.1360 −2.10893
\(735\) 0 0
\(736\) 64.7931 2.38831
\(737\) −3.53806 + 9.01482i −0.130326 + 0.332065i
\(738\) 0 0
\(739\) 22.3263 + 20.7158i 0.821286 + 0.762042i 0.974077 0.226217i \(-0.0726357\pi\)
−0.152791 + 0.988259i \(0.548826\pi\)
\(740\) −75.4469 51.4389i −2.77348 1.89093i
\(741\) 0 0
\(742\) −2.81416 + 24.9567i −0.103311 + 0.916189i
\(743\) 6.71032 3.23152i 0.246178 0.118553i −0.306727 0.951798i \(-0.599234\pi\)
0.552904 + 0.833245i \(0.313519\pi\)
\(744\) 0 0
\(745\) 21.3917 14.5846i 0.783732 0.534339i
\(746\) −6.02685 + 0.908401i −0.220659 + 0.0332589i
\(747\) 0 0
\(748\) 70.3858 + 88.2610i 2.57356 + 3.22714i
\(749\) −8.50133 + 9.87697i −0.310632 + 0.360897i
\(750\) 0 0
\(751\) 1.17990 + 15.7446i 0.0430551 + 0.574530i 0.976459 + 0.215703i \(0.0692043\pi\)
−0.933404 + 0.358827i \(0.883177\pi\)
\(752\) −81.5970 25.1693i −2.97554 0.917831i
\(753\) 0 0
\(754\) −13.3817 23.1777i −0.487331 0.844082i
\(755\) 1.78722 + 7.83031i 0.0650435 + 0.284974i
\(756\) 0 0
\(757\) 0.368738 1.61555i 0.0134020 0.0587181i −0.967785 0.251779i \(-0.918984\pi\)
0.981187 + 0.193061i \(0.0618415\pi\)
\(758\) 7.70616 2.37704i 0.279900 0.0863379i
\(759\) 0 0
\(760\) 37.9356 + 96.6583i 1.37607 + 3.50617i
\(761\) −11.3387 + 3.49753i −0.411028 + 0.126785i −0.493372 0.869819i \(-0.664236\pi\)
0.0823435 + 0.996604i \(0.473760\pi\)
\(762\) 0 0
\(763\) 1.45486 3.33378i 0.0526696 0.120691i
\(764\) 23.7181 + 103.916i 0.858091 + 3.75954i
\(765\) 0 0
\(766\) 10.9377 18.9446i 0.395194 0.684496i
\(767\) −4.42938 1.36628i −0.159936 0.0493336i
\(768\) 0 0
\(769\) 7.06702 8.86177i 0.254843 0.319564i −0.637908 0.770112i \(-0.720200\pi\)
0.892752 + 0.450549i \(0.148772\pi\)
\(770\) −6.98830 36.9518i −0.251841 1.33165i
\(771\) 0 0
\(772\) 77.9025 72.2830i 2.80377 2.60152i
\(773\) −41.1071 + 6.19590i −1.47852 + 0.222851i −0.838245 0.545294i \(-0.816418\pi\)
−0.640276 + 0.768145i \(0.721180\pi\)
\(774\) 0 0
\(775\) 0.883324 + 0.133140i 0.0317299 + 0.00478252i
\(776\) 2.50567 1.20667i 0.0899484 0.0433168i
\(777\) 0 0
\(778\) −52.4477 25.2575i −1.88034 0.905524i
\(779\) 7.19397 + 4.90477i 0.257751 + 0.175731i
\(780\) 0 0
\(781\) 1.14309 15.2535i 0.0409029 0.545812i
\(782\) 21.6259 55.1019i 0.773341 1.97044i
\(783\) 0 0
\(784\) 94.1811 54.3535i 3.36361 1.94120i
\(785\) −12.6719 −0.452278
\(786\) 0 0
\(787\) 1.54702 20.6435i 0.0551452 0.735862i −0.899273 0.437388i \(-0.855903\pi\)
0.954418 0.298474i \(-0.0964775\pi\)
\(788\) 24.4280 + 22.6659i 0.870212 + 0.807439i
\(789\) 0 0
\(790\) −54.2288 26.1152i −1.92937 0.929137i
\(791\) 7.61353 + 21.7643i 0.270706 + 0.773851i
\(792\) 0 0
\(793\) 20.4827 + 3.08727i 0.727361 + 0.109632i
\(794\) −17.9961 + 12.2695i −0.638658 + 0.435430i
\(795\) 0 0
\(796\) −50.0380 + 46.4285i −1.77355 + 1.64561i
\(797\) −9.56712 11.9968i −0.338885 0.424948i 0.582964 0.812498i \(-0.301893\pi\)
−0.921849 + 0.387550i \(0.873321\pi\)
\(798\) 0 0
\(799\) −26.5245 + 33.2607i −0.938369 + 1.17668i
\(800\) 1.98466 + 26.4834i 0.0701683 + 0.936330i
\(801\) 0 0
\(802\) 38.6183 66.8889i 1.36366 2.36193i
\(803\) −19.6383 34.0145i −0.693020 1.20035i
\(804\) 0 0
\(805\) −10.9783 + 9.44588i −0.386933 + 0.332923i
\(806\) 1.00486 4.40257i 0.0353946 0.155074i
\(807\) 0 0
\(808\) −60.7401 154.763i −2.13683 5.44455i
\(809\) −2.30023 5.86088i −0.0808716 0.206058i 0.884719 0.466125i \(-0.154350\pi\)
−0.965590 + 0.260068i \(0.916255\pi\)
\(810\) 0 0
\(811\) 7.37127 32.2957i 0.258840 1.13405i −0.663653 0.748041i \(-0.730995\pi\)
0.922493 0.386013i \(-0.126148\pi\)
\(812\) −31.6876 59.9687i −1.11202 2.10449i
\(813\) 0 0
\(814\) −30.4130 52.6769i −1.06597 1.84632i
\(815\) 20.9283 36.2489i 0.733086 1.26974i
\(816\) 0 0
\(817\) −1.92049 25.6272i −0.0671894 0.896581i
\(818\) 21.2671 26.6680i 0.743585 0.932426i
\(819\) 0 0
\(820\) −10.8120 13.5578i −0.377570 0.473458i
\(821\) 22.5244 20.8996i 0.786106 0.729400i −0.181080 0.983468i \(-0.557959\pi\)
0.967186 + 0.254069i \(0.0817689\pi\)
\(822\) 0 0
\(823\) 8.83916 6.02644i 0.308114 0.210068i −0.399384 0.916784i \(-0.630776\pi\)
0.707498 + 0.706715i \(0.249824\pi\)
\(824\) −143.993 21.7035i −5.01624 0.756077i
\(825\) 0 0
\(826\) −15.0966 5.28401i −0.525277 0.183854i
\(827\) −43.1858 20.7972i −1.50172 0.723190i −0.511059 0.859546i \(-0.670747\pi\)
−0.990660 + 0.136356i \(0.956461\pi\)
\(828\) 0 0
\(829\) 28.2917 + 26.2509i 0.982611 + 0.911730i 0.996105 0.0881788i \(-0.0281047\pi\)
−0.0134932 + 0.999909i \(0.504295\pi\)
\(830\) −1.86876 + 24.9368i −0.0648655 + 0.865570i
\(831\) 0 0
\(832\) 68.8781 2.38792
\(833\) −8.06493 53.5711i −0.279433 1.85613i
\(834\) 0 0
\(835\) 8.67091 22.0931i 0.300069 0.764564i
\(836\) −5.94624 + 79.3471i −0.205655 + 2.74428i
\(837\) 0 0
\(838\) −19.9807 13.6226i −0.690223 0.470586i
\(839\) 14.8545 + 7.15355i 0.512834 + 0.246968i 0.672358 0.740226i \(-0.265282\pi\)
−0.159524 + 0.987194i \(0.550996\pi\)
\(840\) 0 0
\(841\) 6.77636 3.26332i 0.233667 0.112528i
\(842\) 20.2094 + 3.04608i 0.696463 + 0.104975i
\(843\) 0 0
\(844\) −76.5881 + 11.5438i −2.63627 + 0.397354i
\(845\) 12.3421 11.4518i 0.424580 0.393953i
\(846\) 0 0
\(847\) −2.77153 + 10.3398i −0.0952308 + 0.355281i
\(848\) −33.5013 + 42.0094i −1.15044 + 1.44261i
\(849\) 0 0
\(850\) 23.1847 + 7.15153i 0.795228 + 0.245295i
\(851\) −11.7123 + 20.2862i −0.401491 + 0.695402i
\(852\) 0 0
\(853\) 1.76191 + 7.71945i 0.0603268 + 0.264309i 0.996093 0.0883127i \(-0.0281475\pi\)
−0.935766 + 0.352621i \(0.885290\pi\)
\(854\) 70.2286 + 13.2943i 2.40317 + 0.454923i
\(855\) 0 0
\(856\) −45.6157 + 14.0706i −1.55911 + 0.480923i
\(857\) 14.3869 + 36.6571i 0.491446 + 1.25218i 0.934588 + 0.355732i \(0.115768\pi\)
−0.443142 + 0.896451i \(0.646136\pi\)
\(858\) 0 0
\(859\) −6.72958 + 2.07580i −0.229610 + 0.0708254i −0.407425 0.913239i \(-0.633573\pi\)
0.177815 + 0.984064i \(0.443097\pi\)
\(860\) −11.3894 + 49.9001i −0.388374 + 1.70158i
\(861\) 0 0
\(862\) −9.91492 43.4401i −0.337704 1.47958i
\(863\) 4.17379 + 7.22921i 0.142077 + 0.246085i 0.928279 0.371885i \(-0.121289\pi\)
−0.786201 + 0.617970i \(0.787955\pi\)
\(864\) 0 0
\(865\) −28.3891 8.75688i −0.965259 0.297743i
\(866\) −0.522648 6.97425i −0.0177603 0.236995i
\(867\) 0 0
\(868\) 2.96298 11.0541i 0.100570 0.375201i
\(869\) −18.3596 23.0222i −0.622807 0.780975i
\(870\) 0 0
\(871\) 7.64130 1.15174i 0.258916 0.0390252i
\(872\) 11.0089 7.50576i 0.372809 0.254177i
\(873\) 0 0
\(874\) 37.5904 18.1026i 1.27152 0.612329i
\(875\) −22.5679 22.5719i −0.762936 0.763069i
\(876\) 0 0
\(877\) 18.4287 + 12.5645i 0.622295 + 0.424273i 0.832997 0.553277i \(-0.186623\pi\)
−0.210703 + 0.977550i \(0.567575\pi\)
\(878\) −37.1587 34.4782i −1.25404 1.16358i
\(879\) 0 0
\(880\) 29.3946 74.8961i 0.990890 2.52475i
\(881\) 10.3865 0.349931 0.174966 0.984575i \(-0.444019\pi\)
0.174966 + 0.984575i \(0.444019\pi\)
\(882\) 0 0
\(883\) 44.8617 1.50972 0.754859 0.655887i \(-0.227705\pi\)
0.754859 + 0.655887i \(0.227705\pi\)
\(884\) 32.9104 83.8543i 1.10690 2.82032i
\(885\) 0 0
\(886\) −0.224834 0.208615i −0.00755345 0.00700857i
\(887\) 22.1968 + 15.1336i 0.745297 + 0.508135i 0.875420 0.483363i \(-0.160585\pi\)
−0.130123 + 0.991498i \(0.541537\pi\)
\(888\) 0 0
\(889\) 15.9403 + 5.57931i 0.534620 + 0.187124i
\(890\) 64.1936 30.9140i 2.15178 1.03624i
\(891\) 0 0
\(892\) −26.5830 + 18.1240i −0.890066 + 0.606837i
\(893\) −29.6505 + 4.46909i −0.992215 + 0.149552i
\(894\) 0 0
\(895\) −12.2526 15.3642i −0.409558 0.513570i
\(896\) 114.572 + 4.29703i 3.82757 + 0.143554i
\(897\) 0 0
\(898\) 7.11477 + 94.9400i 0.237423 + 3.16819i
\(899\) −3.46313 1.06823i −0.115502 0.0356276i
\(900\) 0 0
\(901\) 13.3848 + 23.1831i 0.445911 + 0.772340i
\(902\) −2.57039 11.2616i −0.0855847 0.374971i
\(903\) 0 0
\(904\) −18.7946 + 82.3444i −0.625098 + 2.73873i
\(905\) −2.27562 + 0.701936i −0.0756442 + 0.0233331i
\(906\) 0 0
\(907\) 10.5948 + 26.9951i 0.351795 + 0.896359i 0.991778 + 0.127970i \(0.0408461\pi\)
−0.639983 + 0.768389i \(0.721059\pi\)
\(908\) −90.2643 + 27.8429i −2.99553 + 0.923998i
\(909\) 0 0
\(910\) −22.7474 + 19.5722i −0.754068 + 0.648813i
\(911\) 7.34460 + 32.1788i 0.243338 + 1.06613i 0.937956 + 0.346753i \(0.112716\pi\)
−0.694619 + 0.719378i \(0.744427\pi\)
\(912\) 0 0
\(913\) −6.11704 + 10.5950i −0.202445 + 0.350644i
\(914\) −16.9035 5.21405i −0.559119 0.172465i
\(915\) 0 0
\(916\) −1.48173 + 1.85803i −0.0489576 + 0.0613909i
\(917\) 17.7057 + 9.35972i 0.584694 + 0.309085i
\(918\) 0 0
\(919\) −22.9729 + 21.3157i −0.757806 + 0.703141i −0.961168 0.275962i \(-0.911003\pi\)
0.203363 + 0.979103i \(0.434813\pi\)
\(920\) −52.4586 + 7.90687i −1.72951 + 0.260682i
\(921\) 0 0
\(922\) −9.72621 1.46599i −0.320316 0.0482798i
\(923\) −10.9970 + 5.29586i −0.361970 + 0.174315i
\(924\) 0 0
\(925\) −8.65051 4.16587i −0.284427 0.136973i
\(926\) −42.2995 28.8393i −1.39005 0.947719i
\(927\) 0 0
\(928\) 8.05179 107.444i 0.264313 3.52701i
\(929\) 15.8622 40.4162i 0.520421 1.32601i −0.393203 0.919452i \(-0.628633\pi\)
0.913624 0.406559i \(-0.133272\pi\)
\(930\) 0 0
\(931\) 21.5157 31.5458i 0.705148 1.03387i
\(932\) 82.3444 2.69728
\(933\) 0 0
\(934\) −6.33073 + 84.4778i −0.207148 + 2.76420i
\(935\) −29.3840 27.2644i −0.960959 0.891640i
\(936\) 0 0
\(937\) 33.5480 + 16.1559i 1.09597 + 0.527789i 0.892388 0.451270i \(-0.149029\pi\)
0.203578 + 0.979059i \(0.434743\pi\)
\(938\) 26.4975 2.98320i 0.865174 0.0974048i
\(939\) 0 0
\(940\) 59.0532 + 8.90084i 1.92610 + 0.290314i
\(941\) −41.1832 + 28.0782i −1.34253 + 0.915323i −0.999710 0.0240766i \(-0.992335\pi\)
−0.342823 + 0.939400i \(0.611383\pi\)
\(942\) 0 0
\(943\) −3.26095 + 3.02572i −0.106191 + 0.0985310i
\(944\) −21.3356 26.7540i −0.694415 0.870769i
\(945\) 0 0
\(946\) −21.2575 + 26.6560i −0.691139 + 0.866661i
\(947\) −0.876939 11.7019i −0.0284967 0.380262i −0.993159 0.116772i \(-0.962745\pi\)
0.964662 0.263490i \(-0.0848736\pi\)
\(948\) 0 0
\(949\) −15.6705 + 27.1421i −0.508685 + 0.881069i
\(950\) 8.55065 + 14.8102i 0.277420 + 0.480505i
\(951\) 0 0
\(952\) 79.3733 181.882i 2.57250 5.89483i
\(953\) −12.5074 + 54.7984i −0.405154 + 1.77509i 0.200840 + 0.979624i \(0.435633\pi\)
−0.605994 + 0.795469i \(0.707224\pi\)
\(954\) 0 0
\(955\) −13.8270 35.2306i −0.447431 1.14004i
\(956\) 18.2966 + 46.6191i 0.591755 + 1.50777i
\(957\) 0 0
\(958\) −23.0316 + 100.908i −0.744116 + 3.26018i
\(959\) −1.26188 33.8037i −0.0407482 1.09158i
\(960\) 0 0
\(961\) 15.1942 + 26.3172i 0.490137 + 0.848942i
\(962\) −24.2682 + 42.0338i −0.782439 + 1.35522i
\(963\) 0 0
\(964\) −3.20909 42.8223i −0.103358 1.37921i
\(965\) −23.5270 + 29.5019i −0.757361 + 0.949700i
\(966\) 0 0
\(967\) 6.80866 + 8.53779i 0.218952 + 0.274557i 0.879161 0.476525i \(-0.158104\pi\)
−0.660209 + 0.751082i \(0.729532\pi\)
\(968\) −28.7450 + 26.6715i −0.923900 + 0.857254i
\(969\) 0 0
\(970\) −1.27798 + 0.871314i −0.0410336 + 0.0279762i
\(971\) 40.1308 + 6.04875i 1.28786 + 0.194114i 0.757039 0.653370i \(-0.226645\pi\)
0.530821 + 0.847484i \(0.321884\pi\)
\(972\) 0 0
\(973\) 3.45706 30.6581i 0.110828 0.982853i
\(974\) −70.4259 33.9153i −2.25659 1.08672i
\(975\) 0 0
\(976\) 112.098 + 104.011i 3.58816 + 3.32932i
\(977\) 3.44403 45.9574i 0.110184 1.47031i −0.618676 0.785646i \(-0.712331\pi\)
0.728861 0.684662i \(-0.240050\pi\)
\(978\) 0 0
\(979\) 34.8575 1.11405
\(980\) −59.4668 + 47.4061i −1.89960 + 1.51433i
\(981\) 0 0
\(982\) −17.3884 + 44.3048i −0.554885 + 1.41382i
\(983\) −1.97153 + 26.3082i −0.0628819 + 0.839101i 0.873210 + 0.487345i \(0.162035\pi\)
−0.936092 + 0.351756i \(0.885585\pi\)
\(984\) 0 0
\(985\) −9.77641 6.66544i −0.311502 0.212379i
\(986\) −88.6857 42.7088i −2.82433 1.36013i
\(987\) 0 0
\(988\) 57.2053 27.5486i 1.81994 0.876438i
\(989\) 12.9833 + 1.95692i 0.412845 + 0.0622264i
\(990\) 0 0
\(991\) 16.1905 2.44033i 0.514310 0.0775197i 0.113241 0.993568i \(-0.463877\pi\)
0.401069 + 0.916048i \(0.368639\pi\)
\(992\) 13.3268 12.3655i 0.423126 0.392604i
\(993\) 0 0
\(994\) −38.6044 + 16.8389i −1.22446 + 0.534097i
\(995\) 15.1118 18.9496i 0.479075 0.600741i
\(996\) 0 0
\(997\) −29.1045 8.97755i −0.921749 0.284322i −0.202668 0.979248i \(-0.564961\pi\)
−0.719082 + 0.694926i \(0.755437\pi\)
\(998\) 23.1148 40.0360i 0.731686 1.26732i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 441.2.bb.f.46.1 72
3.2 odd 2 inner 441.2.bb.f.46.6 yes 72
49.16 even 21 inner 441.2.bb.f.163.1 yes 72
147.65 odd 42 inner 441.2.bb.f.163.6 yes 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
441.2.bb.f.46.1 72 1.1 even 1 trivial
441.2.bb.f.46.6 yes 72 3.2 odd 2 inner
441.2.bb.f.163.1 yes 72 49.16 even 21 inner
441.2.bb.f.163.6 yes 72 147.65 odd 42 inner