Properties

Label 441.2.bb.f.172.1
Level $441$
Weight $2$
Character 441.172
Analytic conductor $3.521$
Analytic rank $0$
Dimension $72$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [441,2,Mod(37,441)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(441, base_ring=CyclotomicField(42)) chi = DirichletCharacter(H, H._module([0, 32])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("441.37"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 441 = 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 441.bb (of order \(21\), degree \(12\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [72,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.52140272914\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(6\) over \(\Q(\zeta_{21})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{21}]$

Embedding invariants

Embedding label 172.1
Character \(\chi\) \(=\) 441.172
Dual form 441.2.bb.f.100.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.49548 + 0.769754i) q^{2} +(3.98243 - 2.71518i) q^{4} +(-1.69843 - 0.255997i) q^{5} +(-2.62887 + 0.298395i) q^{7} +(-4.59158 + 5.75765i) q^{8} +(4.43546 - 0.668538i) q^{10} +(2.79059 + 2.58929i) q^{11} +(-0.351587 + 1.54041i) q^{13} +(6.33061 - 2.76822i) q^{14} +(3.50436 - 8.92897i) q^{16} +(0.385913 - 5.14966i) q^{17} +(1.59925 + 2.76998i) q^{19} +(-7.45897 + 3.59205i) q^{20} +(-8.95699 - 4.31346i) q^{22} +(-0.388520 - 5.18444i) q^{23} +(-1.95873 - 0.604187i) q^{25} +(-0.308353 - 4.11469i) q^{26} +(-9.65910 + 8.32618i) q^{28} +(-3.72828 + 1.79544i) q^{29} +(5.21402 - 9.03095i) q^{31} +(-0.771289 + 10.2921i) q^{32} +(3.00093 + 13.1479i) q^{34} +(4.54135 + 0.166180i) q^{35} +(-1.68787 - 1.15077i) q^{37} +(-6.12310 - 5.68141i) q^{38} +(9.27242 - 8.60355i) q^{40} +(4.23617 - 5.31199i) q^{41} +(-7.22334 - 9.05779i) q^{43} +(18.1437 + 2.73473i) q^{44} +(4.96028 + 12.6386i) q^{46} +(11.8376 - 3.65142i) q^{47} +(6.82192 - 1.56889i) q^{49} +5.35304 q^{50} +(2.78230 + 7.08918i) q^{52} +(1.50059 - 1.02308i) q^{53} +(-4.07678 - 5.11212i) q^{55} +(10.3526 - 16.5062i) q^{56} +(7.92180 - 7.35036i) q^{58} +(-1.27898 + 0.192775i) q^{59} +(7.03671 + 4.79755i) q^{61} +(-6.05989 + 26.5501i) q^{62} +(-1.72882 - 7.57447i) q^{64} +(0.991487 - 2.52627i) q^{65} +(3.93580 - 6.81700i) q^{67} +(-12.4453 - 21.5560i) q^{68} +(-11.4608 + 3.08102i) q^{70} +(-10.8760 - 5.23762i) q^{71} +(2.74013 + 0.845219i) q^{73} +(5.09786 + 1.57248i) q^{74} +(13.8899 + 6.68902i) q^{76} +(-8.10874 - 5.97421i) q^{77} +(-0.483737 - 0.837858i) q^{79} +(-8.23772 + 14.2681i) q^{80} +(-6.48236 + 16.5168i) q^{82} +(2.28170 + 9.99677i) q^{83} +(-1.97375 + 8.64755i) q^{85} +(24.9980 + 17.0433i) q^{86} +(-27.7215 + 4.17834i) q^{88} +(-0.289929 + 0.269015i) q^{89} +(0.464628 - 4.15444i) q^{91} +(-15.6239 - 19.5918i) q^{92} +(-26.7298 + 18.2241i) q^{94} +(-2.00711 - 5.11403i) q^{95} +7.55821 q^{97} +(-15.8163 + 9.16633i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q + 14 q^{4} - 28 q^{7} + 42 q^{13} - 26 q^{16} + 28 q^{19} + 8 q^{22} - 24 q^{25} - 28 q^{28} + 28 q^{31} + 28 q^{34} - 106 q^{37} + 70 q^{40} - 2 q^{43} + 60 q^{46} + 28 q^{49} + 70 q^{52} - 42 q^{55}+ \cdots + 56 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/441\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(344\)
\(\chi(n)\) \(e\left(\frac{8}{21}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.49548 + 0.769754i −1.76457 + 0.544298i −0.995491 0.0948530i \(-0.969762\pi\)
−0.769081 + 0.639151i \(0.779286\pi\)
\(3\) 0 0
\(4\) 3.98243 2.71518i 1.99122 1.35759i
\(5\) −1.69843 0.255997i −0.759562 0.114486i −0.242170 0.970234i \(-0.577859\pi\)
−0.517392 + 0.855748i \(0.673097\pi\)
\(6\) 0 0
\(7\) −2.62887 + 0.298395i −0.993620 + 0.112783i
\(8\) −4.59158 + 5.75765i −1.62337 + 2.03564i
\(9\) 0 0
\(10\) 4.43546 0.668538i 1.40262 0.211410i
\(11\) 2.79059 + 2.58929i 0.841395 + 0.780701i 0.977709 0.209965i \(-0.0673350\pi\)
−0.136314 + 0.990666i \(0.543525\pi\)
\(12\) 0 0
\(13\) −0.351587 + 1.54041i −0.0975128 + 0.427231i −0.999994 0.00349800i \(-0.998887\pi\)
0.902481 + 0.430729i \(0.141744\pi\)
\(14\) 6.33061 2.76822i 1.69193 0.739839i
\(15\) 0 0
\(16\) 3.50436 8.92897i 0.876091 2.23224i
\(17\) 0.385913 5.14966i 0.0935977 1.24898i −0.730653 0.682749i \(-0.760784\pi\)
0.824250 0.566226i \(-0.191597\pi\)
\(18\) 0 0
\(19\) 1.59925 + 2.76998i 0.366893 + 0.635477i 0.989078 0.147393i \(-0.0470882\pi\)
−0.622185 + 0.782870i \(0.713755\pi\)
\(20\) −7.45897 + 3.59205i −1.66788 + 0.803207i
\(21\) 0 0
\(22\) −8.95699 4.31346i −1.90964 0.919633i
\(23\) −0.388520 5.18444i −0.0810120 1.08103i −0.878515 0.477715i \(-0.841465\pi\)
0.797503 0.603315i \(-0.206154\pi\)
\(24\) 0 0
\(25\) −1.95873 0.604187i −0.391745 0.120837i
\(26\) −0.308353 4.11469i −0.0604731 0.806957i
\(27\) 0 0
\(28\) −9.65910 + 8.32618i −1.82540 + 1.57350i
\(29\) −3.72828 + 1.79544i −0.692324 + 0.333406i −0.746743 0.665113i \(-0.768384\pi\)
0.0544193 + 0.998518i \(0.482669\pi\)
\(30\) 0 0
\(31\) 5.21402 9.03095i 0.936466 1.62201i 0.164467 0.986383i \(-0.447409\pi\)
0.771999 0.635624i \(-0.219257\pi\)
\(32\) −0.771289 + 10.2921i −0.136346 + 1.81941i
\(33\) 0 0
\(34\) 3.00093 + 13.1479i 0.514655 + 2.25485i
\(35\) 4.54135 + 0.166180i 0.767628 + 0.0280895i
\(36\) 0 0
\(37\) −1.68787 1.15077i −0.277484 0.189185i 0.416579 0.909099i \(-0.363229\pi\)
−0.694063 + 0.719914i \(0.744181\pi\)
\(38\) −6.12310 5.68141i −0.993299 0.921646i
\(39\) 0 0
\(40\) 9.27242 8.60355i 1.46610 1.36034i
\(41\) 4.23617 5.31199i 0.661578 0.829593i −0.331936 0.943302i \(-0.607702\pi\)
0.993514 + 0.113709i \(0.0362732\pi\)
\(42\) 0 0
\(43\) −7.22334 9.05779i −1.10155 1.38130i −0.917195 0.398440i \(-0.869552\pi\)
−0.184355 0.982860i \(-0.559020\pi\)
\(44\) 18.1437 + 2.73473i 2.73527 + 0.412276i
\(45\) 0 0
\(46\) 4.96028 + 12.6386i 0.731354 + 1.86346i
\(47\) 11.8376 3.65142i 1.72669 0.532614i 0.737009 0.675883i \(-0.236238\pi\)
0.989684 + 0.143269i \(0.0457616\pi\)
\(48\) 0 0
\(49\) 6.82192 1.56889i 0.974560 0.224127i
\(50\) 5.35304 0.757034
\(51\) 0 0
\(52\) 2.78230 + 7.08918i 0.385835 + 0.983092i
\(53\) 1.50059 1.02308i 0.206121 0.140531i −0.455860 0.890052i \(-0.650668\pi\)
0.661981 + 0.749520i \(0.269716\pi\)
\(54\) 0 0
\(55\) −4.07678 5.11212i −0.549713 0.689318i
\(56\) 10.3526 16.5062i 1.38342 2.20574i
\(57\) 0 0
\(58\) 7.92180 7.35036i 1.04018 0.965149i
\(59\) −1.27898 + 0.192775i −0.166509 + 0.0250972i −0.231768 0.972771i \(-0.574451\pi\)
0.0652585 + 0.997868i \(0.479213\pi\)
\(60\) 0 0
\(61\) 7.03671 + 4.79755i 0.900958 + 0.614263i 0.922708 0.385501i \(-0.125971\pi\)
−0.0217495 + 0.999763i \(0.506924\pi\)
\(62\) −6.05989 + 26.5501i −0.769606 + 3.37186i
\(63\) 0 0
\(64\) −1.72882 7.57447i −0.216103 0.946808i
\(65\) 0.991487 2.52627i 0.122979 0.313345i
\(66\) 0 0
\(67\) 3.93580 6.81700i 0.480834 0.832829i −0.518924 0.854820i \(-0.673667\pi\)
0.999758 + 0.0219914i \(0.00700065\pi\)
\(68\) −12.4453 21.5560i −1.50922 2.61405i
\(69\) 0 0
\(70\) −11.4608 + 3.08102i −1.36982 + 0.368253i
\(71\) −10.8760 5.23762i −1.29075 0.621591i −0.342618 0.939475i \(-0.611314\pi\)
−0.948130 + 0.317883i \(0.897028\pi\)
\(72\) 0 0
\(73\) 2.74013 + 0.845219i 0.320708 + 0.0989254i 0.450929 0.892560i \(-0.351093\pi\)
−0.130221 + 0.991485i \(0.541569\pi\)
\(74\) 5.09786 + 1.57248i 0.592614 + 0.182797i
\(75\) 0 0
\(76\) 13.8899 + 6.68902i 1.59328 + 0.767283i
\(77\) −8.10874 5.97421i −0.924077 0.680825i
\(78\) 0 0
\(79\) −0.483737 0.837858i −0.0544247 0.0942664i 0.837529 0.546392i \(-0.183999\pi\)
−0.891954 + 0.452126i \(0.850666\pi\)
\(80\) −8.23772 + 14.2681i −0.921005 + 1.59523i
\(81\) 0 0
\(82\) −6.48236 + 16.5168i −0.715857 + 1.82397i
\(83\) 2.28170 + 9.99677i 0.250449 + 1.09729i 0.931124 + 0.364703i \(0.118829\pi\)
−0.680675 + 0.732585i \(0.738313\pi\)
\(84\) 0 0
\(85\) −1.97375 + 8.64755i −0.214083 + 0.937959i
\(86\) 24.9980 + 17.0433i 2.69560 + 1.83783i
\(87\) 0 0
\(88\) −27.7215 + 4.17834i −2.95512 + 0.445412i
\(89\) −0.289929 + 0.269015i −0.0307325 + 0.0285155i −0.695390 0.718633i \(-0.744768\pi\)
0.664657 + 0.747149i \(0.268578\pi\)
\(90\) 0 0
\(91\) 0.464628 4.15444i 0.0487062 0.435503i
\(92\) −15.6239 19.5918i −1.62890 2.04258i
\(93\) 0 0
\(94\) −26.7298 + 18.2241i −2.75697 + 1.87967i
\(95\) −2.00711 5.11403i −0.205925 0.524688i
\(96\) 0 0
\(97\) 7.55821 0.767420 0.383710 0.923454i \(-0.374646\pi\)
0.383710 + 0.923454i \(0.374646\pi\)
\(98\) −15.8163 + 9.16633i −1.59769 + 0.925939i
\(99\) 0 0
\(100\) −9.44097 + 2.91215i −0.944097 + 0.291215i
\(101\) −2.24733 5.72611i −0.223618 0.569769i 0.774400 0.632696i \(-0.218052\pi\)
−0.998018 + 0.0629268i \(0.979957\pi\)
\(102\) 0 0
\(103\) −18.8434 2.84019i −1.85670 0.279852i −0.877024 0.480446i \(-0.840475\pi\)
−0.979675 + 0.200594i \(0.935713\pi\)
\(104\) −7.25478 9.09720i −0.711389 0.892054i
\(105\) 0 0
\(106\) −2.95716 + 3.70817i −0.287225 + 0.360169i
\(107\) −6.36556 + 5.90638i −0.615382 + 0.570991i −0.925046 0.379855i \(-0.875974\pi\)
0.309664 + 0.950846i \(0.399783\pi\)
\(108\) 0 0
\(109\) −8.12935 7.54293i −0.778650 0.722482i 0.186991 0.982362i \(-0.440127\pi\)
−0.965641 + 0.259880i \(0.916317\pi\)
\(110\) 14.1086 + 9.61909i 1.34520 + 0.917144i
\(111\) 0 0
\(112\) −6.54815 + 24.5188i −0.618742 + 2.31681i
\(113\) 0.649444 + 2.84540i 0.0610945 + 0.267673i 0.996245 0.0865779i \(-0.0275931\pi\)
−0.935151 + 0.354251i \(0.884736\pi\)
\(114\) 0 0
\(115\) −0.667328 + 8.90487i −0.0622286 + 0.830384i
\(116\) −9.97266 + 17.2732i −0.925939 + 1.60377i
\(117\) 0 0
\(118\) 3.04328 1.46557i 0.280157 0.134917i
\(119\) 0.522118 + 13.6529i 0.0478625 + 1.25156i
\(120\) 0 0
\(121\) 0.260945 + 3.48208i 0.0237223 + 0.316552i
\(122\) −21.2529 6.55565i −1.92415 0.593521i
\(123\) 0 0
\(124\) −3.75613 50.1221i −0.337311 4.50110i
\(125\) 10.9097 + 5.25383i 0.975792 + 0.469917i
\(126\) 0 0
\(127\) 13.0092 6.26488i 1.15438 0.555919i 0.244031 0.969767i \(-0.421530\pi\)
0.910346 + 0.413849i \(0.135816\pi\)
\(128\) −0.176272 0.305312i −0.0155804 0.0269860i
\(129\) 0 0
\(130\) −0.529633 + 7.06746i −0.0464519 + 0.619857i
\(131\) 5.93545 15.1233i 0.518583 1.32133i −0.396490 0.918039i \(-0.629772\pi\)
0.915073 0.403289i \(-0.132133\pi\)
\(132\) 0 0
\(133\) −5.03077 6.80471i −0.436223 0.590044i
\(134\) −4.57429 + 20.0413i −0.395159 + 1.73130i
\(135\) 0 0
\(136\) 27.8780 + 25.8670i 2.39052 + 2.21808i
\(137\) 15.0611 2.27009i 1.28676 0.193947i 0.530198 0.847874i \(-0.322118\pi\)
0.756558 + 0.653927i \(0.226880\pi\)
\(138\) 0 0
\(139\) 2.45552 3.07913i 0.208275 0.261168i −0.666712 0.745316i \(-0.732299\pi\)
0.874986 + 0.484148i \(0.160870\pi\)
\(140\) 18.5368 11.6688i 1.56665 0.986190i
\(141\) 0 0
\(142\) 31.1726 + 4.69852i 2.61595 + 0.394291i
\(143\) −4.96970 + 3.38828i −0.415587 + 0.283342i
\(144\) 0 0
\(145\) 6.79186 2.09501i 0.564033 0.173981i
\(146\) −7.48856 −0.619758
\(147\) 0 0
\(148\) −9.84637 −0.809367
\(149\) −13.8941 + 4.28577i −1.13825 + 0.351104i −0.805900 0.592051i \(-0.798318\pi\)
−0.332352 + 0.943156i \(0.607842\pi\)
\(150\) 0 0
\(151\) 1.01797 0.694042i 0.0828415 0.0564804i −0.521191 0.853440i \(-0.674512\pi\)
0.604032 + 0.796960i \(0.293560\pi\)
\(152\) −23.2917 3.51065i −1.88920 0.284752i
\(153\) 0 0
\(154\) 24.8339 + 8.66680i 2.00117 + 0.698391i
\(155\) −11.1676 + 14.0037i −0.897000 + 1.12480i
\(156\) 0 0
\(157\) −3.10689 + 0.468288i −0.247957 + 0.0373735i −0.271845 0.962341i \(-0.587634\pi\)
0.0238878 + 0.999715i \(0.492396\pi\)
\(158\) 1.85210 + 1.71850i 0.147345 + 0.136717i
\(159\) 0 0
\(160\) 3.94474 17.2831i 0.311859 1.36635i
\(161\) 2.56838 + 13.5133i 0.202417 + 1.06500i
\(162\) 0 0
\(163\) −2.66250 + 6.78395i −0.208543 + 0.531360i −0.996426 0.0844649i \(-0.973082\pi\)
0.787883 + 0.615825i \(0.211177\pi\)
\(164\) 2.44727 32.6566i 0.191100 2.55005i
\(165\) 0 0
\(166\) −13.3890 23.1904i −1.03919 1.79993i
\(167\) −11.8835 + 5.72280i −0.919574 + 0.442843i −0.832919 0.553395i \(-0.813332\pi\)
−0.0866547 + 0.996238i \(0.527618\pi\)
\(168\) 0 0
\(169\) 9.46336 + 4.55731i 0.727951 + 0.350563i
\(170\) −1.73104 23.0991i −0.132765 1.77162i
\(171\) 0 0
\(172\) −53.3599 16.4594i −4.06866 1.25501i
\(173\) 1.44410 + 19.2702i 0.109793 + 1.46508i 0.731503 + 0.681838i \(0.238819\pi\)
−0.621711 + 0.783247i \(0.713562\pi\)
\(174\) 0 0
\(175\) 5.32952 + 1.00385i 0.402874 + 0.0758843i
\(176\) 32.8990 15.8433i 2.47985 1.19423i
\(177\) 0 0
\(178\) 0.516438 0.894497i 0.0387087 0.0670454i
\(179\) −0.108159 + 1.44328i −0.00808418 + 0.107876i −0.999786 0.0206827i \(-0.993416\pi\)
0.991702 + 0.128559i \(0.0410351\pi\)
\(180\) 0 0
\(181\) −3.38463 14.8290i −0.251578 1.10223i −0.930000 0.367561i \(-0.880193\pi\)
0.678422 0.734672i \(-0.262664\pi\)
\(182\) 2.03843 + 10.7250i 0.151098 + 0.794988i
\(183\) 0 0
\(184\) 31.6341 + 21.5678i 2.33210 + 1.59000i
\(185\) 2.57214 + 2.38660i 0.189107 + 0.175466i
\(186\) 0 0
\(187\) 14.4109 13.3714i 1.05383 0.977810i
\(188\) 37.2282 46.6827i 2.71515 3.40469i
\(189\) 0 0
\(190\) 8.94525 + 11.2170i 0.648957 + 0.813766i
\(191\) −8.47349 1.27717i −0.613120 0.0924130i −0.164861 0.986317i \(-0.552718\pi\)
−0.448259 + 0.893904i \(0.647956\pi\)
\(192\) 0 0
\(193\) 8.33106 + 21.2272i 0.599683 + 1.52797i 0.831682 + 0.555252i \(0.187378\pi\)
−0.231999 + 0.972716i \(0.574527\pi\)
\(194\) −18.8614 + 5.81796i −1.35417 + 0.417705i
\(195\) 0 0
\(196\) 22.9080 24.7707i 1.63629 1.76934i
\(197\) −3.97035 −0.282876 −0.141438 0.989947i \(-0.545173\pi\)
−0.141438 + 0.989947i \(0.545173\pi\)
\(198\) 0 0
\(199\) −5.82262 14.8358i −0.412755 1.05168i −0.974503 0.224374i \(-0.927966\pi\)
0.561748 0.827308i \(-0.310129\pi\)
\(200\) 12.4723 8.50350i 0.881928 0.601288i
\(201\) 0 0
\(202\) 10.0159 + 12.5595i 0.704715 + 0.883684i
\(203\) 9.26541 5.83249i 0.650304 0.409361i
\(204\) 0 0
\(205\) −8.55470 + 7.93760i −0.597486 + 0.554386i
\(206\) 49.2097 7.41717i 3.42860 0.516779i
\(207\) 0 0
\(208\) 12.5221 + 8.53745i 0.868254 + 0.591966i
\(209\) −2.70944 + 11.8708i −0.187416 + 0.821121i
\(210\) 0 0
\(211\) 0.450809 + 1.97512i 0.0310350 + 0.135973i 0.988072 0.153993i \(-0.0492132\pi\)
−0.957037 + 0.289966i \(0.906356\pi\)
\(212\) 3.19813 8.14871i 0.219649 0.559656i
\(213\) 0 0
\(214\) 11.3387 19.6392i 0.775096 1.34251i
\(215\) 9.94959 + 17.2332i 0.678556 + 1.17529i
\(216\) 0 0
\(217\) −11.0122 + 25.2970i −0.747556 + 1.71728i
\(218\) 26.0928 + 12.5657i 1.76723 + 0.851053i
\(219\) 0 0
\(220\) −30.1158 9.28950i −2.03041 0.626298i
\(221\) 7.79687 + 2.40502i 0.524475 + 0.161779i
\(222\) 0 0
\(223\) −20.1422 9.69996i −1.34882 0.649557i −0.386705 0.922203i \(-0.626387\pi\)
−0.962114 + 0.272646i \(0.912101\pi\)
\(224\) −1.04351 27.2868i −0.0697223 1.82318i
\(225\) 0 0
\(226\) −3.81093 6.60073i −0.253500 0.439074i
\(227\) 5.82472 10.0887i 0.386600 0.669611i −0.605390 0.795929i \(-0.706983\pi\)
0.991990 + 0.126318i \(0.0403160\pi\)
\(228\) 0 0
\(229\) −1.52259 + 3.87949i −0.100616 + 0.256364i −0.972314 0.233679i \(-0.924924\pi\)
0.871698 + 0.490043i \(0.163019\pi\)
\(230\) −5.18926 22.7356i −0.342170 1.49914i
\(231\) 0 0
\(232\) 6.78112 29.7100i 0.445203 1.95056i
\(233\) −13.3178 9.07991i −0.872477 0.594844i 0.0421648 0.999111i \(-0.486575\pi\)
−0.914641 + 0.404266i \(0.867527\pi\)
\(234\) 0 0
\(235\) −21.0401 + 3.17129i −1.37251 + 0.206872i
\(236\) −4.57003 + 4.24037i −0.297484 + 0.276025i
\(237\) 0 0
\(238\) −11.8123 33.6687i −0.765680 2.18242i
\(239\) −7.73805 9.70321i −0.500533 0.627648i 0.465817 0.884881i \(-0.345761\pi\)
−0.966349 + 0.257233i \(0.917189\pi\)
\(240\) 0 0
\(241\) 3.48357 2.37506i 0.224397 0.152991i −0.445904 0.895081i \(-0.647118\pi\)
0.670300 + 0.742090i \(0.266165\pi\)
\(242\) −3.33153 8.48859i −0.214159 0.545667i
\(243\) 0 0
\(244\) 41.0494 2.62792
\(245\) −11.9882 + 0.918253i −0.765898 + 0.0586650i
\(246\) 0 0
\(247\) −4.82917 + 1.48960i −0.307273 + 0.0947811i
\(248\) 28.0565 + 71.4868i 1.78159 + 4.53942i
\(249\) 0 0
\(250\) −31.2691 4.71306i −1.97763 0.298080i
\(251\) 5.32606 + 6.67867i 0.336178 + 0.421554i 0.920972 0.389628i \(-0.127396\pi\)
−0.584795 + 0.811181i \(0.698825\pi\)
\(252\) 0 0
\(253\) 12.3398 15.4736i 0.775797 0.972819i
\(254\) −27.6417 + 25.6478i −1.73440 + 1.60928i
\(255\) 0 0
\(256\) 12.0654 + 11.1951i 0.754090 + 0.699693i
\(257\) 1.35475 + 0.923655i 0.0845072 + 0.0576160i 0.604837 0.796350i \(-0.293238\pi\)
−0.520329 + 0.853966i \(0.674191\pi\)
\(258\) 0 0
\(259\) 4.78058 + 2.52157i 0.297051 + 0.156683i
\(260\) −2.91073 12.7528i −0.180516 0.790892i
\(261\) 0 0
\(262\) −3.17060 + 42.3087i −0.195880 + 2.61384i
\(263\) 11.1172 19.2555i 0.685513 1.18734i −0.287762 0.957702i \(-0.592911\pi\)
0.973275 0.229642i \(-0.0737555\pi\)
\(264\) 0 0
\(265\) −2.81055 + 1.35349i −0.172651 + 0.0831442i
\(266\) 17.7922 + 13.1086i 1.09091 + 0.803739i
\(267\) 0 0
\(268\) −2.83531 37.8346i −0.173194 2.31112i
\(269\) −18.9224 5.83678i −1.15372 0.355875i −0.341872 0.939747i \(-0.611061\pi\)
−0.811846 + 0.583872i \(0.801537\pi\)
\(270\) 0 0
\(271\) 0.803367 + 10.7202i 0.0488011 + 0.651205i 0.966949 + 0.254968i \(0.0820650\pi\)
−0.918148 + 0.396237i \(0.870316\pi\)
\(272\) −44.6287 21.4921i −2.70602 1.30315i
\(273\) 0 0
\(274\) −35.8373 + 17.2583i −2.16501 + 1.04261i
\(275\) −3.90159 6.75775i −0.235275 0.407508i
\(276\) 0 0
\(277\) 0.102015 1.36129i 0.00612948 0.0817922i −0.993300 0.115563i \(-0.963133\pi\)
0.999430 + 0.0337711i \(0.0107517\pi\)
\(278\) −3.75754 + 9.57406i −0.225362 + 0.574214i
\(279\) 0 0
\(280\) −21.8087 + 25.3845i −1.30332 + 1.51701i
\(281\) −3.34721 + 14.6651i −0.199678 + 0.874847i 0.771450 + 0.636289i \(0.219532\pi\)
−0.971128 + 0.238557i \(0.923326\pi\)
\(282\) 0 0
\(283\) 17.4476 + 16.1890i 1.03715 + 0.962339i 0.999317 0.0369450i \(-0.0117626\pi\)
0.0378373 + 0.999284i \(0.487953\pi\)
\(284\) −57.5341 + 8.67187i −3.41402 + 0.514581i
\(285\) 0 0
\(286\) 9.79364 12.2808i 0.579110 0.726181i
\(287\) −9.55126 + 15.2286i −0.563793 + 0.898915i
\(288\) 0 0
\(289\) −9.55991 1.44092i −0.562348 0.0847602i
\(290\) −15.3363 + 10.4561i −0.900579 + 0.614005i
\(291\) 0 0
\(292\) 13.2073 4.07391i 0.772899 0.238408i
\(293\) 31.1663 1.82075 0.910377 0.413780i \(-0.135792\pi\)
0.910377 + 0.413780i \(0.135792\pi\)
\(294\) 0 0
\(295\) 2.22161 0.129347
\(296\) 14.3757 4.43432i 0.835572 0.257740i
\(297\) 0 0
\(298\) 31.3736 21.3901i 1.81742 1.23910i
\(299\) 8.12273 + 1.22430i 0.469750 + 0.0708033i
\(300\) 0 0
\(301\) 21.6920 + 21.6563i 1.25031 + 1.24825i
\(302\) −2.00609 + 2.51556i −0.115438 + 0.144754i
\(303\) 0 0
\(304\) 30.3374 4.57263i 1.73997 0.262258i
\(305\) −10.7232 9.94969i −0.614009 0.569717i
\(306\) 0 0
\(307\) 0.121847 0.533847i 0.00695418 0.0304682i −0.971332 0.237728i \(-0.923597\pi\)
0.978286 + 0.207260i \(0.0664545\pi\)
\(308\) −48.5135 1.77524i −2.76432 0.101153i
\(309\) 0 0
\(310\) 17.0891 43.5422i 0.970593 2.47303i
\(311\) 1.56398 20.8699i 0.0886853 1.18342i −0.758336 0.651864i \(-0.773987\pi\)
0.847021 0.531559i \(-0.178394\pi\)
\(312\) 0 0
\(313\) 11.6552 + 20.1873i 0.658789 + 1.14106i 0.980929 + 0.194364i \(0.0622643\pi\)
−0.322141 + 0.946692i \(0.604402\pi\)
\(314\) 7.39272 3.56015i 0.417195 0.200911i
\(315\) 0 0
\(316\) −4.20138 2.02328i −0.236346 0.113818i
\(317\) 0.397685 + 5.30674i 0.0223362 + 0.298056i 0.997173 + 0.0751373i \(0.0239395\pi\)
−0.974837 + 0.222919i \(0.928441\pi\)
\(318\) 0 0
\(319\) −15.0530 4.64325i −0.842808 0.259972i
\(320\) 0.997244 + 13.3073i 0.0557476 + 0.743900i
\(321\) 0 0
\(322\) −16.8112 31.7451i −0.936854 1.76909i
\(323\) 14.8816 7.16661i 0.828036 0.398761i
\(324\) 0 0
\(325\) 1.61936 2.80481i 0.0898257 0.155583i
\(326\) 1.42226 18.9787i 0.0787715 1.05113i
\(327\) 0 0
\(328\) 11.1339 + 48.7808i 0.614766 + 2.69347i
\(329\) −30.0300 + 13.1314i −1.65561 + 0.723957i
\(330\) 0 0
\(331\) −10.3887 7.08286i −0.571012 0.389309i 0.243114 0.969998i \(-0.421831\pi\)
−0.814126 + 0.580688i \(0.802783\pi\)
\(332\) 36.2297 + 33.6162i 1.98836 + 1.84493i
\(333\) 0 0
\(334\) 25.2499 23.4285i 1.38162 1.28195i
\(335\) −8.42982 + 10.5707i −0.460570 + 0.577537i
\(336\) 0 0
\(337\) −7.44269 9.33284i −0.405429 0.508392i 0.536640 0.843812i \(-0.319693\pi\)
−0.942069 + 0.335419i \(0.891122\pi\)
\(338\) −27.1237 4.08823i −1.47533 0.222371i
\(339\) 0 0
\(340\) 15.6193 + 39.7973i 0.847076 + 2.15831i
\(341\) 37.9340 11.7011i 2.05424 0.633649i
\(342\) 0 0
\(343\) −17.4658 + 6.16003i −0.943064 + 0.332610i
\(344\) 85.3181 4.60004
\(345\) 0 0
\(346\) −18.4370 46.9768i −0.991181 2.52549i
\(347\) −3.29079 + 2.24362i −0.176659 + 0.120444i −0.648421 0.761282i \(-0.724570\pi\)
0.471762 + 0.881726i \(0.343618\pi\)
\(348\) 0 0
\(349\) 7.55174 + 9.46958i 0.404235 + 0.506895i 0.941729 0.336373i \(-0.109200\pi\)
−0.537494 + 0.843268i \(0.680629\pi\)
\(350\) −14.0725 + 1.59732i −0.752204 + 0.0853805i
\(351\) 0 0
\(352\) −28.8017 + 26.7241i −1.53514 + 1.42440i
\(353\) 4.39316 0.662162i 0.233824 0.0352433i −0.0310848 0.999517i \(-0.509896\pi\)
0.264909 + 0.964273i \(0.414658\pi\)
\(354\) 0 0
\(355\) 17.1314 + 11.6800i 0.909240 + 0.619909i
\(356\) −0.424200 + 1.85854i −0.0224826 + 0.0985026i
\(357\) 0 0
\(358\) −0.841063 3.68494i −0.0444516 0.194755i
\(359\) −0.213363 + 0.543640i −0.0112609 + 0.0286922i −0.936394 0.350952i \(-0.885858\pi\)
0.925133 + 0.379644i \(0.123953\pi\)
\(360\) 0 0
\(361\) 4.38480 7.59470i 0.230779 0.399721i
\(362\) 19.8610 + 34.4002i 1.04387 + 1.80804i
\(363\) 0 0
\(364\) −9.42968 17.8063i −0.494249 0.933304i
\(365\) −4.43756 2.13701i −0.232272 0.111856i
\(366\) 0 0
\(367\) −1.72093 0.530838i −0.0898320 0.0277095i 0.249513 0.968371i \(-0.419729\pi\)
−0.339345 + 0.940662i \(0.610206\pi\)
\(368\) −47.6532 14.6991i −2.48409 0.766241i
\(369\) 0 0
\(370\) −8.25582 3.97579i −0.429200 0.206692i
\(371\) −3.63956 + 3.13732i −0.188957 + 0.162881i
\(372\) 0 0
\(373\) 10.2267 + 17.7131i 0.529516 + 0.917149i 0.999407 + 0.0344248i \(0.0109599\pi\)
−0.469891 + 0.882724i \(0.655707\pi\)
\(374\) −25.6695 + 44.4608i −1.32734 + 2.29901i
\(375\) 0 0
\(376\) −33.3297 + 84.9226i −1.71885 + 4.37955i
\(377\) −1.45490 6.37431i −0.0749309 0.328294i
\(378\) 0 0
\(379\) 4.46660 19.5694i 0.229434 1.00521i −0.720670 0.693279i \(-0.756165\pi\)
0.950103 0.311936i \(-0.100977\pi\)
\(380\) −21.8787 14.9166i −1.12235 0.765206i
\(381\) 0 0
\(382\) 22.1285 3.33534i 1.13219 0.170651i
\(383\) −10.1445 + 9.41270i −0.518359 + 0.480967i −0.895420 0.445221i \(-0.853125\pi\)
0.377062 + 0.926188i \(0.376934\pi\)
\(384\) 0 0
\(385\) 12.2428 + 12.2226i 0.623949 + 0.622922i
\(386\) −37.1297 46.5592i −1.88985 2.36980i
\(387\) 0 0
\(388\) 30.1000 20.5219i 1.52810 1.04184i
\(389\) −8.90724 22.6953i −0.451615 1.15070i −0.957586 0.288146i \(-0.906961\pi\)
0.505971 0.862550i \(-0.331134\pi\)
\(390\) 0 0
\(391\) −26.8480 −1.35776
\(392\) −22.2903 + 46.4819i −1.12583 + 2.34769i
\(393\) 0 0
\(394\) 9.90794 3.05620i 0.499155 0.153969i
\(395\) 0.607106 + 1.54688i 0.0305468 + 0.0778320i
\(396\) 0 0
\(397\) 6.72395 + 1.01347i 0.337465 + 0.0508647i 0.315589 0.948896i \(-0.397798\pi\)
0.0218763 + 0.999761i \(0.493036\pi\)
\(398\) 25.9502 + 32.5405i 1.30076 + 1.63111i
\(399\) 0 0
\(400\) −12.2589 + 15.3721i −0.612943 + 0.768606i
\(401\) 23.6232 21.9191i 1.17969 1.09459i 0.185981 0.982553i \(-0.440454\pi\)
0.993704 0.112035i \(-0.0357368\pi\)
\(402\) 0 0
\(403\) 12.0781 + 11.2069i 0.601655 + 0.558254i
\(404\) −24.4972 16.7019i −1.21878 0.830952i
\(405\) 0 0
\(406\) −18.6321 + 21.6870i −0.924694 + 1.07631i
\(407\) −1.73048 7.58172i −0.0857766 0.375812i
\(408\) 0 0
\(409\) 0.451630 6.02658i 0.0223316 0.297995i −0.974844 0.222889i \(-0.928451\pi\)
0.997176 0.0751063i \(-0.0239296\pi\)
\(410\) 15.2381 26.3932i 0.752556 1.30347i
\(411\) 0 0
\(412\) −82.7543 + 39.8524i −4.07701 + 1.96339i
\(413\) 3.30475 0.888424i 0.162616 0.0437165i
\(414\) 0 0
\(415\) −1.31616 17.5629i −0.0646078 0.862131i
\(416\) −15.5829 4.80668i −0.764014 0.235667i
\(417\) 0 0
\(418\) −2.37626 31.7090i −0.116227 1.55094i
\(419\) −9.19292 4.42708i −0.449103 0.216277i 0.195640 0.980676i \(-0.437322\pi\)
−0.644744 + 0.764399i \(0.723036\pi\)
\(420\) 0 0
\(421\) −23.1814 + 11.1636i −1.12979 + 0.544080i −0.902905 0.429841i \(-0.858570\pi\)
−0.226889 + 0.973921i \(0.572855\pi\)
\(422\) −2.64534 4.58187i −0.128773 0.223042i
\(423\) 0 0
\(424\) −0.999501 + 13.3374i −0.0485401 + 0.647722i
\(425\) −3.86725 + 9.85360i −0.187589 + 0.477970i
\(426\) 0 0
\(427\) −19.9302 10.5124i −0.964488 0.508731i
\(428\) −9.31355 + 40.8053i −0.450188 + 1.97240i
\(429\) 0 0
\(430\) −38.0943 35.3464i −1.83707 1.70455i
\(431\) 6.66968 1.00529i 0.321267 0.0484232i 0.0135710 0.999908i \(-0.495680\pi\)
0.307696 + 0.951485i \(0.400442\pi\)
\(432\) 0 0
\(433\) −10.2693 + 12.8773i −0.493511 + 0.618843i −0.964752 0.263161i \(-0.915235\pi\)
0.471241 + 0.882005i \(0.343806\pi\)
\(434\) 8.00823 71.6050i 0.384407 3.43715i
\(435\) 0 0
\(436\) −52.8550 7.96660i −2.53129 0.381531i
\(437\) 13.7394 9.36740i 0.657247 0.448103i
\(438\) 0 0
\(439\) −8.65409 + 2.66943i −0.413037 + 0.127405i −0.494308 0.869287i \(-0.664578\pi\)
0.0812706 + 0.996692i \(0.474102\pi\)
\(440\) 48.1527 2.29559
\(441\) 0 0
\(442\) −21.3082 −1.01353
\(443\) 4.52712 1.39643i 0.215090 0.0663464i −0.185338 0.982675i \(-0.559338\pi\)
0.400427 + 0.916328i \(0.368862\pi\)
\(444\) 0 0
\(445\) 0.561293 0.382683i 0.0266078 0.0181409i
\(446\) 57.7310 + 8.70155i 2.73364 + 0.412030i
\(447\) 0 0
\(448\) 6.80504 + 19.3964i 0.321508 + 0.916395i
\(449\) −6.74742 + 8.46100i −0.318430 + 0.399299i −0.915126 0.403169i \(-0.867909\pi\)
0.596695 + 0.802468i \(0.296480\pi\)
\(450\) 0 0
\(451\) 25.5757 3.85492i 1.20431 0.181521i
\(452\) 10.3121 + 9.56825i 0.485042 + 0.450053i
\(453\) 0 0
\(454\) −6.76966 + 29.6598i −0.317716 + 1.39200i
\(455\) −1.85266 + 6.93709i −0.0868543 + 0.325216i
\(456\) 0 0
\(457\) −7.51500 + 19.1479i −0.351537 + 0.895701i 0.640293 + 0.768131i \(0.278813\pi\)
−0.991830 + 0.127570i \(0.959282\pi\)
\(458\) 0.813337 10.8532i 0.0380047 0.507138i
\(459\) 0 0
\(460\) 21.5207 + 37.2750i 1.00341 + 1.73795i
\(461\) 6.28012 3.02435i 0.292495 0.140858i −0.281882 0.959449i \(-0.590959\pi\)
0.574377 + 0.818591i \(0.305244\pi\)
\(462\) 0 0
\(463\) −5.06099 2.43725i −0.235204 0.113268i 0.312570 0.949895i \(-0.398810\pi\)
−0.547774 + 0.836626i \(0.684525\pi\)
\(464\) 2.96623 + 39.5816i 0.137704 + 1.83753i
\(465\) 0 0
\(466\) 40.2236 + 12.4073i 1.86332 + 0.574758i
\(467\) −2.93227 39.1284i −0.135689 1.81065i −0.485942 0.873991i \(-0.661523\pi\)
0.350253 0.936655i \(-0.386096\pi\)
\(468\) 0 0
\(469\) −8.31254 + 19.0954i −0.383837 + 0.881745i
\(470\) 50.0641 24.1096i 2.30929 1.11209i
\(471\) 0 0
\(472\) 4.76260 8.24907i 0.219217 0.379694i
\(473\) 3.29584 43.9799i 0.151543 2.02220i
\(474\) 0 0
\(475\) −1.45891 6.39188i −0.0669392 0.293280i
\(476\) 39.1494 + 52.9542i 1.79441 + 2.42715i
\(477\) 0 0
\(478\) 26.7793 + 18.2578i 1.22485 + 0.835092i
\(479\) 3.80819 + 3.53348i 0.174001 + 0.161449i 0.762366 0.647146i \(-0.224038\pi\)
−0.588365 + 0.808595i \(0.700228\pi\)
\(480\) 0 0
\(481\) 2.36609 2.19541i 0.107884 0.100102i
\(482\) −6.86498 + 8.60841i −0.312691 + 0.392102i
\(483\) 0 0
\(484\) 10.4936 + 13.1586i 0.476984 + 0.598119i
\(485\) −12.8371 1.93488i −0.582903 0.0878585i
\(486\) 0 0
\(487\) −8.32620 21.2148i −0.377296 0.961335i −0.985821 0.167800i \(-0.946334\pi\)
0.608525 0.793535i \(-0.291762\pi\)
\(488\) −59.9322 + 18.4866i −2.71300 + 0.836850i
\(489\) 0 0
\(490\) 29.2095 11.5195i 1.31955 0.520396i
\(491\) 13.6563 0.616302 0.308151 0.951337i \(-0.400290\pi\)
0.308151 + 0.951337i \(0.400290\pi\)
\(492\) 0 0
\(493\) 7.80713 + 19.8922i 0.351615 + 0.895901i
\(494\) 10.9045 7.43455i 0.490616 0.334496i
\(495\) 0 0
\(496\) −62.3653 78.2036i −2.80028 3.51144i
\(497\) 30.1546 + 10.5237i 1.35262 + 0.472051i
\(498\) 0 0
\(499\) 16.4777 15.2890i 0.737642 0.684432i −0.218991 0.975727i \(-0.570277\pi\)
0.956633 + 0.291295i \(0.0940862\pi\)
\(500\) 57.7122 8.69871i 2.58097 0.389018i
\(501\) 0 0
\(502\) −18.4320 12.5667i −0.822661 0.560881i
\(503\) 6.22443 27.2710i 0.277534 1.21595i −0.623367 0.781929i \(-0.714236\pi\)
0.900901 0.434025i \(-0.142907\pi\)
\(504\) 0 0
\(505\) 2.35107 + 10.3007i 0.104621 + 0.458376i
\(506\) −18.8829 + 48.1128i −0.839447 + 2.13888i
\(507\) 0 0
\(508\) 34.7978 60.2716i 1.54390 2.67412i
\(509\) 4.45457 + 7.71554i 0.197445 + 0.341985i 0.947699 0.319164i \(-0.103402\pi\)
−0.750254 + 0.661150i \(0.770069\pi\)
\(510\) 0 0
\(511\) −7.45566 1.40433i −0.329819 0.0621238i
\(512\) −38.0913 18.3438i −1.68341 0.810689i
\(513\) 0 0
\(514\) −4.09175 1.26214i −0.180479 0.0556705i
\(515\) 31.2772 + 9.64774i 1.37824 + 0.425130i
\(516\) 0 0
\(517\) 42.4885 + 20.4614i 1.86864 + 0.899891i
\(518\) −13.8708 2.61267i −0.609449 0.114794i
\(519\) 0 0
\(520\) 9.99289 + 17.3082i 0.438217 + 0.759014i
\(521\) 12.8583 22.2713i 0.563333 0.975721i −0.433870 0.900976i \(-0.642852\pi\)
0.997203 0.0747457i \(-0.0238145\pi\)
\(522\) 0 0
\(523\) −6.34565 + 16.1684i −0.277476 + 0.706997i 0.722404 + 0.691472i \(0.243037\pi\)
−0.999879 + 0.0155252i \(0.995058\pi\)
\(524\) −17.4248 76.3432i −0.761208 3.33507i
\(525\) 0 0
\(526\) −12.9207 + 56.6092i −0.563368 + 2.46828i
\(527\) −44.4941 30.3356i −1.93819 1.32144i
\(528\) 0 0
\(529\) −3.98431 + 0.600538i −0.173231 + 0.0261104i
\(530\) 5.97182 5.54104i 0.259399 0.240688i
\(531\) 0 0
\(532\) −38.5107 13.4399i −1.66965 0.582693i
\(533\) 6.69323 + 8.39304i 0.289916 + 0.363543i
\(534\) 0 0
\(535\) 12.3235 8.40201i 0.532791 0.363251i
\(536\) 21.1784 + 53.9617i 0.914768 + 2.33079i
\(537\) 0 0
\(538\) 51.7133 2.22952
\(539\) 23.0995 + 13.2858i 0.994966 + 0.572261i
\(540\) 0 0
\(541\) −26.1194 + 8.05678i −1.12296 + 0.346388i −0.799986 0.600019i \(-0.795160\pi\)
−0.322976 + 0.946407i \(0.604683\pi\)
\(542\) −10.2567 26.1336i −0.440563 1.12254i
\(543\) 0 0
\(544\) 52.7033 + 7.94375i 2.25964 + 0.340585i
\(545\) 11.8762 + 14.8923i 0.508720 + 0.637914i
\(546\) 0 0
\(547\) 1.44712 1.81463i 0.0618742 0.0775878i −0.749931 0.661516i \(-0.769913\pi\)
0.811806 + 0.583928i \(0.198485\pi\)
\(548\) 53.8160 49.9340i 2.29891 2.13307i
\(549\) 0 0
\(550\) 14.9382 + 13.8606i 0.636965 + 0.591017i
\(551\) −10.9358 7.45590i −0.465880 0.317632i
\(552\) 0 0
\(553\) 1.52170 + 2.05827i 0.0647091 + 0.0875267i
\(554\) 0.793285 + 3.47561i 0.0337035 + 0.147665i
\(555\) 0 0
\(556\) 1.41858 18.9296i 0.0601610 0.802793i
\(557\) −21.0582 + 36.4738i −0.892264 + 1.54545i −0.0551086 + 0.998480i \(0.517550\pi\)
−0.837155 + 0.546966i \(0.815783\pi\)
\(558\) 0 0
\(559\) 16.4923 7.94227i 0.697550 0.335922i
\(560\) 17.3983 39.9672i 0.735214 1.68892i
\(561\) 0 0
\(562\) −2.93561 39.1730i −0.123831 1.65241i
\(563\) −27.5244 8.49015i −1.16002 0.357817i −0.345759 0.938323i \(-0.612379\pi\)
−0.814256 + 0.580506i \(0.802855\pi\)
\(564\) 0 0
\(565\) −0.374621 4.99898i −0.0157604 0.210308i
\(566\) −56.0019 26.9691i −2.35393 1.13359i
\(567\) 0 0
\(568\) 80.0945 38.5715i 3.36069 1.61842i
\(569\) 11.2218 + 19.4367i 0.470442 + 0.814830i 0.999429 0.0338006i \(-0.0107611\pi\)
−0.528986 + 0.848630i \(0.677428\pi\)
\(570\) 0 0
\(571\) −1.51796 + 20.2558i −0.0635248 + 0.847679i 0.870887 + 0.491484i \(0.163545\pi\)
−0.934412 + 0.356195i \(0.884074\pi\)
\(572\) −10.5917 + 26.9872i −0.442861 + 1.12839i
\(573\) 0 0
\(574\) 12.1127 45.3548i 0.505576 1.89307i
\(575\) −2.37136 + 10.3896i −0.0988927 + 0.433277i
\(576\) 0 0
\(577\) 0.425690 + 0.394982i 0.0177217 + 0.0164433i 0.688984 0.724777i \(-0.258057\pi\)
−0.671262 + 0.741220i \(0.734248\pi\)
\(578\) 24.9657 3.76298i 1.03844 0.156519i
\(579\) 0 0
\(580\) 21.3598 26.7843i 0.886917 1.11216i
\(581\) −8.98128 25.5994i −0.372606 1.06204i
\(582\) 0 0
\(583\) 6.83658 + 1.03045i 0.283142 + 0.0426768i
\(584\) −17.4480 + 11.8958i −0.722003 + 0.492254i
\(585\) 0 0
\(586\) −77.7749 + 23.9904i −3.21285 + 0.991034i
\(587\) 4.76773 0.196785 0.0983926 0.995148i \(-0.468630\pi\)
0.0983926 + 0.995148i \(0.468630\pi\)
\(588\) 0 0
\(589\) 33.3541 1.37433
\(590\) −5.54399 + 1.71010i −0.228243 + 0.0704035i
\(591\) 0 0
\(592\) −16.1901 + 11.0382i −0.665409 + 0.453668i
\(593\) −7.56007 1.13950i −0.310455 0.0467935i −0.00803305 0.999968i \(-0.502557\pi\)
−0.302422 + 0.953174i \(0.597795\pi\)
\(594\) 0 0
\(595\) 2.60834 23.3222i 0.106931 0.956119i
\(596\) −43.6958 + 54.7928i −1.78985 + 2.24440i
\(597\) 0 0
\(598\) −21.2125 + 3.19728i −0.867445 + 0.130746i
\(599\) 25.0128 + 23.2085i 1.02199 + 0.948272i 0.998675 0.0514564i \(-0.0163863\pi\)
0.0233186 + 0.999728i \(0.492577\pi\)
\(600\) 0 0
\(601\) 9.93938 43.5473i 0.405436 1.77633i −0.199336 0.979931i \(-0.563878\pi\)
0.604772 0.796399i \(-0.293264\pi\)
\(602\) −70.8021 37.3454i −2.88568 1.52209i
\(603\) 0 0
\(604\) 2.16956 5.52795i 0.0882782 0.224929i
\(605\) 0.448204 5.98087i 0.0182221 0.243157i
\(606\) 0 0
\(607\) −3.40654 5.90030i −0.138267 0.239486i 0.788574 0.614940i \(-0.210820\pi\)
−0.926841 + 0.375455i \(0.877487\pi\)
\(608\) −29.7425 + 14.3232i −1.20622 + 0.580884i
\(609\) 0 0
\(610\) 34.4184 + 16.5750i 1.39356 + 0.671103i
\(611\) 1.46271 + 19.5185i 0.0591749 + 0.789634i
\(612\) 0 0
\(613\) −26.6691 8.22633i −1.07716 0.332258i −0.295099 0.955467i \(-0.595353\pi\)
−0.782056 + 0.623208i \(0.785829\pi\)
\(614\) 0.106864 + 1.42600i 0.00431267 + 0.0575486i
\(615\) 0 0
\(616\) 71.6293 19.2563i 2.88603 0.775857i
\(617\) −35.3753 + 17.0358i −1.42416 + 0.685837i −0.977901 0.209069i \(-0.932957\pi\)
−0.446255 + 0.894906i \(0.647243\pi\)
\(618\) 0 0
\(619\) −3.51094 + 6.08112i −0.141116 + 0.244421i −0.927917 0.372786i \(-0.878403\pi\)
0.786801 + 0.617207i \(0.211736\pi\)
\(620\) −6.45160 + 86.0906i −0.259102 + 3.45748i
\(621\) 0 0
\(622\) 12.1618 + 53.2843i 0.487644 + 2.13651i
\(623\) 0.681914 0.793720i 0.0273203 0.0317997i
\(624\) 0 0
\(625\) −8.71631 5.94268i −0.348652 0.237707i
\(626\) −44.6245 41.4055i −1.78356 1.65490i
\(627\) 0 0
\(628\) −11.1015 + 10.3007i −0.442998 + 0.411042i
\(629\) −6.57744 + 8.24785i −0.262260 + 0.328863i
\(630\) 0 0
\(631\) −15.0954 18.9290i −0.600937 0.753551i 0.384587 0.923089i \(-0.374344\pi\)
−0.985524 + 0.169538i \(0.945772\pi\)
\(632\) 7.04521 + 1.06189i 0.280243 + 0.0422399i
\(633\) 0 0
\(634\) −5.07730 12.9368i −0.201646 0.513784i
\(635\) −23.6990 + 7.31017i −0.940465 + 0.290095i
\(636\) 0 0
\(637\) 0.0182190 + 11.0601i 0.000721862 + 0.438218i
\(638\) 41.1387 1.62870
\(639\) 0 0
\(640\) 0.221227 + 0.563677i 0.00874477 + 0.0222813i
\(641\) −30.0872 + 20.5131i −1.18837 + 0.810218i −0.985614 0.169011i \(-0.945943\pi\)
−0.202757 + 0.979229i \(0.564990\pi\)
\(642\) 0 0
\(643\) −18.6589 23.3976i −0.735837 0.922710i 0.263281 0.964719i \(-0.415195\pi\)
−0.999117 + 0.0420095i \(0.986624\pi\)
\(644\) 46.9193 + 46.8421i 1.84888 + 1.84584i
\(645\) 0 0
\(646\) −31.6203 + 29.3393i −1.24408 + 1.15434i
\(647\) 43.1638 6.50590i 1.69695 0.255773i 0.771931 0.635706i \(-0.219291\pi\)
0.925014 + 0.379933i \(0.124053\pi\)
\(648\) 0 0
\(649\) −4.06827 2.77370i −0.159693 0.108877i
\(650\) −1.88206 + 8.24585i −0.0738205 + 0.323429i
\(651\) 0 0
\(652\) 7.81638 + 34.2458i 0.306113 + 1.34117i
\(653\) 8.97306 22.8630i 0.351143 0.894697i −0.640765 0.767737i \(-0.721383\pi\)
0.991908 0.126960i \(-0.0405221\pi\)
\(654\) 0 0
\(655\) −13.9525 + 24.1664i −0.545169 + 0.944260i
\(656\) −32.5855 56.4398i −1.27225 2.20360i
\(657\) 0 0
\(658\) 64.8313 55.8848i 2.52739 2.17862i
\(659\) 5.89632 + 2.83952i 0.229688 + 0.110612i 0.545189 0.838313i \(-0.316458\pi\)
−0.315500 + 0.948925i \(0.602172\pi\)
\(660\) 0 0
\(661\) −14.3186 4.41672i −0.556931 0.171790i 0.00349685 0.999994i \(-0.498887\pi\)
−0.560427 + 0.828204i \(0.689363\pi\)
\(662\) 31.3768 + 9.67845i 1.21949 + 0.376164i
\(663\) 0 0
\(664\) −68.0345 32.7637i −2.64025 1.27148i
\(665\) 6.80243 + 12.8452i 0.263787 + 0.498116i
\(666\) 0 0
\(667\) 10.7569 + 18.6314i 0.416508 + 0.721413i
\(668\) −31.7869 + 55.0565i −1.22987 + 2.13020i
\(669\) 0 0
\(670\) 12.8996 32.8678i 0.498357 1.26979i
\(671\) 7.21434 + 31.6081i 0.278506 + 1.22022i
\(672\) 0 0
\(673\) −4.09355 + 17.9350i −0.157795 + 0.691344i 0.832692 + 0.553736i \(0.186798\pi\)
−0.990487 + 0.137607i \(0.956059\pi\)
\(674\) 25.7571 + 17.5609i 0.992126 + 0.676420i
\(675\) 0 0
\(676\) 50.0611 7.54550i 1.92543 0.290211i
\(677\) −8.98052 + 8.33270i −0.345149 + 0.320252i −0.833630 0.552323i \(-0.813742\pi\)
0.488481 + 0.872574i \(0.337551\pi\)
\(678\) 0 0
\(679\) −19.8695 + 2.25533i −0.762523 + 0.0865518i
\(680\) −40.7270 51.0700i −1.56181 1.95845i
\(681\) 0 0
\(682\) −85.6566 + 58.3997i −3.27996 + 2.23624i
\(683\) −12.5728 32.0349i −0.481083 1.22578i −0.941178 0.337911i \(-0.890280\pi\)
0.460095 0.887870i \(-0.347815\pi\)
\(684\) 0 0
\(685\) −26.1614 −0.999575
\(686\) 38.8439 28.8166i 1.48307 1.10022i
\(687\) 0 0
\(688\) −106.190 + 32.7552i −4.04845 + 1.24878i
\(689\) 1.04837 + 2.67121i 0.0399399 + 0.101765i
\(690\) 0 0
\(691\) 7.81770 + 1.17833i 0.297399 + 0.0448257i 0.296047 0.955173i \(-0.404331\pi\)
0.00135224 + 0.999999i \(0.499570\pi\)
\(692\) 58.0730 + 72.8212i 2.20760 + 2.76825i
\(693\) 0 0
\(694\) 6.48507 8.13202i 0.246170 0.308687i
\(695\) −4.95879 + 4.60108i −0.188098 + 0.174529i
\(696\) 0 0
\(697\) −25.7201 23.8648i −0.974219 0.903943i
\(698\) −26.1345 17.8182i −0.989204 0.674428i
\(699\) 0 0
\(700\) 23.9501 10.4728i 0.905229 0.395835i
\(701\) −4.10883 18.0020i −0.155188 0.679925i −0.991328 0.131409i \(-0.958050\pi\)
0.836140 0.548516i \(-0.184807\pi\)
\(702\) 0 0
\(703\) 0.488287 6.51574i 0.0184161 0.245746i
\(704\) 14.7881 25.6137i 0.557346 0.965352i
\(705\) 0 0
\(706\) −10.4533 + 5.03406i −0.393417 + 0.189459i
\(707\) 7.61659 + 14.3826i 0.286451 + 0.540914i
\(708\) 0 0
\(709\) 2.78550 + 37.1700i 0.104612 + 1.39595i 0.764520 + 0.644600i \(0.222976\pi\)
−0.659908 + 0.751346i \(0.729405\pi\)
\(710\) −51.7418 15.9602i −1.94183 0.598977i
\(711\) 0 0
\(712\) −0.217663 2.90452i −0.00815728 0.108851i
\(713\) −48.8461 23.5231i −1.82930 0.880945i
\(714\) 0 0
\(715\) 9.30808 4.48254i 0.348103 0.167637i
\(716\) 3.48803 + 6.04144i 0.130354 + 0.225779i
\(717\) 0 0
\(718\) 0.113974 1.52088i 0.00425348 0.0567588i
\(719\) −1.39031 + 3.54246i −0.0518499 + 0.132111i −0.954452 0.298364i \(-0.903559\pi\)
0.902602 + 0.430476i \(0.141654\pi\)
\(720\) 0 0
\(721\) 50.3845 + 1.84370i 1.87642 + 0.0686629i
\(722\) −5.09614 + 22.3277i −0.189659 + 0.830949i
\(723\) 0 0
\(724\) −53.7425 49.8657i −1.99732 1.85325i
\(725\) 8.38746 1.26421i 0.311502 0.0469514i
\(726\) 0 0
\(727\) 3.48721 4.37282i 0.129333 0.162179i −0.712948 0.701217i \(-0.752641\pi\)
0.842282 + 0.539038i \(0.181212\pi\)
\(728\) 21.7864 + 21.7506i 0.807459 + 0.806130i
\(729\) 0 0
\(730\) 12.7188 + 1.91705i 0.470744 + 0.0709533i
\(731\) −49.4321 + 33.7022i −1.82831 + 1.24652i
\(732\) 0 0
\(733\) 36.9583 11.4001i 1.36509 0.421074i 0.476255 0.879307i \(-0.341994\pi\)
0.888832 + 0.458233i \(0.151518\pi\)
\(734\) 4.70317 0.173597
\(735\) 0 0
\(736\) 53.6586 1.97788
\(737\) 28.6344 8.83254i 1.05476 0.325351i
\(738\) 0 0
\(739\) −3.27473 + 2.23267i −0.120463 + 0.0821301i −0.622053 0.782975i \(-0.713701\pi\)
0.501590 + 0.865106i \(0.332749\pi\)
\(740\) 16.7234 + 2.52065i 0.614764 + 0.0926608i
\(741\) 0 0
\(742\) 6.66750 10.6307i 0.244772 0.390265i
\(743\) −1.00788 + 1.26384i −0.0369754 + 0.0463657i −0.799975 0.600033i \(-0.795154\pi\)
0.763000 + 0.646398i \(0.223726\pi\)
\(744\) 0 0
\(745\) 24.6954 3.72223i 0.904769 0.136372i
\(746\) −39.1552 36.3307i −1.43357 1.33016i
\(747\) 0 0
\(748\) 21.0848 92.3786i 0.770937 3.37770i
\(749\) 14.9718 17.4265i 0.547057 0.636752i
\(750\) 0 0
\(751\) −9.34928 + 23.8216i −0.341160 + 0.869262i 0.652598 + 0.757705i \(0.273679\pi\)
−0.993758 + 0.111557i \(0.964416\pi\)
\(752\) 8.87986 118.494i 0.323815 4.32101i
\(753\) 0 0
\(754\) 8.53732 + 14.7871i 0.310911 + 0.538513i
\(755\) −1.90663 + 0.918185i −0.0693894 + 0.0334162i
\(756\) 0 0
\(757\) −10.0801 4.85434i −0.366369 0.176434i 0.241637 0.970367i \(-0.422316\pi\)
−0.608005 + 0.793933i \(0.708030\pi\)
\(758\) 3.91735 + 52.2734i 0.142284 + 1.89865i
\(759\) 0 0
\(760\) 38.6606 + 11.9252i 1.40237 + 0.432573i
\(761\) −1.23188 16.4383i −0.0446555 0.595886i −0.973982 0.226626i \(-0.927230\pi\)
0.929326 0.369260i \(-0.120389\pi\)
\(762\) 0 0
\(763\) 23.6218 + 17.4036i 0.855166 + 0.630054i
\(764\) −37.2128 + 17.9207i −1.34631 + 0.648350i
\(765\) 0 0
\(766\) 18.0699 31.2980i 0.652892 1.13084i
\(767\) 0.152721 2.03793i 0.00551445 0.0735852i
\(768\) 0 0
\(769\) 1.08770 + 4.76553i 0.0392235 + 0.171849i 0.990746 0.135730i \(-0.0433381\pi\)
−0.951522 + 0.307580i \(0.900481\pi\)
\(770\) −39.9600 21.0774i −1.44006 0.759576i
\(771\) 0 0
\(772\) 90.8135 + 61.9156i 3.26845 + 2.22839i
\(773\) 23.4654 + 21.7727i 0.843990 + 0.783108i 0.978161 0.207850i \(-0.0666465\pi\)
−0.134171 + 0.990958i \(0.542837\pi\)
\(774\) 0 0
\(775\) −15.6692 + 14.5389i −0.562855 + 0.522253i
\(776\) −34.7041 + 43.5175i −1.24580 + 1.56219i
\(777\) 0 0
\(778\) 39.6976 + 49.7793i 1.42323 + 1.78467i
\(779\) 21.4888 + 3.23892i 0.769916 + 0.116046i
\(780\) 0 0
\(781\) −16.7889 42.7773i −0.600752 1.53069i
\(782\) 66.9987 20.6664i 2.39587 0.739027i
\(783\) 0 0
\(784\) 9.89794 66.4107i 0.353498 2.37181i
\(785\) 5.39672 0.192617
\(786\) 0 0
\(787\) 1.41670 + 3.60970i 0.0505000 + 0.128672i 0.953898 0.300131i \(-0.0970305\pi\)
−0.903398 + 0.428803i \(0.858935\pi\)
\(788\) −15.8117 + 10.7802i −0.563267 + 0.384029i
\(789\) 0 0
\(790\) −2.70574 3.39289i −0.0962659 0.120714i
\(791\) −2.55636 7.28640i −0.0908936 0.259074i
\(792\) 0 0
\(793\) −9.86418 + 9.15262i −0.350287 + 0.325019i
\(794\) −17.5596 + 2.64669i −0.623168 + 0.0939274i
\(795\) 0 0
\(796\) −63.4700 43.2731i −2.24963 1.53377i
\(797\) −9.11843 + 39.9504i −0.322991 + 1.41512i 0.509209 + 0.860643i \(0.329938\pi\)
−0.832201 + 0.554475i \(0.812919\pi\)
\(798\) 0 0
\(799\) −14.2353 62.3687i −0.503607 2.20645i
\(800\) 7.72912 19.6935i 0.273266 0.696270i
\(801\) 0 0
\(802\) −42.0789 + 72.8828i −1.48586 + 2.57358i
\(803\) 5.45807 + 9.45366i 0.192611 + 0.333613i
\(804\) 0 0
\(805\) −0.902855 23.6089i −0.0318215 0.832104i
\(806\) −38.7673 18.6694i −1.36552 0.657600i
\(807\) 0 0
\(808\) 43.2878 + 13.3525i 1.52286 + 0.469739i
\(809\) −16.4538 5.07532i −0.578485 0.178439i −0.00831439 0.999965i \(-0.502647\pi\)
−0.570170 + 0.821527i \(0.693123\pi\)
\(810\) 0 0
\(811\) −2.68918 1.29504i −0.0944298 0.0454750i 0.386073 0.922468i \(-0.373831\pi\)
−0.480502 + 0.876993i \(0.659546\pi\)
\(812\) 21.0626 48.3847i 0.739153 1.69797i
\(813\) 0 0
\(814\) 10.1544 + 17.5880i 0.355913 + 0.616459i
\(815\) 6.25876 10.8405i 0.219235 0.379726i
\(816\) 0 0
\(817\) 13.5380 34.4942i 0.473634 1.20680i
\(818\) 3.51195 + 15.3869i 0.122792 + 0.537989i
\(819\) 0 0
\(820\) −12.5165 + 54.8385i −0.437096 + 1.91504i
\(821\) 18.7449 + 12.7801i 0.654203 + 0.446028i 0.844396 0.535719i \(-0.179959\pi\)
−0.190194 + 0.981747i \(0.560912\pi\)
\(822\) 0 0
\(823\) −12.7230 + 1.91768i −0.443495 + 0.0668461i −0.366994 0.930223i \(-0.619613\pi\)
−0.0765011 + 0.997069i \(0.524375\pi\)
\(824\) 102.874 95.4530i 3.58378 3.32526i
\(825\) 0 0
\(826\) −7.56308 + 4.76089i −0.263153 + 0.165653i
\(827\) −14.3930 18.0482i −0.500492 0.627598i 0.465848 0.884865i \(-0.345749\pi\)
−0.966340 + 0.257267i \(0.917178\pi\)
\(828\) 0 0
\(829\) 14.7871 10.0817i 0.513576 0.350151i −0.278635 0.960397i \(-0.589882\pi\)
0.792212 + 0.610247i \(0.208930\pi\)
\(830\) 16.8036 + 42.8149i 0.583262 + 1.48613i
\(831\) 0 0
\(832\) 12.2756 0.425579
\(833\) −5.44655 35.7360i −0.188712 1.23818i
\(834\) 0 0
\(835\) 21.6484 6.67763i 0.749172 0.231089i
\(836\) 21.4412 + 54.6313i 0.741560 + 1.88946i
\(837\) 0 0
\(838\) 26.3485 + 3.97140i 0.910195 + 0.137190i
\(839\) 15.0875 + 18.9191i 0.520878 + 0.653160i 0.970795 0.239910i \(-0.0771180\pi\)
−0.449917 + 0.893070i \(0.648547\pi\)
\(840\) 0 0
\(841\) −7.40477 + 9.28529i −0.255337 + 0.320182i
\(842\) 49.2556 45.7025i 1.69746 1.57501i
\(843\) 0 0
\(844\) 7.15812 + 6.64177i 0.246393 + 0.228619i
\(845\) −14.9062 10.1629i −0.512789 0.349614i
\(846\) 0 0
\(847\) −1.72503 9.07606i −0.0592726 0.311857i
\(848\) −3.87647 16.9839i −0.133119 0.583231i
\(849\) 0 0
\(850\) 2.06581 27.5663i 0.0708567 0.945517i
\(851\) −5.31032 + 9.19775i −0.182036 + 0.315295i
\(852\) 0 0
\(853\) 21.8247 10.5102i 0.747263 0.359863i −0.0211846 0.999776i \(-0.506744\pi\)
0.768448 + 0.639913i \(0.221029\pi\)
\(854\) 57.8273 + 10.8922i 1.97881 + 0.372723i
\(855\) 0 0
\(856\) −4.77892 63.7702i −0.163340 2.17962i
\(857\) −26.4497 8.15867i −0.903506 0.278695i −0.192017 0.981392i \(-0.561503\pi\)
−0.711489 + 0.702697i \(0.751979\pi\)
\(858\) 0 0
\(859\) 3.79189 + 50.5993i 0.129378 + 1.72643i 0.563967 + 0.825797i \(0.309275\pi\)
−0.434589 + 0.900629i \(0.643106\pi\)
\(860\) 86.4147 + 41.6151i 2.94672 + 1.41906i
\(861\) 0 0
\(862\) −15.8702 + 7.64270i −0.540542 + 0.260311i
\(863\) 12.0287 + 20.8344i 0.409463 + 0.709211i 0.994830 0.101558i \(-0.0323827\pi\)
−0.585367 + 0.810769i \(0.699049\pi\)
\(864\) 0 0
\(865\) 2.48041 33.0988i 0.0843365 1.12539i
\(866\) 15.7145 40.0399i 0.534000 1.36061i
\(867\) 0 0
\(868\) 24.8306 + 130.644i 0.842806 + 4.43434i
\(869\) 0.819544 3.59066i 0.0278011 0.121805i
\(870\) 0 0
\(871\) 9.11716 + 8.45949i 0.308923 + 0.286639i
\(872\) 80.7561 12.1720i 2.73475 0.412197i
\(873\) 0 0
\(874\) −27.0760 + 33.9522i −0.915858 + 1.14845i
\(875\) −30.2479 10.5562i −1.02256 0.356866i
\(876\) 0 0
\(877\) 4.04456 + 0.609620i 0.136575 + 0.0205854i 0.216974 0.976177i \(-0.430381\pi\)
−0.0803989 + 0.996763i \(0.525619\pi\)
\(878\) 19.5413 13.3230i 0.659487 0.449631i
\(879\) 0 0
\(880\) −59.9325 + 18.4867i −2.02032 + 0.623187i
\(881\) −16.5619 −0.557983 −0.278992 0.960294i \(-0.590000\pi\)
−0.278992 + 0.960294i \(0.590000\pi\)
\(882\) 0 0
\(883\) 30.5572 1.02833 0.514166 0.857690i \(-0.328101\pi\)
0.514166 + 0.857690i \(0.328101\pi\)
\(884\) 37.5806 11.5921i 1.26397 0.389883i
\(885\) 0 0
\(886\) −10.2224 + 6.96953i −0.343429 + 0.234146i
\(887\) 9.01759 + 1.35918i 0.302781 + 0.0456369i 0.298676 0.954355i \(-0.403455\pi\)
0.00410539 + 0.999992i \(0.498693\pi\)
\(888\) 0 0
\(889\) −32.3300 + 20.3514i −1.08431 + 0.682566i
\(890\) −1.10612 + 1.38704i −0.0370774 + 0.0464935i
\(891\) 0 0
\(892\) −106.552 + 16.0601i −3.56762 + 0.537732i
\(893\) 29.0456 + 26.9504i 0.971975 + 0.901861i
\(894\) 0 0
\(895\) 0.553177 2.42363i 0.0184907 0.0810129i
\(896\) 0.554500 + 0.750027i 0.0185246 + 0.0250567i
\(897\) 0 0
\(898\) 10.3252 26.3081i 0.344556 0.877913i
\(899\) −3.22476 + 43.0314i −0.107552 + 1.43518i
\(900\) 0 0
\(901\) −4.68943 8.12232i −0.156227 0.270594i
\(902\) −60.8564 + 29.3069i −2.02630 + 0.975812i
\(903\) 0 0
\(904\) −19.3648 9.32559i −0.644064 0.310165i
\(905\) 1.95237 + 26.0526i 0.0648990 + 0.866017i
\(906\) 0 0
\(907\) 20.6163 + 6.35929i 0.684553 + 0.211157i 0.617474 0.786591i \(-0.288156\pi\)
0.0670789 + 0.997748i \(0.478632\pi\)
\(908\) −4.19608 55.9927i −0.139252 1.85818i
\(909\) 0 0
\(910\) −0.716562 18.7375i −0.0237538 0.621141i
\(911\) 43.1242 20.7675i 1.42877 0.688059i 0.450001 0.893028i \(-0.351424\pi\)
0.978768 + 0.204969i \(0.0657095\pi\)
\(912\) 0 0
\(913\) −19.5173 + 33.8049i −0.645927 + 1.11878i
\(914\) 4.01436 53.5680i 0.132783 1.77187i
\(915\) 0 0
\(916\) 4.46990 + 19.5839i 0.147690 + 0.647071i
\(917\) −11.0908 + 41.5283i −0.366251 + 1.37138i
\(918\) 0 0
\(919\) −8.42115 5.74144i −0.277788 0.189393i 0.416410 0.909177i \(-0.363288\pi\)
−0.694198 + 0.719784i \(0.744241\pi\)
\(920\) −48.2071 44.7296i −1.58934 1.47469i
\(921\) 0 0
\(922\) −13.3439 + 12.3814i −0.439459 + 0.407758i
\(923\) 11.8919 14.9120i 0.391428 0.490835i
\(924\) 0 0
\(925\) 2.61080 + 3.27383i 0.0858424 + 0.107643i
\(926\) 14.5057 + 2.18638i 0.476687 + 0.0718490i
\(927\) 0 0
\(928\) −15.6034 39.7568i −0.512206 1.30508i
\(929\) 8.54408 2.63550i 0.280322 0.0864679i −0.151406 0.988472i \(-0.548380\pi\)
0.431728 + 0.902004i \(0.357904\pi\)
\(930\) 0 0
\(931\) 15.2557 + 16.3876i 0.499987 + 0.537080i
\(932\) −77.6907 −2.54484
\(933\) 0 0
\(934\) 37.4367 + 95.3871i 1.22497 + 3.12116i
\(935\) −27.8990 + 19.0212i −0.912393 + 0.622059i
\(936\) 0 0
\(937\) −12.2362 15.3438i −0.399741 0.501259i 0.540701 0.841215i \(-0.318159\pi\)
−0.940441 + 0.339956i \(0.889588\pi\)
\(938\) 6.04500 54.0509i 0.197376 1.76482i
\(939\) 0 0
\(940\) −75.1802 + 69.7571i −2.45211 + 2.27522i
\(941\) −15.9280 + 2.40076i −0.519239 + 0.0782627i −0.403433 0.915009i \(-0.632183\pi\)
−0.115806 + 0.993272i \(0.536945\pi\)
\(942\) 0 0
\(943\) −29.1855 19.8983i −0.950410 0.647979i
\(944\) −2.76073 + 12.0955i −0.0898540 + 0.393676i
\(945\) 0 0
\(946\) 25.6290 + 112.288i 0.833272 + 3.65080i
\(947\) 0.772015 1.96706i 0.0250871 0.0639209i −0.917781 0.397086i \(-0.870021\pi\)
0.942868 + 0.333165i \(0.108117\pi\)
\(948\) 0 0
\(949\) −2.26538 + 3.92375i −0.0735372 + 0.127370i
\(950\) 8.56085 + 14.8278i 0.277751 + 0.481078i
\(951\) 0 0
\(952\) −81.0062 59.6823i −2.62543 1.93431i
\(953\) 14.3178 + 6.89510i 0.463799 + 0.223354i 0.651165 0.758936i \(-0.274281\pi\)
−0.187366 + 0.982290i \(0.559995\pi\)
\(954\) 0 0
\(955\) 14.0647 + 4.33838i 0.455123 + 0.140387i
\(956\) −57.1622 17.6322i −1.84876 0.570266i
\(957\) 0 0
\(958\) −12.2232 5.88638i −0.394913 0.190180i
\(959\) −38.9163 + 10.4619i −1.25667 + 0.337834i
\(960\) 0 0
\(961\) −38.8721 67.3284i −1.25394 2.17188i
\(962\) −4.21460 + 7.29990i −0.135884 + 0.235358i
\(963\) 0 0
\(964\) 7.42438 18.9170i 0.239123 0.609276i
\(965\) −8.71564 38.1857i −0.280566 1.22924i
\(966\) 0 0
\(967\) 9.70518 42.5212i 0.312098 1.36739i −0.538967 0.842327i \(-0.681185\pi\)
0.851064 0.525062i \(-0.175958\pi\)
\(968\) −21.2467 14.4858i −0.682896 0.465591i
\(969\) 0 0
\(970\) 33.5241 5.05295i 1.07640 0.162240i
\(971\) −34.1207 + 31.6594i −1.09499 + 1.01600i −0.0951976 + 0.995458i \(0.530348\pi\)
−0.999789 + 0.0205407i \(0.993461\pi\)
\(972\) 0 0
\(973\) −5.53645 + 8.82734i −0.177491 + 0.282992i
\(974\) 37.1081 + 46.5321i 1.18902 + 1.49098i
\(975\) 0 0
\(976\) 67.4963 46.0182i 2.16050 1.47301i
\(977\) 3.83768 + 9.77825i 0.122778 + 0.312834i 0.979027 0.203729i \(-0.0653063\pi\)
−0.856249 + 0.516563i \(0.827211\pi\)
\(978\) 0 0
\(979\) −1.50563 −0.0481203
\(980\) −45.2490 + 36.2069i −1.44543 + 1.15659i
\(981\) 0 0
\(982\) −34.0791 + 10.5120i −1.08751 + 0.335452i
\(983\) −1.40490 3.57963i −0.0448094 0.114173i 0.906717 0.421740i \(-0.138580\pi\)
−0.951526 + 0.307567i \(0.900485\pi\)
\(984\) 0 0
\(985\) 6.74337 + 1.01640i 0.214862 + 0.0323852i
\(986\) −34.7947 43.6311i −1.10809 1.38950i
\(987\) 0 0
\(988\) −15.1873 + 19.0443i −0.483173 + 0.605879i
\(989\) −44.1531 + 40.9681i −1.40399 + 1.30271i
\(990\) 0 0
\(991\) 7.60080 + 7.05251i 0.241447 + 0.224030i 0.791609 0.611028i \(-0.209244\pi\)
−0.550162 + 0.835058i \(0.685434\pi\)
\(992\) 88.9263 + 60.6289i 2.82341 + 1.92497i
\(993\) 0 0
\(994\) −83.3508 3.05002i −2.64373 0.0967409i
\(995\) 6.09140 + 26.6882i 0.193110 + 0.846072i
\(996\) 0 0
\(997\) 4.54087 60.5937i 0.143811 1.91902i −0.199674 0.979862i \(-0.563988\pi\)
0.343484 0.939158i \(-0.388393\pi\)
\(998\) −29.3509 + 50.8373i −0.929087 + 1.60923i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 441.2.bb.f.172.1 yes 72
3.2 odd 2 inner 441.2.bb.f.172.6 yes 72
49.2 even 21 inner 441.2.bb.f.100.1 72
147.2 odd 42 inner 441.2.bb.f.100.6 yes 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
441.2.bb.f.100.1 72 49.2 even 21 inner
441.2.bb.f.100.6 yes 72 147.2 odd 42 inner
441.2.bb.f.172.1 yes 72 1.1 even 1 trivial
441.2.bb.f.172.6 yes 72 3.2 odd 2 inner