Properties

Label 4400.2.b.x.4049.1
Level $4400$
Weight $2$
Character 4400.4049
Analytic conductor $35.134$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4400,2,Mod(4049,4400)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4400, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4400.4049"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 4400 = 2^{4} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4400.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,-2,0,-4,0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(35.1341768894\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{5})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 275)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 4049.1
Root \(-1.61803i\) of defining polynomial
Character \(\chi\) \(=\) 4400.4049
Dual form 4400.2.b.x.4049.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.61803i q^{3} -2.85410i q^{7} -3.85410 q^{9} -1.00000 q^{11} +6.23607i q^{13} +0.618034i q^{17} -6.70820 q^{19} -7.47214 q^{21} +4.09017i q^{23} +2.23607i q^{27} +1.38197 q^{29} +3.00000 q^{31} +2.61803i q^{33} -10.2361i q^{37} +16.3262 q^{39} -3.00000 q^{41} +6.00000i q^{43} +11.9443i q^{47} -1.14590 q^{49} +1.61803 q^{51} +9.32624i q^{53} +17.5623i q^{57} +0.527864 q^{59} +0.0901699 q^{61} +11.0000i q^{63} +8.00000i q^{67} +10.7082 q^{69} -8.18034 q^{71} +10.3820i q^{73} +2.85410i q^{77} +5.85410 q^{79} -5.70820 q^{81} +10.1459i q^{83} -3.61803i q^{87} +6.90983 q^{89} +17.7984 q^{91} -7.85410i q^{93} -1.61803i q^{97} +3.85410 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{9} - 4 q^{11} - 12 q^{21} + 10 q^{29} + 12 q^{31} + 34 q^{39} - 12 q^{41} - 18 q^{49} + 2 q^{51} + 20 q^{59} - 22 q^{61} + 16 q^{69} + 12 q^{71} + 10 q^{79} + 4 q^{81} + 50 q^{89} + 22 q^{91}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4400\mathbb{Z}\right)^\times\).

\(n\) \(177\) \(1201\) \(2751\) \(3301\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 2.61803i − 1.51152i −0.654847 0.755761i \(-0.727267\pi\)
0.654847 0.755761i \(-0.272733\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) − 2.85410i − 1.07875i −0.842066 0.539375i \(-0.818661\pi\)
0.842066 0.539375i \(-0.181339\pi\)
\(8\) 0 0
\(9\) −3.85410 −1.28470
\(10\) 0 0
\(11\) −1.00000 −0.301511
\(12\) 0 0
\(13\) 6.23607i 1.72957i 0.502139 + 0.864787i \(0.332547\pi\)
−0.502139 + 0.864787i \(0.667453\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.618034i 0.149895i 0.997187 + 0.0749476i \(0.0238790\pi\)
−0.997187 + 0.0749476i \(0.976121\pi\)
\(18\) 0 0
\(19\) −6.70820 −1.53897 −0.769484 0.638666i \(-0.779486\pi\)
−0.769484 + 0.638666i \(0.779486\pi\)
\(20\) 0 0
\(21\) −7.47214 −1.63055
\(22\) 0 0
\(23\) 4.09017i 0.852859i 0.904521 + 0.426430i \(0.140229\pi\)
−0.904521 + 0.426430i \(0.859771\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 2.23607i 0.430331i
\(28\) 0 0
\(29\) 1.38197 0.256625 0.128312 0.991734i \(-0.459044\pi\)
0.128312 + 0.991734i \(0.459044\pi\)
\(30\) 0 0
\(31\) 3.00000 0.538816 0.269408 0.963026i \(-0.413172\pi\)
0.269408 + 0.963026i \(0.413172\pi\)
\(32\) 0 0
\(33\) 2.61803i 0.455741i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 10.2361i − 1.68280i −0.540413 0.841400i \(-0.681732\pi\)
0.540413 0.841400i \(-0.318268\pi\)
\(38\) 0 0
\(39\) 16.3262 2.61429
\(40\) 0 0
\(41\) −3.00000 −0.468521 −0.234261 0.972174i \(-0.575267\pi\)
−0.234261 + 0.972174i \(0.575267\pi\)
\(42\) 0 0
\(43\) 6.00000i 0.914991i 0.889212 + 0.457496i \(0.151253\pi\)
−0.889212 + 0.457496i \(0.848747\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 11.9443i 1.74225i 0.491060 + 0.871126i \(0.336609\pi\)
−0.491060 + 0.871126i \(0.663391\pi\)
\(48\) 0 0
\(49\) −1.14590 −0.163700
\(50\) 0 0
\(51\) 1.61803 0.226570
\(52\) 0 0
\(53\) 9.32624i 1.28106i 0.767934 + 0.640529i \(0.221285\pi\)
−0.767934 + 0.640529i \(0.778715\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 17.5623i 2.32618i
\(58\) 0 0
\(59\) 0.527864 0.0687220 0.0343610 0.999409i \(-0.489060\pi\)
0.0343610 + 0.999409i \(0.489060\pi\)
\(60\) 0 0
\(61\) 0.0901699 0.0115451 0.00577254 0.999983i \(-0.498163\pi\)
0.00577254 + 0.999983i \(0.498163\pi\)
\(62\) 0 0
\(63\) 11.0000i 1.38587i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 8.00000i 0.977356i 0.872464 + 0.488678i \(0.162521\pi\)
−0.872464 + 0.488678i \(0.837479\pi\)
\(68\) 0 0
\(69\) 10.7082 1.28912
\(70\) 0 0
\(71\) −8.18034 −0.970828 −0.485414 0.874284i \(-0.661331\pi\)
−0.485414 + 0.874284i \(0.661331\pi\)
\(72\) 0 0
\(73\) 10.3820i 1.21512i 0.794275 + 0.607559i \(0.207851\pi\)
−0.794275 + 0.607559i \(0.792149\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 2.85410i 0.325255i
\(78\) 0 0
\(79\) 5.85410 0.658638 0.329319 0.944219i \(-0.393181\pi\)
0.329319 + 0.944219i \(0.393181\pi\)
\(80\) 0 0
\(81\) −5.70820 −0.634245
\(82\) 0 0
\(83\) 10.1459i 1.11366i 0.830627 + 0.556828i \(0.187982\pi\)
−0.830627 + 0.556828i \(0.812018\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) − 3.61803i − 0.387894i
\(88\) 0 0
\(89\) 6.90983 0.732441 0.366220 0.930528i \(-0.380652\pi\)
0.366220 + 0.930528i \(0.380652\pi\)
\(90\) 0 0
\(91\) 17.7984 1.86578
\(92\) 0 0
\(93\) − 7.85410i − 0.814432i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 1.61803i − 0.164286i −0.996621 0.0821432i \(-0.973824\pi\)
0.996621 0.0821432i \(-0.0261765\pi\)
\(98\) 0 0
\(99\) 3.85410 0.387352
\(100\) 0 0
\(101\) −6.09017 −0.605995 −0.302997 0.952991i \(-0.597987\pi\)
−0.302997 + 0.952991i \(0.597987\pi\)
\(102\) 0 0
\(103\) − 5.38197i − 0.530301i −0.964207 0.265150i \(-0.914578\pi\)
0.964207 0.265150i \(-0.0854216\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 4.23607i − 0.409516i −0.978813 0.204758i \(-0.934359\pi\)
0.978813 0.204758i \(-0.0656408\pi\)
\(108\) 0 0
\(109\) 3.09017 0.295985 0.147992 0.988989i \(-0.452719\pi\)
0.147992 + 0.988989i \(0.452719\pi\)
\(110\) 0 0
\(111\) −26.7984 −2.54359
\(112\) 0 0
\(113\) − 11.6525i − 1.09617i −0.836422 0.548086i \(-0.815357\pi\)
0.836422 0.548086i \(-0.184643\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) − 24.0344i − 2.22198i
\(118\) 0 0
\(119\) 1.76393 0.161699
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) 7.85410i 0.708181i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) − 0.618034i − 0.0548416i −0.999624 0.0274208i \(-0.991271\pi\)
0.999624 0.0274208i \(-0.00872941\pi\)
\(128\) 0 0
\(129\) 15.7082 1.38303
\(130\) 0 0
\(131\) −10.0902 −0.881582 −0.440791 0.897610i \(-0.645302\pi\)
−0.440791 + 0.897610i \(0.645302\pi\)
\(132\) 0 0
\(133\) 19.1459i 1.66016i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 5.56231i − 0.475220i −0.971361 0.237610i \(-0.923636\pi\)
0.971361 0.237610i \(-0.0763640\pi\)
\(138\) 0 0
\(139\) −3.29180 −0.279206 −0.139603 0.990208i \(-0.544583\pi\)
−0.139603 + 0.990208i \(0.544583\pi\)
\(140\) 0 0
\(141\) 31.2705 2.63345
\(142\) 0 0
\(143\) − 6.23607i − 0.521486i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 3.00000i 0.247436i
\(148\) 0 0
\(149\) 8.94427 0.732743 0.366372 0.930469i \(-0.380600\pi\)
0.366372 + 0.930469i \(0.380600\pi\)
\(150\) 0 0
\(151\) 3.00000 0.244137 0.122068 0.992522i \(-0.461047\pi\)
0.122068 + 0.992522i \(0.461047\pi\)
\(152\) 0 0
\(153\) − 2.38197i − 0.192571i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 5.41641i 0.432276i 0.976363 + 0.216138i \(0.0693462\pi\)
−0.976363 + 0.216138i \(0.930654\pi\)
\(158\) 0 0
\(159\) 24.4164 1.93635
\(160\) 0 0
\(161\) 11.6738 0.920021
\(162\) 0 0
\(163\) 6.85410i 0.536855i 0.963300 + 0.268427i \(0.0865039\pi\)
−0.963300 + 0.268427i \(0.913496\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 5.29180i − 0.409491i −0.978815 0.204746i \(-0.934363\pi\)
0.978815 0.204746i \(-0.0656368\pi\)
\(168\) 0 0
\(169\) −25.8885 −1.99143
\(170\) 0 0
\(171\) 25.8541 1.97711
\(172\) 0 0
\(173\) − 5.47214i − 0.416039i −0.978125 0.208019i \(-0.933298\pi\)
0.978125 0.208019i \(-0.0667017\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) − 1.38197i − 0.103875i
\(178\) 0 0
\(179\) −13.6180 −1.01786 −0.508930 0.860808i \(-0.669959\pi\)
−0.508930 + 0.860808i \(0.669959\pi\)
\(180\) 0 0
\(181\) −6.09017 −0.452679 −0.226339 0.974049i \(-0.572676\pi\)
−0.226339 + 0.974049i \(0.572676\pi\)
\(182\) 0 0
\(183\) − 0.236068i − 0.0174506i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 0.618034i − 0.0451951i
\(188\) 0 0
\(189\) 6.38197 0.464220
\(190\) 0 0
\(191\) 21.0902 1.52603 0.763016 0.646380i \(-0.223718\pi\)
0.763016 + 0.646380i \(0.223718\pi\)
\(192\) 0 0
\(193\) 12.9443i 0.931749i 0.884851 + 0.465875i \(0.154260\pi\)
−0.884851 + 0.465875i \(0.845740\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 20.0902i 1.43137i 0.698426 + 0.715683i \(0.253884\pi\)
−0.698426 + 0.715683i \(0.746116\pi\)
\(198\) 0 0
\(199\) −3.09017 −0.219056 −0.109528 0.993984i \(-0.534934\pi\)
−0.109528 + 0.993984i \(0.534934\pi\)
\(200\) 0 0
\(201\) 20.9443 1.47730
\(202\) 0 0
\(203\) − 3.94427i − 0.276834i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) − 15.7639i − 1.09567i
\(208\) 0 0
\(209\) 6.70820 0.464016
\(210\) 0 0
\(211\) −17.0000 −1.17033 −0.585164 0.810915i \(-0.698970\pi\)
−0.585164 + 0.810915i \(0.698970\pi\)
\(212\) 0 0
\(213\) 21.4164i 1.46743i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 8.56231i − 0.581247i
\(218\) 0 0
\(219\) 27.1803 1.83668
\(220\) 0 0
\(221\) −3.85410 −0.259255
\(222\) 0 0
\(223\) − 16.8885i − 1.13094i −0.824769 0.565470i \(-0.808695\pi\)
0.824769 0.565470i \(-0.191305\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 24.0344i − 1.59522i −0.603172 0.797611i \(-0.706097\pi\)
0.603172 0.797611i \(-0.293903\pi\)
\(228\) 0 0
\(229\) −12.0344 −0.795258 −0.397629 0.917546i \(-0.630167\pi\)
−0.397629 + 0.917546i \(0.630167\pi\)
\(230\) 0 0
\(231\) 7.47214 0.491630
\(232\) 0 0
\(233\) 15.5066i 1.01587i 0.861395 + 0.507935i \(0.169591\pi\)
−0.861395 + 0.507935i \(0.830409\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) − 15.3262i − 0.995546i
\(238\) 0 0
\(239\) 6.38197 0.412815 0.206408 0.978466i \(-0.433823\pi\)
0.206408 + 0.978466i \(0.433823\pi\)
\(240\) 0 0
\(241\) 21.2705 1.37015 0.685077 0.728471i \(-0.259769\pi\)
0.685077 + 0.728471i \(0.259769\pi\)
\(242\) 0 0
\(243\) 21.6525i 1.38901i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 41.8328i − 2.66176i
\(248\) 0 0
\(249\) 26.5623 1.68332
\(250\) 0 0
\(251\) 27.2705 1.72130 0.860650 0.509198i \(-0.170058\pi\)
0.860650 + 0.509198i \(0.170058\pi\)
\(252\) 0 0
\(253\) − 4.09017i − 0.257147i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 10.9443i 0.682685i 0.939939 + 0.341342i \(0.110882\pi\)
−0.939939 + 0.341342i \(0.889118\pi\)
\(258\) 0 0
\(259\) −29.2148 −1.81532
\(260\) 0 0
\(261\) −5.32624 −0.329686
\(262\) 0 0
\(263\) 21.0000i 1.29492i 0.762101 + 0.647458i \(0.224168\pi\)
−0.762101 + 0.647458i \(0.775832\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) − 18.0902i − 1.10710i
\(268\) 0 0
\(269\) −30.3262 −1.84902 −0.924512 0.381154i \(-0.875527\pi\)
−0.924512 + 0.381154i \(0.875527\pi\)
\(270\) 0 0
\(271\) −13.1803 −0.800649 −0.400324 0.916374i \(-0.631103\pi\)
−0.400324 + 0.916374i \(0.631103\pi\)
\(272\) 0 0
\(273\) − 46.5967i − 2.82016i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 11.4721i 0.689294i 0.938732 + 0.344647i \(0.112001\pi\)
−0.938732 + 0.344647i \(0.887999\pi\)
\(278\) 0 0
\(279\) −11.5623 −0.692217
\(280\) 0 0
\(281\) −25.3607 −1.51289 −0.756446 0.654057i \(-0.773066\pi\)
−0.756446 + 0.654057i \(0.773066\pi\)
\(282\) 0 0
\(283\) 7.38197i 0.438812i 0.975634 + 0.219406i \(0.0704120\pi\)
−0.975634 + 0.219406i \(0.929588\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 8.56231i 0.505417i
\(288\) 0 0
\(289\) 16.6180 0.977531
\(290\) 0 0
\(291\) −4.23607 −0.248323
\(292\) 0 0
\(293\) − 23.8885i − 1.39558i −0.716301 0.697792i \(-0.754166\pi\)
0.716301 0.697792i \(-0.245834\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) − 2.23607i − 0.129750i
\(298\) 0 0
\(299\) −25.5066 −1.47508
\(300\) 0 0
\(301\) 17.1246 0.987046
\(302\) 0 0
\(303\) 15.9443i 0.915974i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 33.4508i 1.90914i 0.297985 + 0.954570i \(0.403685\pi\)
−0.297985 + 0.954570i \(0.596315\pi\)
\(308\) 0 0
\(309\) −14.0902 −0.801562
\(310\) 0 0
\(311\) 19.1803 1.08762 0.543809 0.839209i \(-0.316982\pi\)
0.543809 + 0.839209i \(0.316982\pi\)
\(312\) 0 0
\(313\) − 3.23607i − 0.182913i −0.995809 0.0914567i \(-0.970848\pi\)
0.995809 0.0914567i \(-0.0291523\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 16.6180i − 0.933362i −0.884426 0.466681i \(-0.845450\pi\)
0.884426 0.466681i \(-0.154550\pi\)
\(318\) 0 0
\(319\) −1.38197 −0.0773752
\(320\) 0 0
\(321\) −11.0902 −0.618993
\(322\) 0 0
\(323\) − 4.14590i − 0.230684i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) − 8.09017i − 0.447387i
\(328\) 0 0
\(329\) 34.0902 1.87945
\(330\) 0 0
\(331\) 19.1803 1.05425 0.527123 0.849789i \(-0.323271\pi\)
0.527123 + 0.849789i \(0.323271\pi\)
\(332\) 0 0
\(333\) 39.4508i 2.16189i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 1.41641i − 0.0771567i −0.999256 0.0385783i \(-0.987717\pi\)
0.999256 0.0385783i \(-0.0122829\pi\)
\(338\) 0 0
\(339\) −30.5066 −1.65689
\(340\) 0 0
\(341\) −3.00000 −0.162459
\(342\) 0 0
\(343\) − 16.7082i − 0.902158i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 20.5623i 1.10384i 0.833896 + 0.551921i \(0.186105\pi\)
−0.833896 + 0.551921i \(0.813895\pi\)
\(348\) 0 0
\(349\) −21.8328 −1.16868 −0.584342 0.811508i \(-0.698647\pi\)
−0.584342 + 0.811508i \(0.698647\pi\)
\(350\) 0 0
\(351\) −13.9443 −0.744290
\(352\) 0 0
\(353\) 21.3607i 1.13691i 0.822713 + 0.568457i \(0.192459\pi\)
−0.822713 + 0.568457i \(0.807541\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) − 4.61803i − 0.244412i
\(358\) 0 0
\(359\) −4.47214 −0.236030 −0.118015 0.993012i \(-0.537653\pi\)
−0.118015 + 0.993012i \(0.537653\pi\)
\(360\) 0 0
\(361\) 26.0000 1.36842
\(362\) 0 0
\(363\) − 2.61803i − 0.137411i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 7.14590i 0.373013i 0.982454 + 0.186506i \(0.0597165\pi\)
−0.982454 + 0.186506i \(0.940283\pi\)
\(368\) 0 0
\(369\) 11.5623 0.601910
\(370\) 0 0
\(371\) 26.6180 1.38194
\(372\) 0 0
\(373\) 2.81966i 0.145996i 0.997332 + 0.0729982i \(0.0232567\pi\)
−0.997332 + 0.0729982i \(0.976743\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 8.61803i 0.443851i
\(378\) 0 0
\(379\) −17.7639 −0.912472 −0.456236 0.889859i \(-0.650803\pi\)
−0.456236 + 0.889859i \(0.650803\pi\)
\(380\) 0 0
\(381\) −1.61803 −0.0828944
\(382\) 0 0
\(383\) − 5.05573i − 0.258336i −0.991623 0.129168i \(-0.958769\pi\)
0.991623 0.129168i \(-0.0412306\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 23.1246i − 1.17549i
\(388\) 0 0
\(389\) −5.52786 −0.280274 −0.140137 0.990132i \(-0.544754\pi\)
−0.140137 + 0.990132i \(0.544754\pi\)
\(390\) 0 0
\(391\) −2.52786 −0.127840
\(392\) 0 0
\(393\) 26.4164i 1.33253i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 14.9098i − 0.748303i −0.927368 0.374151i \(-0.877934\pi\)
0.927368 0.374151i \(-0.122066\pi\)
\(398\) 0 0
\(399\) 50.1246 2.50937
\(400\) 0 0
\(401\) 34.3607 1.71589 0.857945 0.513741i \(-0.171741\pi\)
0.857945 + 0.513741i \(0.171741\pi\)
\(402\) 0 0
\(403\) 18.7082i 0.931922i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 10.2361i 0.507383i
\(408\) 0 0
\(409\) −20.1246 −0.995098 −0.497549 0.867436i \(-0.665767\pi\)
−0.497549 + 0.867436i \(0.665767\pi\)
\(410\) 0 0
\(411\) −14.5623 −0.718306
\(412\) 0 0
\(413\) − 1.50658i − 0.0741338i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 8.61803i 0.422027i
\(418\) 0 0
\(419\) 21.1803 1.03473 0.517364 0.855766i \(-0.326913\pi\)
0.517364 + 0.855766i \(0.326913\pi\)
\(420\) 0 0
\(421\) −12.2705 −0.598028 −0.299014 0.954249i \(-0.596658\pi\)
−0.299014 + 0.954249i \(0.596658\pi\)
\(422\) 0 0
\(423\) − 46.0344i − 2.23827i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 0.257354i − 0.0124542i
\(428\) 0 0
\(429\) −16.3262 −0.788238
\(430\) 0 0
\(431\) −0.819660 −0.0394816 −0.0197408 0.999805i \(-0.506284\pi\)
−0.0197408 + 0.999805i \(0.506284\pi\)
\(432\) 0 0
\(433\) − 18.8885i − 0.907725i −0.891072 0.453863i \(-0.850046\pi\)
0.891072 0.453863i \(-0.149954\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 27.4377i − 1.31252i
\(438\) 0 0
\(439\) −0.729490 −0.0348167 −0.0174083 0.999848i \(-0.505542\pi\)
−0.0174083 + 0.999848i \(0.505542\pi\)
\(440\) 0 0
\(441\) 4.41641 0.210305
\(442\) 0 0
\(443\) 36.6525i 1.74141i 0.491804 + 0.870706i \(0.336338\pi\)
−0.491804 + 0.870706i \(0.663662\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) − 23.4164i − 1.10756i
\(448\) 0 0
\(449\) 15.3262 0.723290 0.361645 0.932316i \(-0.382215\pi\)
0.361645 + 0.932316i \(0.382215\pi\)
\(450\) 0 0
\(451\) 3.00000 0.141264
\(452\) 0 0
\(453\) − 7.85410i − 0.369018i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 7.97871i 0.373228i 0.982433 + 0.186614i \(0.0597514\pi\)
−0.982433 + 0.186614i \(0.940249\pi\)
\(458\) 0 0
\(459\) −1.38197 −0.0645046
\(460\) 0 0
\(461\) −9.18034 −0.427571 −0.213786 0.976881i \(-0.568579\pi\)
−0.213786 + 0.976881i \(0.568579\pi\)
\(462\) 0 0
\(463\) − 11.3607i − 0.527976i −0.964526 0.263988i \(-0.914962\pi\)
0.964526 0.263988i \(-0.0850379\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 37.4721i 1.73400i 0.498305 + 0.867002i \(0.333956\pi\)
−0.498305 + 0.867002i \(0.666044\pi\)
\(468\) 0 0
\(469\) 22.8328 1.05432
\(470\) 0 0
\(471\) 14.1803 0.653396
\(472\) 0 0
\(473\) − 6.00000i − 0.275880i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) − 35.9443i − 1.64578i
\(478\) 0 0
\(479\) 28.4164 1.29838 0.649189 0.760627i \(-0.275108\pi\)
0.649189 + 0.760627i \(0.275108\pi\)
\(480\) 0 0
\(481\) 63.8328 2.91053
\(482\) 0 0
\(483\) − 30.5623i − 1.39063i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 30.4164i − 1.37830i −0.724619 0.689150i \(-0.757984\pi\)
0.724619 0.689150i \(-0.242016\pi\)
\(488\) 0 0
\(489\) 17.9443 0.811468
\(490\) 0 0
\(491\) 6.81966 0.307767 0.153883 0.988089i \(-0.450822\pi\)
0.153883 + 0.988089i \(0.450822\pi\)
\(492\) 0 0
\(493\) 0.854102i 0.0384668i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 23.3475i 1.04728i
\(498\) 0 0
\(499\) 29.7984 1.33396 0.666979 0.745076i \(-0.267587\pi\)
0.666979 + 0.745076i \(0.267587\pi\)
\(500\) 0 0
\(501\) −13.8541 −0.618956
\(502\) 0 0
\(503\) 6.65248i 0.296619i 0.988941 + 0.148310i \(0.0473832\pi\)
−0.988941 + 0.148310i \(0.952617\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 67.7771i 3.01009i
\(508\) 0 0
\(509\) −16.3820 −0.726118 −0.363059 0.931766i \(-0.618268\pi\)
−0.363059 + 0.931766i \(0.618268\pi\)
\(510\) 0 0
\(511\) 29.6312 1.31081
\(512\) 0 0
\(513\) − 15.0000i − 0.662266i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 11.9443i − 0.525308i
\(518\) 0 0
\(519\) −14.3262 −0.628852
\(520\) 0 0
\(521\) −1.81966 −0.0797208 −0.0398604 0.999205i \(-0.512691\pi\)
−0.0398604 + 0.999205i \(0.512691\pi\)
\(522\) 0 0
\(523\) − 22.9443i − 1.00328i −0.865076 0.501641i \(-0.832730\pi\)
0.865076 0.501641i \(-0.167270\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.85410i 0.0807660i
\(528\) 0 0
\(529\) 6.27051 0.272631
\(530\) 0 0
\(531\) −2.03444 −0.0882873
\(532\) 0 0
\(533\) − 18.7082i − 0.810342i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 35.6525i 1.53852i
\(538\) 0 0
\(539\) 1.14590 0.0493573
\(540\) 0 0
\(541\) −42.2705 −1.81735 −0.908676 0.417503i \(-0.862905\pi\)
−0.908676 + 0.417503i \(0.862905\pi\)
\(542\) 0 0
\(543\) 15.9443i 0.684234i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 21.1459i − 0.904133i −0.891984 0.452067i \(-0.850687\pi\)
0.891984 0.452067i \(-0.149313\pi\)
\(548\) 0 0
\(549\) −0.347524 −0.0148320
\(550\) 0 0
\(551\) −9.27051 −0.394937
\(552\) 0 0
\(553\) − 16.7082i − 0.710505i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 9.76393i 0.413711i 0.978371 + 0.206856i \(0.0663230\pi\)
−0.978371 + 0.206856i \(0.933677\pi\)
\(558\) 0 0
\(559\) −37.4164 −1.58255
\(560\) 0 0
\(561\) −1.61803 −0.0683134
\(562\) 0 0
\(563\) 13.0344i 0.549336i 0.961539 + 0.274668i \(0.0885680\pi\)
−0.961539 + 0.274668i \(0.911432\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 16.2918i 0.684191i
\(568\) 0 0
\(569\) −26.3820 −1.10599 −0.552995 0.833185i \(-0.686515\pi\)
−0.552995 + 0.833185i \(0.686515\pi\)
\(570\) 0 0
\(571\) −36.2705 −1.51787 −0.758937 0.651164i \(-0.774281\pi\)
−0.758937 + 0.651164i \(0.774281\pi\)
\(572\) 0 0
\(573\) − 55.2148i − 2.30663i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) − 15.5623i − 0.647867i −0.946080 0.323934i \(-0.894995\pi\)
0.946080 0.323934i \(-0.105005\pi\)
\(578\) 0 0
\(579\) 33.8885 1.40836
\(580\) 0 0
\(581\) 28.9574 1.20136
\(582\) 0 0
\(583\) − 9.32624i − 0.386253i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 4.03444i − 0.166519i −0.996528 0.0832596i \(-0.973467\pi\)
0.996528 0.0832596i \(-0.0265331\pi\)
\(588\) 0 0
\(589\) −20.1246 −0.829220
\(590\) 0 0
\(591\) 52.5967 2.16354
\(592\) 0 0
\(593\) 9.00000i 0.369586i 0.982777 + 0.184793i \(0.0591614\pi\)
−0.982777 + 0.184793i \(0.940839\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 8.09017i 0.331109i
\(598\) 0 0
\(599\) 0.326238 0.0133297 0.00666486 0.999978i \(-0.497878\pi\)
0.00666486 + 0.999978i \(0.497878\pi\)
\(600\) 0 0
\(601\) −22.2705 −0.908433 −0.454217 0.890891i \(-0.650081\pi\)
−0.454217 + 0.890891i \(0.650081\pi\)
\(602\) 0 0
\(603\) − 30.8328i − 1.25561i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 3.52786i 0.143192i 0.997434 + 0.0715958i \(0.0228092\pi\)
−0.997434 + 0.0715958i \(0.977191\pi\)
\(608\) 0 0
\(609\) −10.3262 −0.418440
\(610\) 0 0
\(611\) −74.4853 −3.01335
\(612\) 0 0
\(613\) 6.43769i 0.260016i 0.991513 + 0.130008i \(0.0415003\pi\)
−0.991513 + 0.130008i \(0.958500\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 38.1803i 1.53708i 0.639800 + 0.768541i \(0.279017\pi\)
−0.639800 + 0.768541i \(0.720983\pi\)
\(618\) 0 0
\(619\) −22.8885 −0.919968 −0.459984 0.887927i \(-0.652145\pi\)
−0.459984 + 0.887927i \(0.652145\pi\)
\(620\) 0 0
\(621\) −9.14590 −0.367012
\(622\) 0 0
\(623\) − 19.7214i − 0.790120i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) − 17.5623i − 0.701371i
\(628\) 0 0
\(629\) 6.32624 0.252244
\(630\) 0 0
\(631\) −36.2705 −1.44391 −0.721953 0.691942i \(-0.756755\pi\)
−0.721953 + 0.691942i \(0.756755\pi\)
\(632\) 0 0
\(633\) 44.5066i 1.76898i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) − 7.14590i − 0.283131i
\(638\) 0 0
\(639\) 31.5279 1.24722
\(640\) 0 0
\(641\) −3.00000 −0.118493 −0.0592464 0.998243i \(-0.518870\pi\)
−0.0592464 + 0.998243i \(0.518870\pi\)
\(642\) 0 0
\(643\) − 10.5836i − 0.417376i −0.977982 0.208688i \(-0.933081\pi\)
0.977982 0.208688i \(-0.0669193\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 12.3475i 0.485431i 0.970097 + 0.242716i \(0.0780382\pi\)
−0.970097 + 0.242716i \(0.921962\pi\)
\(648\) 0 0
\(649\) −0.527864 −0.0207205
\(650\) 0 0
\(651\) −22.4164 −0.878568
\(652\) 0 0
\(653\) 7.74265i 0.302993i 0.988458 + 0.151497i \(0.0484093\pi\)
−0.988458 + 0.151497i \(0.951591\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) − 40.0132i − 1.56106i
\(658\) 0 0
\(659\) 9.27051 0.361128 0.180564 0.983563i \(-0.442208\pi\)
0.180564 + 0.983563i \(0.442208\pi\)
\(660\) 0 0
\(661\) −49.1803 −1.91289 −0.956447 0.291907i \(-0.905710\pi\)
−0.956447 + 0.291907i \(0.905710\pi\)
\(662\) 0 0
\(663\) 10.0902i 0.391870i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 5.65248i 0.218865i
\(668\) 0 0
\(669\) −44.2148 −1.70944
\(670\) 0 0
\(671\) −0.0901699 −0.00348097
\(672\) 0 0
\(673\) 2.41641i 0.0931457i 0.998915 + 0.0465728i \(0.0148300\pi\)
−0.998915 + 0.0465728i \(0.985170\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 28.6525i − 1.10120i −0.834768 0.550602i \(-0.814398\pi\)
0.834768 0.550602i \(-0.185602\pi\)
\(678\) 0 0
\(679\) −4.61803 −0.177224
\(680\) 0 0
\(681\) −62.9230 −2.41121
\(682\) 0 0
\(683\) 43.3607i 1.65915i 0.558395 + 0.829575i \(0.311417\pi\)
−0.558395 + 0.829575i \(0.688583\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 31.5066i 1.20205i
\(688\) 0 0
\(689\) −58.1591 −2.21568
\(690\) 0 0
\(691\) −30.0902 −1.14468 −0.572342 0.820015i \(-0.693965\pi\)
−0.572342 + 0.820015i \(0.693965\pi\)
\(692\) 0 0
\(693\) − 11.0000i − 0.417855i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 1.85410i − 0.0702291i
\(698\) 0 0
\(699\) 40.5967 1.53551
\(700\) 0 0
\(701\) −0.360680 −0.0136227 −0.00681134 0.999977i \(-0.502168\pi\)
−0.00681134 + 0.999977i \(0.502168\pi\)
\(702\) 0 0
\(703\) 68.6656i 2.58977i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 17.3820i 0.653716i
\(708\) 0 0
\(709\) 41.3050 1.55124 0.775620 0.631200i \(-0.217437\pi\)
0.775620 + 0.631200i \(0.217437\pi\)
\(710\) 0 0
\(711\) −22.5623 −0.846153
\(712\) 0 0
\(713\) 12.2705i 0.459534i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 16.7082i − 0.623979i
\(718\) 0 0
\(719\) −15.6525 −0.583739 −0.291869 0.956458i \(-0.594277\pi\)
−0.291869 + 0.956458i \(0.594277\pi\)
\(720\) 0 0
\(721\) −15.3607 −0.572062
\(722\) 0 0
\(723\) − 55.6869i − 2.07102i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 41.2705i − 1.53064i −0.643651 0.765319i \(-0.722581\pi\)
0.643651 0.765319i \(-0.277419\pi\)
\(728\) 0 0
\(729\) 39.5623 1.46527
\(730\) 0 0
\(731\) −3.70820 −0.137153
\(732\) 0 0
\(733\) 45.8328i 1.69287i 0.532489 + 0.846437i \(0.321257\pi\)
−0.532489 + 0.846437i \(0.678743\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 8.00000i − 0.294684i
\(738\) 0 0
\(739\) −29.1459 −1.07215 −0.536075 0.844171i \(-0.680093\pi\)
−0.536075 + 0.844171i \(0.680093\pi\)
\(740\) 0 0
\(741\) −109.520 −4.02331
\(742\) 0 0
\(743\) − 18.6738i − 0.685074i −0.939504 0.342537i \(-0.888714\pi\)
0.939504 0.342537i \(-0.111286\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) − 39.1033i − 1.43072i
\(748\) 0 0
\(749\) −12.0902 −0.441765
\(750\) 0 0
\(751\) −11.2705 −0.411267 −0.205633 0.978629i \(-0.565925\pi\)
−0.205633 + 0.978629i \(0.565925\pi\)
\(752\) 0 0
\(753\) − 71.3951i − 2.60178i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 21.4721i 0.780418i 0.920726 + 0.390209i \(0.127597\pi\)
−0.920726 + 0.390209i \(0.872403\pi\)
\(758\) 0 0
\(759\) −10.7082 −0.388683
\(760\) 0 0
\(761\) 12.0000 0.435000 0.217500 0.976060i \(-0.430210\pi\)
0.217500 + 0.976060i \(0.430210\pi\)
\(762\) 0 0
\(763\) − 8.81966i − 0.319293i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 3.29180i 0.118860i
\(768\) 0 0
\(769\) 5.00000 0.180305 0.0901523 0.995928i \(-0.471265\pi\)
0.0901523 + 0.995928i \(0.471265\pi\)
\(770\) 0 0
\(771\) 28.6525 1.03189
\(772\) 0 0
\(773\) 33.7984i 1.21564i 0.794074 + 0.607822i \(0.207956\pi\)
−0.794074 + 0.607822i \(0.792044\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 76.4853i 2.74389i
\(778\) 0 0
\(779\) 20.1246 0.721039
\(780\) 0 0
\(781\) 8.18034 0.292716
\(782\) 0 0
\(783\) 3.09017i 0.110434i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 21.2918i 0.758971i 0.925198 + 0.379485i \(0.123899\pi\)
−0.925198 + 0.379485i \(0.876101\pi\)
\(788\) 0 0
\(789\) 54.9787 1.95729
\(790\) 0 0
\(791\) −33.2574 −1.18250
\(792\) 0 0
\(793\) 0.562306i 0.0199681i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 3.20163i − 0.113407i −0.998391 0.0567037i \(-0.981941\pi\)
0.998391 0.0567037i \(-0.0180590\pi\)
\(798\) 0 0
\(799\) −7.38197 −0.261155
\(800\) 0 0
\(801\) −26.6312 −0.940967
\(802\) 0 0
\(803\) − 10.3820i − 0.366372i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 79.3951i 2.79484i
\(808\) 0 0
\(809\) 16.5836 0.583048 0.291524 0.956564i \(-0.405838\pi\)
0.291524 + 0.956564i \(0.405838\pi\)
\(810\) 0 0
\(811\) −17.0000 −0.596951 −0.298475 0.954417i \(-0.596478\pi\)
−0.298475 + 0.954417i \(0.596478\pi\)
\(812\) 0 0
\(813\) 34.5066i 1.21020i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 40.2492i − 1.40814i
\(818\) 0 0
\(819\) −68.5967 −2.39696
\(820\) 0 0
\(821\) 4.36068 0.152189 0.0760944 0.997101i \(-0.475755\pi\)
0.0760944 + 0.997101i \(0.475755\pi\)
\(822\) 0 0
\(823\) − 27.4164i − 0.955676i −0.878448 0.477838i \(-0.841421\pi\)
0.878448 0.477838i \(-0.158579\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 32.0689i 1.11514i 0.830128 + 0.557572i \(0.188267\pi\)
−0.830128 + 0.557572i \(0.811733\pi\)
\(828\) 0 0
\(829\) 36.1033 1.25392 0.626960 0.779051i \(-0.284299\pi\)
0.626960 + 0.779051i \(0.284299\pi\)
\(830\) 0 0
\(831\) 30.0344 1.04188
\(832\) 0 0
\(833\) − 0.708204i − 0.0245378i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 6.70820i 0.231869i
\(838\) 0 0
\(839\) −48.3394 −1.66886 −0.834431 0.551113i \(-0.814203\pi\)
−0.834431 + 0.551113i \(0.814203\pi\)
\(840\) 0 0
\(841\) −27.0902 −0.934144
\(842\) 0 0
\(843\) 66.3951i 2.28677i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 2.85410i − 0.0980681i
\(848\) 0 0
\(849\) 19.3262 0.663275
\(850\) 0 0
\(851\) 41.8673 1.43519
\(852\) 0 0
\(853\) 49.8541i 1.70697i 0.521116 + 0.853486i \(0.325516\pi\)
−0.521116 + 0.853486i \(0.674484\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 53.1803i 1.81661i 0.418313 + 0.908303i \(0.362621\pi\)
−0.418313 + 0.908303i \(0.637379\pi\)
\(858\) 0 0
\(859\) 16.1803 0.552066 0.276033 0.961148i \(-0.410980\pi\)
0.276033 + 0.961148i \(0.410980\pi\)
\(860\) 0 0
\(861\) 22.4164 0.763949
\(862\) 0 0
\(863\) 0.596748i 0.0203135i 0.999948 + 0.0101568i \(0.00323305\pi\)
−0.999948 + 0.0101568i \(0.996767\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 43.5066i − 1.47756i
\(868\) 0 0
\(869\) −5.85410 −0.198587
\(870\) 0 0
\(871\) −49.8885 −1.69041
\(872\) 0 0
\(873\) 6.23607i 0.211059i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 4.58359i − 0.154777i −0.997001 0.0773885i \(-0.975342\pi\)
0.997001 0.0773885i \(-0.0246582\pi\)
\(878\) 0 0
\(879\) −62.5410 −2.10946
\(880\) 0 0
\(881\) 10.0902 0.339946 0.169973 0.985449i \(-0.445632\pi\)
0.169973 + 0.985449i \(0.445632\pi\)
\(882\) 0 0
\(883\) 31.6525i 1.06519i 0.846370 + 0.532595i \(0.178783\pi\)
−0.846370 + 0.532595i \(0.821217\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 28.7771i 0.966240i 0.875554 + 0.483120i \(0.160497\pi\)
−0.875554 + 0.483120i \(0.839503\pi\)
\(888\) 0 0
\(889\) −1.76393 −0.0591604
\(890\) 0 0
\(891\) 5.70820 0.191232
\(892\) 0 0
\(893\) − 80.1246i − 2.68127i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 66.7771i 2.22962i
\(898\) 0 0
\(899\) 4.14590 0.138273
\(900\) 0 0
\(901\) −5.76393 −0.192024
\(902\) 0 0
\(903\) − 44.8328i − 1.49194i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 14.8328i 0.492516i 0.969204 + 0.246258i \(0.0792010\pi\)
−0.969204 + 0.246258i \(0.920799\pi\)
\(908\) 0 0
\(909\) 23.4721 0.778522
\(910\) 0 0
\(911\) 18.0000 0.596367 0.298183 0.954509i \(-0.403619\pi\)
0.298183 + 0.954509i \(0.403619\pi\)
\(912\) 0 0
\(913\) − 10.1459i − 0.335780i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 28.7984i 0.951006i
\(918\) 0 0
\(919\) 23.4164 0.772436 0.386218 0.922408i \(-0.373781\pi\)
0.386218 + 0.922408i \(0.373781\pi\)
\(920\) 0 0
\(921\) 87.5755 2.88571
\(922\) 0 0
\(923\) − 51.0132i − 1.67912i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 20.7426i 0.681278i
\(928\) 0 0
\(929\) −54.5967 −1.79126 −0.895631 0.444799i \(-0.853275\pi\)
−0.895631 + 0.444799i \(0.853275\pi\)
\(930\) 0 0
\(931\) 7.68692 0.251929
\(932\) 0 0
\(933\) − 50.2148i − 1.64396i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 38.8328i 1.26861i 0.773082 + 0.634306i \(0.218714\pi\)
−0.773082 + 0.634306i \(0.781286\pi\)
\(938\) 0 0
\(939\) −8.47214 −0.276478
\(940\) 0 0
\(941\) 41.7214 1.36008 0.680039 0.733176i \(-0.261963\pi\)
0.680039 + 0.733176i \(0.261963\pi\)
\(942\) 0 0
\(943\) − 12.2705i − 0.399583i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 39.3607i − 1.27905i −0.768770 0.639525i \(-0.779131\pi\)
0.768770 0.639525i \(-0.220869\pi\)
\(948\) 0 0
\(949\) −64.7426 −2.10164
\(950\) 0 0
\(951\) −43.5066 −1.41080
\(952\) 0 0
\(953\) 8.47214i 0.274439i 0.990541 + 0.137220i \(0.0438166\pi\)
−0.990541 + 0.137220i \(0.956183\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 3.61803i 0.116954i
\(958\) 0 0
\(959\) −15.8754 −0.512643
\(960\) 0 0
\(961\) −22.0000 −0.709677
\(962\) 0 0
\(963\) 16.3262i 0.526106i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 37.2705i 1.19854i 0.800547 + 0.599269i \(0.204542\pi\)
−0.800547 + 0.599269i \(0.795458\pi\)
\(968\) 0 0
\(969\) −10.8541 −0.348684
\(970\) 0 0
\(971\) −23.9098 −0.767303 −0.383651 0.923478i \(-0.625334\pi\)
−0.383651 + 0.923478i \(0.625334\pi\)
\(972\) 0 0
\(973\) 9.39512i 0.301194i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 57.0689i − 1.82580i −0.408188 0.912898i \(-0.633839\pi\)
0.408188 0.912898i \(-0.366161\pi\)
\(978\) 0 0
\(979\) −6.90983 −0.220839
\(980\) 0 0
\(981\) −11.9098 −0.380252
\(982\) 0 0
\(983\) 1.52786i 0.0487313i 0.999703 + 0.0243656i \(0.00775659\pi\)
−0.999703 + 0.0243656i \(0.992243\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) − 89.2492i − 2.84083i
\(988\) 0 0
\(989\) −24.5410 −0.780359
\(990\) 0 0
\(991\) −21.2705 −0.675680 −0.337840 0.941204i \(-0.609696\pi\)
−0.337840 + 0.941204i \(0.609696\pi\)
\(992\) 0 0
\(993\) − 50.2148i − 1.59352i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 32.1459i − 1.01807i −0.860746 0.509035i \(-0.830002\pi\)
0.860746 0.509035i \(-0.169998\pi\)
\(998\) 0 0
\(999\) 22.8885 0.724161
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4400.2.b.x.4049.1 4
4.3 odd 2 275.2.b.e.199.1 4
5.2 odd 4 4400.2.a.bg.1.1 2
5.3 odd 4 4400.2.a.bv.1.2 2
5.4 even 2 inner 4400.2.b.x.4049.4 4
12.11 even 2 2475.2.c.p.199.4 4
20.3 even 4 275.2.a.d.1.1 2
20.7 even 4 275.2.a.g.1.2 yes 2
20.19 odd 2 275.2.b.e.199.4 4
60.23 odd 4 2475.2.a.s.1.2 2
60.47 odd 4 2475.2.a.n.1.1 2
60.59 even 2 2475.2.c.p.199.1 4
220.43 odd 4 3025.2.a.m.1.2 2
220.87 odd 4 3025.2.a.i.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
275.2.a.d.1.1 2 20.3 even 4
275.2.a.g.1.2 yes 2 20.7 even 4
275.2.b.e.199.1 4 4.3 odd 2
275.2.b.e.199.4 4 20.19 odd 2
2475.2.a.n.1.1 2 60.47 odd 4
2475.2.a.s.1.2 2 60.23 odd 4
2475.2.c.p.199.1 4 60.59 even 2
2475.2.c.p.199.4 4 12.11 even 2
3025.2.a.i.1.1 2 220.87 odd 4
3025.2.a.m.1.2 2 220.43 odd 4
4400.2.a.bg.1.1 2 5.2 odd 4
4400.2.a.bv.1.2 2 5.3 odd 4
4400.2.b.x.4049.1 4 1.1 even 1 trivial
4400.2.b.x.4049.4 4 5.4 even 2 inner