Properties

Label 275.2.b.e.199.4
Level $275$
Weight $2$
Character 275.199
Analytic conductor $2.196$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,2,Mod(199,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.199"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 275.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.19588605559\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{5})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 199.4
Root \(1.61803i\) of defining polynomial
Character \(\chi\) \(=\) 275.199
Dual form 275.2.b.e.199.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.61803i q^{2} -2.61803i q^{3} -0.618034 q^{4} +4.23607 q^{6} -2.85410i q^{7} +2.23607i q^{8} -3.85410 q^{9} +1.00000 q^{11} +1.61803i q^{12} -6.23607i q^{13} +4.61803 q^{14} -4.85410 q^{16} -0.618034i q^{17} -6.23607i q^{18} +6.70820 q^{19} -7.47214 q^{21} +1.61803i q^{22} +4.09017i q^{23} +5.85410 q^{24} +10.0902 q^{26} +2.23607i q^{27} +1.76393i q^{28} +1.38197 q^{29} -3.00000 q^{31} -3.38197i q^{32} -2.61803i q^{33} +1.00000 q^{34} +2.38197 q^{36} +10.2361i q^{37} +10.8541i q^{38} -16.3262 q^{39} -3.00000 q^{41} -12.0902i q^{42} +6.00000i q^{43} -0.618034 q^{44} -6.61803 q^{46} +11.9443i q^{47} +12.7082i q^{48} -1.14590 q^{49} -1.61803 q^{51} +3.85410i q^{52} -9.32624i q^{53} -3.61803 q^{54} +6.38197 q^{56} -17.5623i q^{57} +2.23607i q^{58} -0.527864 q^{59} +0.0901699 q^{61} -4.85410i q^{62} +11.0000i q^{63} -4.23607 q^{64} +4.23607 q^{66} +8.00000i q^{67} +0.381966i q^{68} +10.7082 q^{69} +8.18034 q^{71} -8.61803i q^{72} -10.3820i q^{73} -16.5623 q^{74} -4.14590 q^{76} -2.85410i q^{77} -26.4164i q^{78} -5.85410 q^{79} -5.70820 q^{81} -4.85410i q^{82} +10.1459i q^{83} +4.61803 q^{84} -9.70820 q^{86} -3.61803i q^{87} +2.23607i q^{88} +6.90983 q^{89} -17.7984 q^{91} -2.52786i q^{92} +7.85410i q^{93} -19.3262 q^{94} -8.85410 q^{96} +1.61803i q^{97} -1.85410i q^{98} -3.85410 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{4} + 8 q^{6} - 2 q^{9} + 4 q^{11} + 14 q^{14} - 6 q^{16} - 12 q^{21} + 10 q^{24} + 18 q^{26} + 10 q^{29} - 12 q^{31} + 4 q^{34} + 14 q^{36} - 34 q^{39} - 12 q^{41} + 2 q^{44} - 22 q^{46} - 18 q^{49}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.61803i 1.14412i 0.820211 + 0.572061i \(0.193856\pi\)
−0.820211 + 0.572061i \(0.806144\pi\)
\(3\) − 2.61803i − 1.51152i −0.654847 0.755761i \(-0.727267\pi\)
0.654847 0.755761i \(-0.272733\pi\)
\(4\) −0.618034 −0.309017
\(5\) 0 0
\(6\) 4.23607 1.72937
\(7\) − 2.85410i − 1.07875i −0.842066 0.539375i \(-0.818661\pi\)
0.842066 0.539375i \(-0.181339\pi\)
\(8\) 2.23607i 0.790569i
\(9\) −3.85410 −1.28470
\(10\) 0 0
\(11\) 1.00000 0.301511
\(12\) 1.61803i 0.467086i
\(13\) − 6.23607i − 1.72957i −0.502139 0.864787i \(-0.667453\pi\)
0.502139 0.864787i \(-0.332547\pi\)
\(14\) 4.61803 1.23422
\(15\) 0 0
\(16\) −4.85410 −1.21353
\(17\) − 0.618034i − 0.149895i −0.997187 0.0749476i \(-0.976121\pi\)
0.997187 0.0749476i \(-0.0238790\pi\)
\(18\) − 6.23607i − 1.46986i
\(19\) 6.70820 1.53897 0.769484 0.638666i \(-0.220514\pi\)
0.769484 + 0.638666i \(0.220514\pi\)
\(20\) 0 0
\(21\) −7.47214 −1.63055
\(22\) 1.61803i 0.344966i
\(23\) 4.09017i 0.852859i 0.904521 + 0.426430i \(0.140229\pi\)
−0.904521 + 0.426430i \(0.859771\pi\)
\(24\) 5.85410 1.19496
\(25\) 0 0
\(26\) 10.0902 1.97885
\(27\) 2.23607i 0.430331i
\(28\) 1.76393i 0.333352i
\(29\) 1.38197 0.256625 0.128312 0.991734i \(-0.459044\pi\)
0.128312 + 0.991734i \(0.459044\pi\)
\(30\) 0 0
\(31\) −3.00000 −0.538816 −0.269408 0.963026i \(-0.586828\pi\)
−0.269408 + 0.963026i \(0.586828\pi\)
\(32\) − 3.38197i − 0.597853i
\(33\) − 2.61803i − 0.455741i
\(34\) 1.00000 0.171499
\(35\) 0 0
\(36\) 2.38197 0.396994
\(37\) 10.2361i 1.68280i 0.540413 + 0.841400i \(0.318268\pi\)
−0.540413 + 0.841400i \(0.681732\pi\)
\(38\) 10.8541i 1.76077i
\(39\) −16.3262 −2.61429
\(40\) 0 0
\(41\) −3.00000 −0.468521 −0.234261 0.972174i \(-0.575267\pi\)
−0.234261 + 0.972174i \(0.575267\pi\)
\(42\) − 12.0902i − 1.86555i
\(43\) 6.00000i 0.914991i 0.889212 + 0.457496i \(0.151253\pi\)
−0.889212 + 0.457496i \(0.848747\pi\)
\(44\) −0.618034 −0.0931721
\(45\) 0 0
\(46\) −6.61803 −0.975776
\(47\) 11.9443i 1.74225i 0.491060 + 0.871126i \(0.336609\pi\)
−0.491060 + 0.871126i \(0.663391\pi\)
\(48\) 12.7082i 1.83427i
\(49\) −1.14590 −0.163700
\(50\) 0 0
\(51\) −1.61803 −0.226570
\(52\) 3.85410i 0.534468i
\(53\) − 9.32624i − 1.28106i −0.767934 0.640529i \(-0.778715\pi\)
0.767934 0.640529i \(-0.221285\pi\)
\(54\) −3.61803 −0.492352
\(55\) 0 0
\(56\) 6.38197 0.852826
\(57\) − 17.5623i − 2.32618i
\(58\) 2.23607i 0.293610i
\(59\) −0.527864 −0.0687220 −0.0343610 0.999409i \(-0.510940\pi\)
−0.0343610 + 0.999409i \(0.510940\pi\)
\(60\) 0 0
\(61\) 0.0901699 0.0115451 0.00577254 0.999983i \(-0.498163\pi\)
0.00577254 + 0.999983i \(0.498163\pi\)
\(62\) − 4.85410i − 0.616472i
\(63\) 11.0000i 1.38587i
\(64\) −4.23607 −0.529508
\(65\) 0 0
\(66\) 4.23607 0.521424
\(67\) 8.00000i 0.977356i 0.872464 + 0.488678i \(0.162521\pi\)
−0.872464 + 0.488678i \(0.837479\pi\)
\(68\) 0.381966i 0.0463202i
\(69\) 10.7082 1.28912
\(70\) 0 0
\(71\) 8.18034 0.970828 0.485414 0.874284i \(-0.338669\pi\)
0.485414 + 0.874284i \(0.338669\pi\)
\(72\) − 8.61803i − 1.01565i
\(73\) − 10.3820i − 1.21512i −0.794275 0.607559i \(-0.792149\pi\)
0.794275 0.607559i \(-0.207851\pi\)
\(74\) −16.5623 −1.92533
\(75\) 0 0
\(76\) −4.14590 −0.475567
\(77\) − 2.85410i − 0.325255i
\(78\) − 26.4164i − 2.99107i
\(79\) −5.85410 −0.658638 −0.329319 0.944219i \(-0.606819\pi\)
−0.329319 + 0.944219i \(0.606819\pi\)
\(80\) 0 0
\(81\) −5.70820 −0.634245
\(82\) − 4.85410i − 0.536046i
\(83\) 10.1459i 1.11366i 0.830627 + 0.556828i \(0.187982\pi\)
−0.830627 + 0.556828i \(0.812018\pi\)
\(84\) 4.61803 0.503869
\(85\) 0 0
\(86\) −9.70820 −1.04686
\(87\) − 3.61803i − 0.387894i
\(88\) 2.23607i 0.238366i
\(89\) 6.90983 0.732441 0.366220 0.930528i \(-0.380652\pi\)
0.366220 + 0.930528i \(0.380652\pi\)
\(90\) 0 0
\(91\) −17.7984 −1.86578
\(92\) − 2.52786i − 0.263548i
\(93\) 7.85410i 0.814432i
\(94\) −19.3262 −1.99335
\(95\) 0 0
\(96\) −8.85410 −0.903668
\(97\) 1.61803i 0.164286i 0.996621 + 0.0821432i \(0.0261765\pi\)
−0.996621 + 0.0821432i \(0.973824\pi\)
\(98\) − 1.85410i − 0.187293i
\(99\) −3.85410 −0.387352
\(100\) 0 0
\(101\) −6.09017 −0.605995 −0.302997 0.952991i \(-0.597987\pi\)
−0.302997 + 0.952991i \(0.597987\pi\)
\(102\) − 2.61803i − 0.259224i
\(103\) − 5.38197i − 0.530301i −0.964207 0.265150i \(-0.914578\pi\)
0.964207 0.265150i \(-0.0854216\pi\)
\(104\) 13.9443 1.36735
\(105\) 0 0
\(106\) 15.0902 1.46569
\(107\) − 4.23607i − 0.409516i −0.978813 0.204758i \(-0.934359\pi\)
0.978813 0.204758i \(-0.0656408\pi\)
\(108\) − 1.38197i − 0.132980i
\(109\) 3.09017 0.295985 0.147992 0.988989i \(-0.452719\pi\)
0.147992 + 0.988989i \(0.452719\pi\)
\(110\) 0 0
\(111\) 26.7984 2.54359
\(112\) 13.8541i 1.30909i
\(113\) 11.6525i 1.09617i 0.836422 + 0.548086i \(0.184643\pi\)
−0.836422 + 0.548086i \(0.815357\pi\)
\(114\) 28.4164 2.66144
\(115\) 0 0
\(116\) −0.854102 −0.0793014
\(117\) 24.0344i 2.22198i
\(118\) − 0.854102i − 0.0786265i
\(119\) −1.76393 −0.161699
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0.145898i 0.0132090i
\(123\) 7.85410i 0.708181i
\(124\) 1.85410 0.166503
\(125\) 0 0
\(126\) −17.7984 −1.58561
\(127\) − 0.618034i − 0.0548416i −0.999624 0.0274208i \(-0.991271\pi\)
0.999624 0.0274208i \(-0.00872941\pi\)
\(128\) − 13.6180i − 1.20368i
\(129\) 15.7082 1.38303
\(130\) 0 0
\(131\) 10.0902 0.881582 0.440791 0.897610i \(-0.354698\pi\)
0.440791 + 0.897610i \(0.354698\pi\)
\(132\) 1.61803i 0.140832i
\(133\) − 19.1459i − 1.66016i
\(134\) −12.9443 −1.11821
\(135\) 0 0
\(136\) 1.38197 0.118503
\(137\) 5.56231i 0.475220i 0.971361 + 0.237610i \(0.0763640\pi\)
−0.971361 + 0.237610i \(0.923636\pi\)
\(138\) 17.3262i 1.47491i
\(139\) 3.29180 0.279206 0.139603 0.990208i \(-0.455417\pi\)
0.139603 + 0.990208i \(0.455417\pi\)
\(140\) 0 0
\(141\) 31.2705 2.63345
\(142\) 13.2361i 1.11075i
\(143\) − 6.23607i − 0.521486i
\(144\) 18.7082 1.55902
\(145\) 0 0
\(146\) 16.7984 1.39024
\(147\) 3.00000i 0.247436i
\(148\) − 6.32624i − 0.520014i
\(149\) 8.94427 0.732743 0.366372 0.930469i \(-0.380600\pi\)
0.366372 + 0.930469i \(0.380600\pi\)
\(150\) 0 0
\(151\) −3.00000 −0.244137 −0.122068 0.992522i \(-0.538953\pi\)
−0.122068 + 0.992522i \(0.538953\pi\)
\(152\) 15.0000i 1.21666i
\(153\) 2.38197i 0.192571i
\(154\) 4.61803 0.372132
\(155\) 0 0
\(156\) 10.0902 0.807860
\(157\) − 5.41641i − 0.432276i −0.976363 0.216138i \(-0.930654\pi\)
0.976363 0.216138i \(-0.0693462\pi\)
\(158\) − 9.47214i − 0.753563i
\(159\) −24.4164 −1.93635
\(160\) 0 0
\(161\) 11.6738 0.920021
\(162\) − 9.23607i − 0.725654i
\(163\) 6.85410i 0.536855i 0.963300 + 0.268427i \(0.0865039\pi\)
−0.963300 + 0.268427i \(0.913496\pi\)
\(164\) 1.85410 0.144781
\(165\) 0 0
\(166\) −16.4164 −1.27416
\(167\) − 5.29180i − 0.409491i −0.978815 0.204746i \(-0.934363\pi\)
0.978815 0.204746i \(-0.0656368\pi\)
\(168\) − 16.7082i − 1.28907i
\(169\) −25.8885 −1.99143
\(170\) 0 0
\(171\) −25.8541 −1.97711
\(172\) − 3.70820i − 0.282748i
\(173\) 5.47214i 0.416039i 0.978125 + 0.208019i \(0.0667017\pi\)
−0.978125 + 0.208019i \(0.933298\pi\)
\(174\) 5.85410 0.443798
\(175\) 0 0
\(176\) −4.85410 −0.365892
\(177\) 1.38197i 0.103875i
\(178\) 11.1803i 0.838002i
\(179\) 13.6180 1.01786 0.508930 0.860808i \(-0.330041\pi\)
0.508930 + 0.860808i \(0.330041\pi\)
\(180\) 0 0
\(181\) −6.09017 −0.452679 −0.226339 0.974049i \(-0.572676\pi\)
−0.226339 + 0.974049i \(0.572676\pi\)
\(182\) − 28.7984i − 2.13468i
\(183\) − 0.236068i − 0.0174506i
\(184\) −9.14590 −0.674245
\(185\) 0 0
\(186\) −12.7082 −0.931811
\(187\) − 0.618034i − 0.0451951i
\(188\) − 7.38197i − 0.538385i
\(189\) 6.38197 0.464220
\(190\) 0 0
\(191\) −21.0902 −1.52603 −0.763016 0.646380i \(-0.776282\pi\)
−0.763016 + 0.646380i \(0.776282\pi\)
\(192\) 11.0902i 0.800364i
\(193\) − 12.9443i − 0.931749i −0.884851 0.465875i \(-0.845740\pi\)
0.884851 0.465875i \(-0.154260\pi\)
\(194\) −2.61803 −0.187964
\(195\) 0 0
\(196\) 0.708204 0.0505860
\(197\) − 20.0902i − 1.43137i −0.698426 0.715683i \(-0.746116\pi\)
0.698426 0.715683i \(-0.253884\pi\)
\(198\) − 6.23607i − 0.443178i
\(199\) 3.09017 0.219056 0.109528 0.993984i \(-0.465066\pi\)
0.109528 + 0.993984i \(0.465066\pi\)
\(200\) 0 0
\(201\) 20.9443 1.47730
\(202\) − 9.85410i − 0.693332i
\(203\) − 3.94427i − 0.276834i
\(204\) 1.00000 0.0700140
\(205\) 0 0
\(206\) 8.70820 0.606729
\(207\) − 15.7639i − 1.09567i
\(208\) 30.2705i 2.09888i
\(209\) 6.70820 0.464016
\(210\) 0 0
\(211\) 17.0000 1.17033 0.585164 0.810915i \(-0.301030\pi\)
0.585164 + 0.810915i \(0.301030\pi\)
\(212\) 5.76393i 0.395868i
\(213\) − 21.4164i − 1.46743i
\(214\) 6.85410 0.468537
\(215\) 0 0
\(216\) −5.00000 −0.340207
\(217\) 8.56231i 0.581247i
\(218\) 5.00000i 0.338643i
\(219\) −27.1803 −1.83668
\(220\) 0 0
\(221\) −3.85410 −0.259255
\(222\) 43.3607i 2.91018i
\(223\) − 16.8885i − 1.13094i −0.824769 0.565470i \(-0.808695\pi\)
0.824769 0.565470i \(-0.191305\pi\)
\(224\) −9.65248 −0.644933
\(225\) 0 0
\(226\) −18.8541 −1.25416
\(227\) − 24.0344i − 1.59522i −0.603172 0.797611i \(-0.706097\pi\)
0.603172 0.797611i \(-0.293903\pi\)
\(228\) 10.8541i 0.718830i
\(229\) −12.0344 −0.795258 −0.397629 0.917546i \(-0.630167\pi\)
−0.397629 + 0.917546i \(0.630167\pi\)
\(230\) 0 0
\(231\) −7.47214 −0.491630
\(232\) 3.09017i 0.202880i
\(233\) − 15.5066i − 1.01587i −0.861395 0.507935i \(-0.830409\pi\)
0.861395 0.507935i \(-0.169591\pi\)
\(234\) −38.8885 −2.54222
\(235\) 0 0
\(236\) 0.326238 0.0212363
\(237\) 15.3262i 0.995546i
\(238\) − 2.85410i − 0.185004i
\(239\) −6.38197 −0.412815 −0.206408 0.978466i \(-0.566177\pi\)
−0.206408 + 0.978466i \(0.566177\pi\)
\(240\) 0 0
\(241\) 21.2705 1.37015 0.685077 0.728471i \(-0.259769\pi\)
0.685077 + 0.728471i \(0.259769\pi\)
\(242\) 1.61803i 0.104011i
\(243\) 21.6525i 1.38901i
\(244\) −0.0557281 −0.00356763
\(245\) 0 0
\(246\) −12.7082 −0.810245
\(247\) − 41.8328i − 2.66176i
\(248\) − 6.70820i − 0.425971i
\(249\) 26.5623 1.68332
\(250\) 0 0
\(251\) −27.2705 −1.72130 −0.860650 0.509198i \(-0.829942\pi\)
−0.860650 + 0.509198i \(0.829942\pi\)
\(252\) − 6.79837i − 0.428257i
\(253\) 4.09017i 0.257147i
\(254\) 1.00000 0.0627456
\(255\) 0 0
\(256\) 13.5623 0.847644
\(257\) − 10.9443i − 0.682685i −0.939939 0.341342i \(-0.889118\pi\)
0.939939 0.341342i \(-0.110882\pi\)
\(258\) 25.4164i 1.58236i
\(259\) 29.2148 1.81532
\(260\) 0 0
\(261\) −5.32624 −0.329686
\(262\) 16.3262i 1.00864i
\(263\) 21.0000i 1.29492i 0.762101 + 0.647458i \(0.224168\pi\)
−0.762101 + 0.647458i \(0.775832\pi\)
\(264\) 5.85410 0.360295
\(265\) 0 0
\(266\) 30.9787 1.89943
\(267\) − 18.0902i − 1.10710i
\(268\) − 4.94427i − 0.302019i
\(269\) −30.3262 −1.84902 −0.924512 0.381154i \(-0.875527\pi\)
−0.924512 + 0.381154i \(0.875527\pi\)
\(270\) 0 0
\(271\) 13.1803 0.800649 0.400324 0.916374i \(-0.368897\pi\)
0.400324 + 0.916374i \(0.368897\pi\)
\(272\) 3.00000i 0.181902i
\(273\) 46.5967i 2.82016i
\(274\) −9.00000 −0.543710
\(275\) 0 0
\(276\) −6.61803 −0.398359
\(277\) − 11.4721i − 0.689294i −0.938732 0.344647i \(-0.887999\pi\)
0.938732 0.344647i \(-0.112001\pi\)
\(278\) 5.32624i 0.319447i
\(279\) 11.5623 0.692217
\(280\) 0 0
\(281\) −25.3607 −1.51289 −0.756446 0.654057i \(-0.773066\pi\)
−0.756446 + 0.654057i \(0.773066\pi\)
\(282\) 50.5967i 3.01299i
\(283\) 7.38197i 0.438812i 0.975634 + 0.219406i \(0.0704120\pi\)
−0.975634 + 0.219406i \(0.929588\pi\)
\(284\) −5.05573 −0.300002
\(285\) 0 0
\(286\) 10.0902 0.596644
\(287\) 8.56231i 0.505417i
\(288\) 13.0344i 0.768062i
\(289\) 16.6180 0.977531
\(290\) 0 0
\(291\) 4.23607 0.248323
\(292\) 6.41641i 0.375492i
\(293\) 23.8885i 1.39558i 0.716301 + 0.697792i \(0.245834\pi\)
−0.716301 + 0.697792i \(0.754166\pi\)
\(294\) −4.85410 −0.283097
\(295\) 0 0
\(296\) −22.8885 −1.33037
\(297\) 2.23607i 0.129750i
\(298\) 14.4721i 0.838348i
\(299\) 25.5066 1.47508
\(300\) 0 0
\(301\) 17.1246 0.987046
\(302\) − 4.85410i − 0.279322i
\(303\) 15.9443i 0.915974i
\(304\) −32.5623 −1.86758
\(305\) 0 0
\(306\) −3.85410 −0.220324
\(307\) 33.4508i 1.90914i 0.297985 + 0.954570i \(0.403685\pi\)
−0.297985 + 0.954570i \(0.596315\pi\)
\(308\) 1.76393i 0.100509i
\(309\) −14.0902 −0.801562
\(310\) 0 0
\(311\) −19.1803 −1.08762 −0.543809 0.839209i \(-0.683018\pi\)
−0.543809 + 0.839209i \(0.683018\pi\)
\(312\) − 36.5066i − 2.06678i
\(313\) 3.23607i 0.182913i 0.995809 + 0.0914567i \(0.0291523\pi\)
−0.995809 + 0.0914567i \(0.970848\pi\)
\(314\) 8.76393 0.494577
\(315\) 0 0
\(316\) 3.61803 0.203530
\(317\) 16.6180i 0.933362i 0.884426 + 0.466681i \(0.154550\pi\)
−0.884426 + 0.466681i \(0.845450\pi\)
\(318\) − 39.5066i − 2.21542i
\(319\) 1.38197 0.0773752
\(320\) 0 0
\(321\) −11.0902 −0.618993
\(322\) 18.8885i 1.05262i
\(323\) − 4.14590i − 0.230684i
\(324\) 3.52786 0.195992
\(325\) 0 0
\(326\) −11.0902 −0.614228
\(327\) − 8.09017i − 0.447387i
\(328\) − 6.70820i − 0.370399i
\(329\) 34.0902 1.87945
\(330\) 0 0
\(331\) −19.1803 −1.05425 −0.527123 0.849789i \(-0.676729\pi\)
−0.527123 + 0.849789i \(0.676729\pi\)
\(332\) − 6.27051i − 0.344139i
\(333\) − 39.4508i − 2.16189i
\(334\) 8.56231 0.468509
\(335\) 0 0
\(336\) 36.2705 1.97872
\(337\) 1.41641i 0.0771567i 0.999256 + 0.0385783i \(0.0122829\pi\)
−0.999256 + 0.0385783i \(0.987717\pi\)
\(338\) − 41.8885i − 2.27844i
\(339\) 30.5066 1.65689
\(340\) 0 0
\(341\) −3.00000 −0.162459
\(342\) − 41.8328i − 2.26206i
\(343\) − 16.7082i − 0.902158i
\(344\) −13.4164 −0.723364
\(345\) 0 0
\(346\) −8.85410 −0.475999
\(347\) 20.5623i 1.10384i 0.833896 + 0.551921i \(0.186105\pi\)
−0.833896 + 0.551921i \(0.813895\pi\)
\(348\) 2.23607i 0.119866i
\(349\) −21.8328 −1.16868 −0.584342 0.811508i \(-0.698647\pi\)
−0.584342 + 0.811508i \(0.698647\pi\)
\(350\) 0 0
\(351\) 13.9443 0.744290
\(352\) − 3.38197i − 0.180259i
\(353\) − 21.3607i − 1.13691i −0.822713 0.568457i \(-0.807541\pi\)
0.822713 0.568457i \(-0.192459\pi\)
\(354\) −2.23607 −0.118846
\(355\) 0 0
\(356\) −4.27051 −0.226337
\(357\) 4.61803i 0.244412i
\(358\) 22.0344i 1.16456i
\(359\) 4.47214 0.236030 0.118015 0.993012i \(-0.462347\pi\)
0.118015 + 0.993012i \(0.462347\pi\)
\(360\) 0 0
\(361\) 26.0000 1.36842
\(362\) − 9.85410i − 0.517920i
\(363\) − 2.61803i − 0.137411i
\(364\) 11.0000 0.576557
\(365\) 0 0
\(366\) 0.381966 0.0199657
\(367\) 7.14590i 0.373013i 0.982454 + 0.186506i \(0.0597165\pi\)
−0.982454 + 0.186506i \(0.940283\pi\)
\(368\) − 19.8541i − 1.03497i
\(369\) 11.5623 0.601910
\(370\) 0 0
\(371\) −26.6180 −1.38194
\(372\) − 4.85410i − 0.251673i
\(373\) − 2.81966i − 0.145996i −0.997332 0.0729982i \(-0.976743\pi\)
0.997332 0.0729982i \(-0.0232567\pi\)
\(374\) 1.00000 0.0517088
\(375\) 0 0
\(376\) −26.7082 −1.37737
\(377\) − 8.61803i − 0.443851i
\(378\) 10.3262i 0.531124i
\(379\) 17.7639 0.912472 0.456236 0.889859i \(-0.349197\pi\)
0.456236 + 0.889859i \(0.349197\pi\)
\(380\) 0 0
\(381\) −1.61803 −0.0828944
\(382\) − 34.1246i − 1.74597i
\(383\) − 5.05573i − 0.258336i −0.991623 0.129168i \(-0.958769\pi\)
0.991623 0.129168i \(-0.0412306\pi\)
\(384\) −35.6525 −1.81938
\(385\) 0 0
\(386\) 20.9443 1.06604
\(387\) − 23.1246i − 1.17549i
\(388\) − 1.00000i − 0.0507673i
\(389\) −5.52786 −0.280274 −0.140137 0.990132i \(-0.544754\pi\)
−0.140137 + 0.990132i \(0.544754\pi\)
\(390\) 0 0
\(391\) 2.52786 0.127840
\(392\) − 2.56231i − 0.129416i
\(393\) − 26.4164i − 1.33253i
\(394\) 32.5066 1.63766
\(395\) 0 0
\(396\) 2.38197 0.119698
\(397\) 14.9098i 0.748303i 0.927368 + 0.374151i \(0.122066\pi\)
−0.927368 + 0.374151i \(0.877934\pi\)
\(398\) 5.00000i 0.250627i
\(399\) −50.1246 −2.50937
\(400\) 0 0
\(401\) 34.3607 1.71589 0.857945 0.513741i \(-0.171741\pi\)
0.857945 + 0.513741i \(0.171741\pi\)
\(402\) 33.8885i 1.69021i
\(403\) 18.7082i 0.931922i
\(404\) 3.76393 0.187263
\(405\) 0 0
\(406\) 6.38197 0.316732
\(407\) 10.2361i 0.507383i
\(408\) − 3.61803i − 0.179119i
\(409\) −20.1246 −0.995098 −0.497549 0.867436i \(-0.665767\pi\)
−0.497549 + 0.867436i \(0.665767\pi\)
\(410\) 0 0
\(411\) 14.5623 0.718306
\(412\) 3.32624i 0.163872i
\(413\) 1.50658i 0.0741338i
\(414\) 25.5066 1.25358
\(415\) 0 0
\(416\) −21.0902 −1.03403
\(417\) − 8.61803i − 0.422027i
\(418\) 10.8541i 0.530891i
\(419\) −21.1803 −1.03473 −0.517364 0.855766i \(-0.673087\pi\)
−0.517364 + 0.855766i \(0.673087\pi\)
\(420\) 0 0
\(421\) −12.2705 −0.598028 −0.299014 0.954249i \(-0.596658\pi\)
−0.299014 + 0.954249i \(0.596658\pi\)
\(422\) 27.5066i 1.33900i
\(423\) − 46.0344i − 2.23827i
\(424\) 20.8541 1.01276
\(425\) 0 0
\(426\) 34.6525 1.67892
\(427\) − 0.257354i − 0.0124542i
\(428\) 2.61803i 0.126547i
\(429\) −16.3262 −0.788238
\(430\) 0 0
\(431\) 0.819660 0.0394816 0.0197408 0.999805i \(-0.493716\pi\)
0.0197408 + 0.999805i \(0.493716\pi\)
\(432\) − 10.8541i − 0.522218i
\(433\) 18.8885i 0.907725i 0.891072 + 0.453863i \(0.149954\pi\)
−0.891072 + 0.453863i \(0.850046\pi\)
\(434\) −13.8541 −0.665018
\(435\) 0 0
\(436\) −1.90983 −0.0914643
\(437\) 27.4377i 1.31252i
\(438\) − 43.9787i − 2.10138i
\(439\) 0.729490 0.0348167 0.0174083 0.999848i \(-0.494458\pi\)
0.0174083 + 0.999848i \(0.494458\pi\)
\(440\) 0 0
\(441\) 4.41641 0.210305
\(442\) − 6.23607i − 0.296620i
\(443\) 36.6525i 1.74141i 0.491804 + 0.870706i \(0.336338\pi\)
−0.491804 + 0.870706i \(0.663662\pi\)
\(444\) −16.5623 −0.786012
\(445\) 0 0
\(446\) 27.3262 1.29393
\(447\) − 23.4164i − 1.10756i
\(448\) 12.0902i 0.571207i
\(449\) 15.3262 0.723290 0.361645 0.932316i \(-0.382215\pi\)
0.361645 + 0.932316i \(0.382215\pi\)
\(450\) 0 0
\(451\) −3.00000 −0.141264
\(452\) − 7.20163i − 0.338736i
\(453\) 7.85410i 0.369018i
\(454\) 38.8885 1.82513
\(455\) 0 0
\(456\) 39.2705 1.83901
\(457\) − 7.97871i − 0.373228i −0.982433 0.186614i \(-0.940249\pi\)
0.982433 0.186614i \(-0.0597514\pi\)
\(458\) − 19.4721i − 0.909873i
\(459\) 1.38197 0.0645046
\(460\) 0 0
\(461\) −9.18034 −0.427571 −0.213786 0.976881i \(-0.568579\pi\)
−0.213786 + 0.976881i \(0.568579\pi\)
\(462\) − 12.0902i − 0.562486i
\(463\) − 11.3607i − 0.527976i −0.964526 0.263988i \(-0.914962\pi\)
0.964526 0.263988i \(-0.0850379\pi\)
\(464\) −6.70820 −0.311421
\(465\) 0 0
\(466\) 25.0902 1.16228
\(467\) 37.4721i 1.73400i 0.498305 + 0.867002i \(0.333956\pi\)
−0.498305 + 0.867002i \(0.666044\pi\)
\(468\) − 14.8541i − 0.686631i
\(469\) 22.8328 1.05432
\(470\) 0 0
\(471\) −14.1803 −0.653396
\(472\) − 1.18034i − 0.0543295i
\(473\) 6.00000i 0.275880i
\(474\) −24.7984 −1.13903
\(475\) 0 0
\(476\) 1.09017 0.0499679
\(477\) 35.9443i 1.64578i
\(478\) − 10.3262i − 0.472311i
\(479\) −28.4164 −1.29838 −0.649189 0.760627i \(-0.724892\pi\)
−0.649189 + 0.760627i \(0.724892\pi\)
\(480\) 0 0
\(481\) 63.8328 2.91053
\(482\) 34.4164i 1.56762i
\(483\) − 30.5623i − 1.39063i
\(484\) −0.618034 −0.0280925
\(485\) 0 0
\(486\) −35.0344 −1.58919
\(487\) − 30.4164i − 1.37830i −0.724619 0.689150i \(-0.757984\pi\)
0.724619 0.689150i \(-0.242016\pi\)
\(488\) 0.201626i 0.00912719i
\(489\) 17.9443 0.811468
\(490\) 0 0
\(491\) −6.81966 −0.307767 −0.153883 0.988089i \(-0.549178\pi\)
−0.153883 + 0.988089i \(0.549178\pi\)
\(492\) − 4.85410i − 0.218840i
\(493\) − 0.854102i − 0.0384668i
\(494\) 67.6869 3.04538
\(495\) 0 0
\(496\) 14.5623 0.653867
\(497\) − 23.3475i − 1.04728i
\(498\) 42.9787i 1.92592i
\(499\) −29.7984 −1.33396 −0.666979 0.745076i \(-0.732413\pi\)
−0.666979 + 0.745076i \(0.732413\pi\)
\(500\) 0 0
\(501\) −13.8541 −0.618956
\(502\) − 44.1246i − 1.96938i
\(503\) 6.65248i 0.296619i 0.988941 + 0.148310i \(0.0473832\pi\)
−0.988941 + 0.148310i \(0.952617\pi\)
\(504\) −24.5967 −1.09563
\(505\) 0 0
\(506\) −6.61803 −0.294207
\(507\) 67.7771i 3.01009i
\(508\) 0.381966i 0.0169470i
\(509\) −16.3820 −0.726118 −0.363059 0.931766i \(-0.618268\pi\)
−0.363059 + 0.931766i \(0.618268\pi\)
\(510\) 0 0
\(511\) −29.6312 −1.31081
\(512\) − 5.29180i − 0.233867i
\(513\) 15.0000i 0.662266i
\(514\) 17.7082 0.781075
\(515\) 0 0
\(516\) −9.70820 −0.427380
\(517\) 11.9443i 0.525308i
\(518\) 47.2705i 2.07695i
\(519\) 14.3262 0.628852
\(520\) 0 0
\(521\) −1.81966 −0.0797208 −0.0398604 0.999205i \(-0.512691\pi\)
−0.0398604 + 0.999205i \(0.512691\pi\)
\(522\) − 8.61803i − 0.377201i
\(523\) − 22.9443i − 1.00328i −0.865076 0.501641i \(-0.832730\pi\)
0.865076 0.501641i \(-0.167270\pi\)
\(524\) −6.23607 −0.272424
\(525\) 0 0
\(526\) −33.9787 −1.48154
\(527\) 1.85410i 0.0807660i
\(528\) 12.7082i 0.553054i
\(529\) 6.27051 0.272631
\(530\) 0 0
\(531\) 2.03444 0.0882873
\(532\) 11.8328i 0.513018i
\(533\) 18.7082i 0.810342i
\(534\) 29.2705 1.26666
\(535\) 0 0
\(536\) −17.8885 −0.772667
\(537\) − 35.6525i − 1.53852i
\(538\) − 49.0689i − 2.11551i
\(539\) −1.14590 −0.0493573
\(540\) 0 0
\(541\) −42.2705 −1.81735 −0.908676 0.417503i \(-0.862905\pi\)
−0.908676 + 0.417503i \(0.862905\pi\)
\(542\) 21.3262i 0.916040i
\(543\) 15.9443i 0.684234i
\(544\) −2.09017 −0.0896153
\(545\) 0 0
\(546\) −75.3951 −3.22661
\(547\) − 21.1459i − 0.904133i −0.891984 0.452067i \(-0.850687\pi\)
0.891984 0.452067i \(-0.149313\pi\)
\(548\) − 3.43769i − 0.146851i
\(549\) −0.347524 −0.0148320
\(550\) 0 0
\(551\) 9.27051 0.394937
\(552\) 23.9443i 1.01914i
\(553\) 16.7082i 0.710505i
\(554\) 18.5623 0.788637
\(555\) 0 0
\(556\) −2.03444 −0.0862796
\(557\) − 9.76393i − 0.413711i −0.978371 0.206856i \(-0.933677\pi\)
0.978371 0.206856i \(-0.0663230\pi\)
\(558\) 18.7082i 0.791981i
\(559\) 37.4164 1.58255
\(560\) 0 0
\(561\) −1.61803 −0.0683134
\(562\) − 41.0344i − 1.73093i
\(563\) 13.0344i 0.549336i 0.961539 + 0.274668i \(0.0885680\pi\)
−0.961539 + 0.274668i \(0.911432\pi\)
\(564\) −19.3262 −0.813781
\(565\) 0 0
\(566\) −11.9443 −0.502055
\(567\) 16.2918i 0.684191i
\(568\) 18.2918i 0.767507i
\(569\) −26.3820 −1.10599 −0.552995 0.833185i \(-0.686515\pi\)
−0.552995 + 0.833185i \(0.686515\pi\)
\(570\) 0 0
\(571\) 36.2705 1.51787 0.758937 0.651164i \(-0.225719\pi\)
0.758937 + 0.651164i \(0.225719\pi\)
\(572\) 3.85410i 0.161148i
\(573\) 55.2148i 2.30663i
\(574\) −13.8541 −0.578259
\(575\) 0 0
\(576\) 16.3262 0.680260
\(577\) 15.5623i 0.647867i 0.946080 + 0.323934i \(0.105005\pi\)
−0.946080 + 0.323934i \(0.894995\pi\)
\(578\) 26.8885i 1.11842i
\(579\) −33.8885 −1.40836
\(580\) 0 0
\(581\) 28.9574 1.20136
\(582\) 6.85410i 0.284112i
\(583\) − 9.32624i − 0.386253i
\(584\) 23.2148 0.960635
\(585\) 0 0
\(586\) −38.6525 −1.59672
\(587\) − 4.03444i − 0.166519i −0.996528 0.0832596i \(-0.973467\pi\)
0.996528 0.0832596i \(-0.0265331\pi\)
\(588\) − 1.85410i − 0.0764619i
\(589\) −20.1246 −0.829220
\(590\) 0 0
\(591\) −52.5967 −2.16354
\(592\) − 49.6869i − 2.04212i
\(593\) − 9.00000i − 0.369586i −0.982777 0.184793i \(-0.940839\pi\)
0.982777 0.184793i \(-0.0591614\pi\)
\(594\) −3.61803 −0.148450
\(595\) 0 0
\(596\) −5.52786 −0.226430
\(597\) − 8.09017i − 0.331109i
\(598\) 41.2705i 1.68768i
\(599\) −0.326238 −0.0133297 −0.00666486 0.999978i \(-0.502122\pi\)
−0.00666486 + 0.999978i \(0.502122\pi\)
\(600\) 0 0
\(601\) −22.2705 −0.908433 −0.454217 0.890891i \(-0.650081\pi\)
−0.454217 + 0.890891i \(0.650081\pi\)
\(602\) 27.7082i 1.12930i
\(603\) − 30.8328i − 1.25561i
\(604\) 1.85410 0.0754423
\(605\) 0 0
\(606\) −25.7984 −1.04799
\(607\) 3.52786i 0.143192i 0.997434 + 0.0715958i \(0.0228092\pi\)
−0.997434 + 0.0715958i \(0.977191\pi\)
\(608\) − 22.6869i − 0.920076i
\(609\) −10.3262 −0.418440
\(610\) 0 0
\(611\) 74.4853 3.01335
\(612\) − 1.47214i − 0.0595076i
\(613\) − 6.43769i − 0.260016i −0.991513 0.130008i \(-0.958500\pi\)
0.991513 0.130008i \(-0.0415003\pi\)
\(614\) −54.1246 −2.18429
\(615\) 0 0
\(616\) 6.38197 0.257137
\(617\) − 38.1803i − 1.53708i −0.639800 0.768541i \(-0.720983\pi\)
0.639800 0.768541i \(-0.279017\pi\)
\(618\) − 22.7984i − 0.917085i
\(619\) 22.8885 0.919968 0.459984 0.887927i \(-0.347855\pi\)
0.459984 + 0.887927i \(0.347855\pi\)
\(620\) 0 0
\(621\) −9.14590 −0.367012
\(622\) − 31.0344i − 1.24437i
\(623\) − 19.7214i − 0.790120i
\(624\) 79.2492 3.17251
\(625\) 0 0
\(626\) −5.23607 −0.209275
\(627\) − 17.5623i − 0.701371i
\(628\) 3.34752i 0.133581i
\(629\) 6.32624 0.252244
\(630\) 0 0
\(631\) 36.2705 1.44391 0.721953 0.691942i \(-0.243245\pi\)
0.721953 + 0.691942i \(0.243245\pi\)
\(632\) − 13.0902i − 0.520699i
\(633\) − 44.5066i − 1.76898i
\(634\) −26.8885 −1.06788
\(635\) 0 0
\(636\) 15.0902 0.598364
\(637\) 7.14590i 0.283131i
\(638\) 2.23607i 0.0885268i
\(639\) −31.5279 −1.24722
\(640\) 0 0
\(641\) −3.00000 −0.118493 −0.0592464 0.998243i \(-0.518870\pi\)
−0.0592464 + 0.998243i \(0.518870\pi\)
\(642\) − 17.9443i − 0.708204i
\(643\) − 10.5836i − 0.417376i −0.977982 0.208688i \(-0.933081\pi\)
0.977982 0.208688i \(-0.0669193\pi\)
\(644\) −7.21478 −0.284302
\(645\) 0 0
\(646\) 6.70820 0.263931
\(647\) 12.3475i 0.485431i 0.970097 + 0.242716i \(0.0780382\pi\)
−0.970097 + 0.242716i \(0.921962\pi\)
\(648\) − 12.7639i − 0.501415i
\(649\) −0.527864 −0.0207205
\(650\) 0 0
\(651\) 22.4164 0.878568
\(652\) − 4.23607i − 0.165897i
\(653\) − 7.74265i − 0.302993i −0.988458 0.151497i \(-0.951591\pi\)
0.988458 0.151497i \(-0.0484093\pi\)
\(654\) 13.0902 0.511866
\(655\) 0 0
\(656\) 14.5623 0.568563
\(657\) 40.0132i 1.56106i
\(658\) 55.1591i 2.15032i
\(659\) −9.27051 −0.361128 −0.180564 0.983563i \(-0.557792\pi\)
−0.180564 + 0.983563i \(0.557792\pi\)
\(660\) 0 0
\(661\) −49.1803 −1.91289 −0.956447 0.291907i \(-0.905710\pi\)
−0.956447 + 0.291907i \(0.905710\pi\)
\(662\) − 31.0344i − 1.20619i
\(663\) 10.0902i 0.391870i
\(664\) −22.6869 −0.880423
\(665\) 0 0
\(666\) 63.8328 2.47347
\(667\) 5.65248i 0.218865i
\(668\) 3.27051i 0.126540i
\(669\) −44.2148 −1.70944
\(670\) 0 0
\(671\) 0.0901699 0.00348097
\(672\) 25.2705i 0.974831i
\(673\) − 2.41641i − 0.0931457i −0.998915 0.0465728i \(-0.985170\pi\)
0.998915 0.0465728i \(-0.0148300\pi\)
\(674\) −2.29180 −0.0882767
\(675\) 0 0
\(676\) 16.0000 0.615385
\(677\) 28.6525i 1.10120i 0.834768 + 0.550602i \(0.185602\pi\)
−0.834768 + 0.550602i \(0.814398\pi\)
\(678\) 49.3607i 1.89569i
\(679\) 4.61803 0.177224
\(680\) 0 0
\(681\) −62.9230 −2.41121
\(682\) − 4.85410i − 0.185873i
\(683\) 43.3607i 1.65915i 0.558395 + 0.829575i \(0.311417\pi\)
−0.558395 + 0.829575i \(0.688583\pi\)
\(684\) 15.9787 0.610961
\(685\) 0 0
\(686\) 27.0344 1.03218
\(687\) 31.5066i 1.20205i
\(688\) − 29.1246i − 1.11037i
\(689\) −58.1591 −2.21568
\(690\) 0 0
\(691\) 30.0902 1.14468 0.572342 0.820015i \(-0.306035\pi\)
0.572342 + 0.820015i \(0.306035\pi\)
\(692\) − 3.38197i − 0.128563i
\(693\) 11.0000i 0.417855i
\(694\) −33.2705 −1.26293
\(695\) 0 0
\(696\) 8.09017 0.306657
\(697\) 1.85410i 0.0702291i
\(698\) − 35.3262i − 1.33712i
\(699\) −40.5967 −1.53551
\(700\) 0 0
\(701\) −0.360680 −0.0136227 −0.00681134 0.999977i \(-0.502168\pi\)
−0.00681134 + 0.999977i \(0.502168\pi\)
\(702\) 22.5623i 0.851559i
\(703\) 68.6656i 2.58977i
\(704\) −4.23607 −0.159653
\(705\) 0 0
\(706\) 34.5623 1.30077
\(707\) 17.3820i 0.653716i
\(708\) − 0.854102i − 0.0320991i
\(709\) 41.3050 1.55124 0.775620 0.631200i \(-0.217437\pi\)
0.775620 + 0.631200i \(0.217437\pi\)
\(710\) 0 0
\(711\) 22.5623 0.846153
\(712\) 15.4508i 0.579045i
\(713\) − 12.2705i − 0.459534i
\(714\) −7.47214 −0.279638
\(715\) 0 0
\(716\) −8.41641 −0.314536
\(717\) 16.7082i 0.623979i
\(718\) 7.23607i 0.270048i
\(719\) 15.6525 0.583739 0.291869 0.956458i \(-0.405723\pi\)
0.291869 + 0.956458i \(0.405723\pi\)
\(720\) 0 0
\(721\) −15.3607 −0.572062
\(722\) 42.0689i 1.56564i
\(723\) − 55.6869i − 2.07102i
\(724\) 3.76393 0.139885
\(725\) 0 0
\(726\) 4.23607 0.157215
\(727\) − 41.2705i − 1.53064i −0.643651 0.765319i \(-0.722581\pi\)
0.643651 0.765319i \(-0.277419\pi\)
\(728\) − 39.7984i − 1.47503i
\(729\) 39.5623 1.46527
\(730\) 0 0
\(731\) 3.70820 0.137153
\(732\) 0.145898i 0.00539255i
\(733\) − 45.8328i − 1.69287i −0.532489 0.846437i \(-0.678743\pi\)
0.532489 0.846437i \(-0.321257\pi\)
\(734\) −11.5623 −0.426772
\(735\) 0 0
\(736\) 13.8328 0.509884
\(737\) 8.00000i 0.294684i
\(738\) 18.7082i 0.688659i
\(739\) 29.1459 1.07215 0.536075 0.844171i \(-0.319907\pi\)
0.536075 + 0.844171i \(0.319907\pi\)
\(740\) 0 0
\(741\) −109.520 −4.02331
\(742\) − 43.0689i − 1.58111i
\(743\) − 18.6738i − 0.685074i −0.939504 0.342537i \(-0.888714\pi\)
0.939504 0.342537i \(-0.111286\pi\)
\(744\) −17.5623 −0.643865
\(745\) 0 0
\(746\) 4.56231 0.167038
\(747\) − 39.1033i − 1.43072i
\(748\) 0.381966i 0.0139661i
\(749\) −12.0902 −0.441765
\(750\) 0 0
\(751\) 11.2705 0.411267 0.205633 0.978629i \(-0.434075\pi\)
0.205633 + 0.978629i \(0.434075\pi\)
\(752\) − 57.9787i − 2.11427i
\(753\) 71.3951i 2.60178i
\(754\) 13.9443 0.507820
\(755\) 0 0
\(756\) −3.94427 −0.143452
\(757\) − 21.4721i − 0.780418i −0.920726 0.390209i \(-0.872403\pi\)
0.920726 0.390209i \(-0.127597\pi\)
\(758\) 28.7426i 1.04398i
\(759\) 10.7082 0.388683
\(760\) 0 0
\(761\) 12.0000 0.435000 0.217500 0.976060i \(-0.430210\pi\)
0.217500 + 0.976060i \(0.430210\pi\)
\(762\) − 2.61803i − 0.0948414i
\(763\) − 8.81966i − 0.319293i
\(764\) 13.0344 0.471570
\(765\) 0 0
\(766\) 8.18034 0.295568
\(767\) 3.29180i 0.118860i
\(768\) − 35.5066i − 1.28123i
\(769\) 5.00000 0.180305 0.0901523 0.995928i \(-0.471265\pi\)
0.0901523 + 0.995928i \(0.471265\pi\)
\(770\) 0 0
\(771\) −28.6525 −1.03189
\(772\) 8.00000i 0.287926i
\(773\) − 33.7984i − 1.21564i −0.794074 0.607822i \(-0.792044\pi\)
0.794074 0.607822i \(-0.207956\pi\)
\(774\) 37.4164 1.34491
\(775\) 0 0
\(776\) −3.61803 −0.129880
\(777\) − 76.4853i − 2.74389i
\(778\) − 8.94427i − 0.320668i
\(779\) −20.1246 −0.721039
\(780\) 0 0
\(781\) 8.18034 0.292716
\(782\) 4.09017i 0.146264i
\(783\) 3.09017i 0.110434i
\(784\) 5.56231 0.198654
\(785\) 0 0
\(786\) 42.7426 1.52458
\(787\) 21.2918i 0.758971i 0.925198 + 0.379485i \(0.123899\pi\)
−0.925198 + 0.379485i \(0.876101\pi\)
\(788\) 12.4164i 0.442316i
\(789\) 54.9787 1.95729
\(790\) 0 0
\(791\) 33.2574 1.18250
\(792\) − 8.61803i − 0.306229i
\(793\) − 0.562306i − 0.0199681i
\(794\) −24.1246 −0.856150
\(795\) 0 0
\(796\) −1.90983 −0.0676921
\(797\) 3.20163i 0.113407i 0.998391 + 0.0567037i \(0.0180590\pi\)
−0.998391 + 0.0567037i \(0.981941\pi\)
\(798\) − 81.1033i − 2.87103i
\(799\) 7.38197 0.261155
\(800\) 0 0
\(801\) −26.6312 −0.940967
\(802\) 55.5967i 1.96319i
\(803\) − 10.3820i − 0.366372i
\(804\) −12.9443 −0.456509
\(805\) 0 0
\(806\) −30.2705 −1.06623
\(807\) 79.3951i 2.79484i
\(808\) − 13.6180i − 0.479081i
\(809\) 16.5836 0.583048 0.291524 0.956564i \(-0.405838\pi\)
0.291524 + 0.956564i \(0.405838\pi\)
\(810\) 0 0
\(811\) 17.0000 0.596951 0.298475 0.954417i \(-0.403522\pi\)
0.298475 + 0.954417i \(0.403522\pi\)
\(812\) 2.43769i 0.0855463i
\(813\) − 34.5066i − 1.21020i
\(814\) −16.5623 −0.580509
\(815\) 0 0
\(816\) 7.85410 0.274949
\(817\) 40.2492i 1.40814i
\(818\) − 32.5623i − 1.13851i
\(819\) 68.5967 2.39696
\(820\) 0 0
\(821\) 4.36068 0.152189 0.0760944 0.997101i \(-0.475755\pi\)
0.0760944 + 0.997101i \(0.475755\pi\)
\(822\) 23.5623i 0.821830i
\(823\) − 27.4164i − 0.955676i −0.878448 0.477838i \(-0.841421\pi\)
0.878448 0.477838i \(-0.158579\pi\)
\(824\) 12.0344 0.419240
\(825\) 0 0
\(826\) −2.43769 −0.0848182
\(827\) 32.0689i 1.11514i 0.830128 + 0.557572i \(0.188267\pi\)
−0.830128 + 0.557572i \(0.811733\pi\)
\(828\) 9.74265i 0.338580i
\(829\) 36.1033 1.25392 0.626960 0.779051i \(-0.284299\pi\)
0.626960 + 0.779051i \(0.284299\pi\)
\(830\) 0 0
\(831\) −30.0344 −1.04188
\(832\) 26.4164i 0.915824i
\(833\) 0.708204i 0.0245378i
\(834\) 13.9443 0.482851
\(835\) 0 0
\(836\) −4.14590 −0.143389
\(837\) − 6.70820i − 0.231869i
\(838\) − 34.2705i − 1.18386i
\(839\) 48.3394 1.66886 0.834431 0.551113i \(-0.185797\pi\)
0.834431 + 0.551113i \(0.185797\pi\)
\(840\) 0 0
\(841\) −27.0902 −0.934144
\(842\) − 19.8541i − 0.684218i
\(843\) 66.3951i 2.28677i
\(844\) −10.5066 −0.361651
\(845\) 0 0
\(846\) 74.4853 2.56086
\(847\) − 2.85410i − 0.0980681i
\(848\) 45.2705i 1.55460i
\(849\) 19.3262 0.663275
\(850\) 0 0
\(851\) −41.8673 −1.43519
\(852\) 13.2361i 0.453460i
\(853\) − 49.8541i − 1.70697i −0.521116 0.853486i \(-0.674484\pi\)
0.521116 0.853486i \(-0.325516\pi\)
\(854\) 0.416408 0.0142492
\(855\) 0 0
\(856\) 9.47214 0.323751
\(857\) − 53.1803i − 1.81661i −0.418313 0.908303i \(-0.637379\pi\)
0.418313 0.908303i \(-0.362621\pi\)
\(858\) − 26.4164i − 0.901841i
\(859\) −16.1803 −0.552066 −0.276033 0.961148i \(-0.589020\pi\)
−0.276033 + 0.961148i \(0.589020\pi\)
\(860\) 0 0
\(861\) 22.4164 0.763949
\(862\) 1.32624i 0.0451718i
\(863\) 0.596748i 0.0203135i 0.999948 + 0.0101568i \(0.00323305\pi\)
−0.999948 + 0.0101568i \(0.996767\pi\)
\(864\) 7.56231 0.257275
\(865\) 0 0
\(866\) −30.5623 −1.03855
\(867\) − 43.5066i − 1.47756i
\(868\) − 5.29180i − 0.179615i
\(869\) −5.85410 −0.198587
\(870\) 0 0
\(871\) 49.8885 1.69041
\(872\) 6.90983i 0.233996i
\(873\) − 6.23607i − 0.211059i
\(874\) −44.3951 −1.50169
\(875\) 0 0
\(876\) 16.7984 0.567564
\(877\) 4.58359i 0.154777i 0.997001 + 0.0773885i \(0.0246582\pi\)
−0.997001 + 0.0773885i \(0.975342\pi\)
\(878\) 1.18034i 0.0398345i
\(879\) 62.5410 2.10946
\(880\) 0 0
\(881\) 10.0902 0.339946 0.169973 0.985449i \(-0.445632\pi\)
0.169973 + 0.985449i \(0.445632\pi\)
\(882\) 7.14590i 0.240615i
\(883\) 31.6525i 1.06519i 0.846370 + 0.532595i \(0.178783\pi\)
−0.846370 + 0.532595i \(0.821217\pi\)
\(884\) 2.38197 0.0801142
\(885\) 0 0
\(886\) −59.3050 −1.99239
\(887\) 28.7771i 0.966240i 0.875554 + 0.483120i \(0.160497\pi\)
−0.875554 + 0.483120i \(0.839503\pi\)
\(888\) 59.9230i 2.01088i
\(889\) −1.76393 −0.0591604
\(890\) 0 0
\(891\) −5.70820 −0.191232
\(892\) 10.4377i 0.349480i
\(893\) 80.1246i 2.68127i
\(894\) 37.8885 1.26718
\(895\) 0 0
\(896\) −38.8673 −1.29846
\(897\) − 66.7771i − 2.22962i
\(898\) 24.7984i 0.827532i
\(899\) −4.14590 −0.138273
\(900\) 0 0
\(901\) −5.76393 −0.192024
\(902\) − 4.85410i − 0.161624i
\(903\) − 44.8328i − 1.49194i
\(904\) −26.0557 −0.866601
\(905\) 0 0
\(906\) −12.7082 −0.422202
\(907\) 14.8328i 0.492516i 0.969204 + 0.246258i \(0.0792010\pi\)
−0.969204 + 0.246258i \(0.920799\pi\)
\(908\) 14.8541i 0.492951i
\(909\) 23.4721 0.778522
\(910\) 0 0
\(911\) −18.0000 −0.596367 −0.298183 0.954509i \(-0.596381\pi\)
−0.298183 + 0.954509i \(0.596381\pi\)
\(912\) 85.2492i 2.82288i
\(913\) 10.1459i 0.335780i
\(914\) 12.9098 0.427019
\(915\) 0 0
\(916\) 7.43769 0.245748
\(917\) − 28.7984i − 0.951006i
\(918\) 2.23607i 0.0738012i
\(919\) −23.4164 −0.772436 −0.386218 0.922408i \(-0.626219\pi\)
−0.386218 + 0.922408i \(0.626219\pi\)
\(920\) 0 0
\(921\) 87.5755 2.88571
\(922\) − 14.8541i − 0.489194i
\(923\) − 51.0132i − 1.67912i
\(924\) 4.61803 0.151922
\(925\) 0 0
\(926\) 18.3820 0.604069
\(927\) 20.7426i 0.681278i
\(928\) − 4.67376i − 0.153424i
\(929\) −54.5967 −1.79126 −0.895631 0.444799i \(-0.853275\pi\)
−0.895631 + 0.444799i \(0.853275\pi\)
\(930\) 0 0
\(931\) −7.68692 −0.251929
\(932\) 9.58359i 0.313921i
\(933\) 50.2148i 1.64396i
\(934\) −60.6312 −1.98391
\(935\) 0 0
\(936\) −53.7426 −1.75663
\(937\) − 38.8328i − 1.26861i −0.773082 0.634306i \(-0.781286\pi\)
0.773082 0.634306i \(-0.218714\pi\)
\(938\) 36.9443i 1.20627i
\(939\) 8.47214 0.276478
\(940\) 0 0
\(941\) 41.7214 1.36008 0.680039 0.733176i \(-0.261963\pi\)
0.680039 + 0.733176i \(0.261963\pi\)
\(942\) − 22.9443i − 0.747565i
\(943\) − 12.2705i − 0.399583i
\(944\) 2.56231 0.0833960
\(945\) 0 0
\(946\) −9.70820 −0.315641
\(947\) − 39.3607i − 1.27905i −0.768770 0.639525i \(-0.779131\pi\)
0.768770 0.639525i \(-0.220869\pi\)
\(948\) − 9.47214i − 0.307641i
\(949\) −64.7426 −2.10164
\(950\) 0 0
\(951\) 43.5066 1.41080
\(952\) − 3.94427i − 0.127835i
\(953\) − 8.47214i − 0.274439i −0.990541 0.137220i \(-0.956183\pi\)
0.990541 0.137220i \(-0.0438166\pi\)
\(954\) −58.1591 −1.88297
\(955\) 0 0
\(956\) 3.94427 0.127567
\(957\) − 3.61803i − 0.116954i
\(958\) − 45.9787i − 1.48550i
\(959\) 15.8754 0.512643
\(960\) 0 0
\(961\) −22.0000 −0.709677
\(962\) 103.284i 3.33000i
\(963\) 16.3262i 0.526106i
\(964\) −13.1459 −0.423401
\(965\) 0 0
\(966\) 49.4508 1.59106
\(967\) 37.2705i 1.19854i 0.800547 + 0.599269i \(0.204542\pi\)
−0.800547 + 0.599269i \(0.795458\pi\)
\(968\) 2.23607i 0.0718699i
\(969\) −10.8541 −0.348684
\(970\) 0 0
\(971\) 23.9098 0.767303 0.383651 0.923478i \(-0.374666\pi\)
0.383651 + 0.923478i \(0.374666\pi\)
\(972\) − 13.3820i − 0.429227i
\(973\) − 9.39512i − 0.301194i
\(974\) 49.2148 1.57694
\(975\) 0 0
\(976\) −0.437694 −0.0140102
\(977\) 57.0689i 1.82580i 0.408188 + 0.912898i \(0.366161\pi\)
−0.408188 + 0.912898i \(0.633839\pi\)
\(978\) 29.0344i 0.928419i
\(979\) 6.90983 0.220839
\(980\) 0 0
\(981\) −11.9098 −0.380252
\(982\) − 11.0344i − 0.352123i
\(983\) 1.52786i 0.0487313i 0.999703 + 0.0243656i \(0.00775659\pi\)
−0.999703 + 0.0243656i \(0.992243\pi\)
\(984\) −17.5623 −0.559866
\(985\) 0 0
\(986\) 1.38197 0.0440108
\(987\) − 89.2492i − 2.84083i
\(988\) 25.8541i 0.822529i
\(989\) −24.5410 −0.780359
\(990\) 0 0
\(991\) 21.2705 0.675680 0.337840 0.941204i \(-0.390304\pi\)
0.337840 + 0.941204i \(0.390304\pi\)
\(992\) 10.1459i 0.322133i
\(993\) 50.2148i 1.59352i
\(994\) 37.7771 1.19822
\(995\) 0 0
\(996\) −16.4164 −0.520174
\(997\) 32.1459i 1.01807i 0.860746 + 0.509035i \(0.169998\pi\)
−0.860746 + 0.509035i \(0.830002\pi\)
\(998\) − 48.2148i − 1.52621i
\(999\) −22.8885 −0.724161
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.2.b.e.199.4 4
3.2 odd 2 2475.2.c.p.199.1 4
4.3 odd 2 4400.2.b.x.4049.4 4
5.2 odd 4 275.2.a.d.1.1 2
5.3 odd 4 275.2.a.g.1.2 yes 2
5.4 even 2 inner 275.2.b.e.199.1 4
15.2 even 4 2475.2.a.s.1.2 2
15.8 even 4 2475.2.a.n.1.1 2
15.14 odd 2 2475.2.c.p.199.4 4
20.3 even 4 4400.2.a.bg.1.1 2
20.7 even 4 4400.2.a.bv.1.2 2
20.19 odd 2 4400.2.b.x.4049.1 4
55.32 even 4 3025.2.a.m.1.2 2
55.43 even 4 3025.2.a.i.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
275.2.a.d.1.1 2 5.2 odd 4
275.2.a.g.1.2 yes 2 5.3 odd 4
275.2.b.e.199.1 4 5.4 even 2 inner
275.2.b.e.199.4 4 1.1 even 1 trivial
2475.2.a.n.1.1 2 15.8 even 4
2475.2.a.s.1.2 2 15.2 even 4
2475.2.c.p.199.1 4 3.2 odd 2
2475.2.c.p.199.4 4 15.14 odd 2
3025.2.a.i.1.1 2 55.43 even 4
3025.2.a.m.1.2 2 55.32 even 4
4400.2.a.bg.1.1 2 20.3 even 4
4400.2.a.bv.1.2 2 20.7 even 4
4400.2.b.x.4049.1 4 20.19 odd 2
4400.2.b.x.4049.4 4 4.3 odd 2