Properties

Label 4400.2.b.q
Level $4400$
Weight $2$
Character orbit 4400.b
Analytic conductor $35.134$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 4400 = 2^{4} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4400.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(35.1341768894\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
Defining polynomial: \(x^{4} + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{8}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( 2 \zeta_{8} + 2 \zeta_{8}^{3} ) q^{3} -2 \zeta_{8}^{2} q^{7} -5 q^{9} +O(q^{10})\) \( q + ( 2 \zeta_{8} + 2 \zeta_{8}^{3} ) q^{3} -2 \zeta_{8}^{2} q^{7} -5 q^{9} - q^{11} + ( 2 \zeta_{8} - 4 \zeta_{8}^{2} + 2 \zeta_{8}^{3} ) q^{13} + ( -2 \zeta_{8} - 4 \zeta_{8}^{2} - 2 \zeta_{8}^{3} ) q^{17} + ( 4 \zeta_{8} - 4 \zeta_{8}^{3} ) q^{21} + ( 2 \zeta_{8} + 2 \zeta_{8}^{3} ) q^{23} + ( -4 \zeta_{8} - 4 \zeta_{8}^{3} ) q^{27} + ( -2 + 4 \zeta_{8} - 4 \zeta_{8}^{3} ) q^{29} + ( -2 \zeta_{8} - 2 \zeta_{8}^{3} ) q^{33} + ( 4 \zeta_{8} + 2 \zeta_{8}^{2} + 4 \zeta_{8}^{3} ) q^{37} + ( -8 + 8 \zeta_{8} - 8 \zeta_{8}^{3} ) q^{39} + 6 q^{41} + 6 \zeta_{8}^{2} q^{43} + ( 2 \zeta_{8} + 2 \zeta_{8}^{3} ) q^{47} + 3 q^{49} + ( 8 + 8 \zeta_{8} - 8 \zeta_{8}^{3} ) q^{51} + ( 4 \zeta_{8} + 6 \zeta_{8}^{2} + 4 \zeta_{8}^{3} ) q^{53} + ( -4 + 4 \zeta_{8} - 4 \zeta_{8}^{3} ) q^{59} + ( 2 - 8 \zeta_{8} + 8 \zeta_{8}^{3} ) q^{61} + 10 \zeta_{8}^{2} q^{63} + ( 6 \zeta_{8} + 4 \zeta_{8}^{2} + 6 \zeta_{8}^{3} ) q^{67} -8 q^{69} + ( -8 \zeta_{8} + 8 \zeta_{8}^{3} ) q^{71} + ( 2 \zeta_{8} - 4 \zeta_{8}^{2} + 2 \zeta_{8}^{3} ) q^{73} + 2 \zeta_{8}^{2} q^{77} + 4 q^{79} + q^{81} + 6 \zeta_{8}^{2} q^{83} + ( -4 \zeta_{8} + 16 \zeta_{8}^{2} - 4 \zeta_{8}^{3} ) q^{87} + ( 2 + 8 \zeta_{8} - 8 \zeta_{8}^{3} ) q^{89} + ( -8 + 4 \zeta_{8} - 4 \zeta_{8}^{3} ) q^{91} + ( -4 \zeta_{8} + 2 \zeta_{8}^{2} - 4 \zeta_{8}^{3} ) q^{97} + 5 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 20 q^{9} + O(q^{10}) \) \( 4 q - 20 q^{9} - 4 q^{11} - 8 q^{29} - 32 q^{39} + 24 q^{41} + 12 q^{49} + 32 q^{51} - 16 q^{59} + 8 q^{61} - 32 q^{69} + 16 q^{79} + 4 q^{81} + 8 q^{89} - 32 q^{91} + 20 q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4400\mathbb{Z}\right)^\times\).

\(n\) \(177\) \(1201\) \(2751\) \(3301\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
4049.1
−0.707107 0.707107i
0.707107 0.707107i
0.707107 + 0.707107i
−0.707107 + 0.707107i
0 2.82843i 0 0 0 2.00000i 0 −5.00000 0
4049.2 0 2.82843i 0 0 0 2.00000i 0 −5.00000 0
4049.3 0 2.82843i 0 0 0 2.00000i 0 −5.00000 0
4049.4 0 2.82843i 0 0 0 2.00000i 0 −5.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4400.2.b.q 4
4.b odd 2 1 275.2.b.d 4
5.b even 2 1 inner 4400.2.b.q 4
5.c odd 4 1 880.2.a.m 2
5.c odd 4 1 4400.2.a.bn 2
12.b even 2 1 2475.2.c.l 4
15.e even 4 1 7920.2.a.ch 2
20.d odd 2 1 275.2.b.d 4
20.e even 4 1 55.2.a.b 2
20.e even 4 1 275.2.a.c 2
40.i odd 4 1 3520.2.a.bo 2
40.k even 4 1 3520.2.a.bn 2
55.e even 4 1 9680.2.a.bn 2
60.h even 2 1 2475.2.c.l 4
60.l odd 4 1 495.2.a.b 2
60.l odd 4 1 2475.2.a.x 2
140.j odd 4 1 2695.2.a.f 2
220.i odd 4 1 605.2.a.d 2
220.i odd 4 1 3025.2.a.o 2
220.v even 20 4 605.2.g.f 8
220.w odd 20 4 605.2.g.l 8
260.p even 4 1 9295.2.a.g 2
660.q even 4 1 5445.2.a.y 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
55.2.a.b 2 20.e even 4 1
275.2.a.c 2 20.e even 4 1
275.2.b.d 4 4.b odd 2 1
275.2.b.d 4 20.d odd 2 1
495.2.a.b 2 60.l odd 4 1
605.2.a.d 2 220.i odd 4 1
605.2.g.f 8 220.v even 20 4
605.2.g.l 8 220.w odd 20 4
880.2.a.m 2 5.c odd 4 1
2475.2.a.x 2 60.l odd 4 1
2475.2.c.l 4 12.b even 2 1
2475.2.c.l 4 60.h even 2 1
2695.2.a.f 2 140.j odd 4 1
3025.2.a.o 2 220.i odd 4 1
3520.2.a.bn 2 40.k even 4 1
3520.2.a.bo 2 40.i odd 4 1
4400.2.a.bn 2 5.c odd 4 1
4400.2.b.q 4 1.a even 1 1 trivial
4400.2.b.q 4 5.b even 2 1 inner
5445.2.a.y 2 660.q even 4 1
7920.2.a.ch 2 15.e even 4 1
9295.2.a.g 2 260.p even 4 1
9680.2.a.bn 2 55.e even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(4400, [\chi])\):

\( T_{3}^{2} + 8 \)
\( T_{7}^{2} + 4 \)
\( T_{13}^{4} + 48 T_{13}^{2} + 64 \)
\( T_{17}^{4} + 48 T_{17}^{2} + 64 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \)
$3$ \( ( 8 + T^{2} )^{2} \)
$5$ \( T^{4} \)
$7$ \( ( 4 + T^{2} )^{2} \)
$11$ \( ( 1 + T )^{4} \)
$13$ \( 64 + 48 T^{2} + T^{4} \)
$17$ \( 64 + 48 T^{2} + T^{4} \)
$19$ \( T^{4} \)
$23$ \( ( 8 + T^{2} )^{2} \)
$29$ \( ( -28 + 4 T + T^{2} )^{2} \)
$31$ \( T^{4} \)
$37$ \( 784 + 72 T^{2} + T^{4} \)
$41$ \( ( -6 + T )^{4} \)
$43$ \( ( 36 + T^{2} )^{2} \)
$47$ \( ( 8 + T^{2} )^{2} \)
$53$ \( 16 + 136 T^{2} + T^{4} \)
$59$ \( ( -16 + 8 T + T^{2} )^{2} \)
$61$ \( ( -124 - 4 T + T^{2} )^{2} \)
$67$ \( 3136 + 176 T^{2} + T^{4} \)
$71$ \( ( -128 + T^{2} )^{2} \)
$73$ \( 64 + 48 T^{2} + T^{4} \)
$79$ \( ( -4 + T )^{4} \)
$83$ \( ( 36 + T^{2} )^{2} \)
$89$ \( ( -124 - 4 T + T^{2} )^{2} \)
$97$ \( 784 + 72 T^{2} + T^{4} \)
show more
show less