Properties

Label 605.2.a.d
Level $605$
Weight $2$
Character orbit 605.a
Self dual yes
Analytic conductor $4.831$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [605,2,Mod(1,605)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(605, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("605.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 605 = 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 605.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-2,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(4.83094932229\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 55)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta - 1) q^{2} + 2 \beta q^{3} + ( - 2 \beta + 1) q^{4} - q^{5} + ( - 2 \beta + 4) q^{6} + 2 q^{7} + (\beta - 3) q^{8} + 5 q^{9} + ( - \beta + 1) q^{10} + (2 \beta - 8) q^{12} + (2 \beta + 4) q^{13}+ \cdots + ( - 3 \beta + 3) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{4} - 2 q^{5} + 8 q^{6} + 4 q^{7} - 6 q^{8} + 10 q^{9} + 2 q^{10} - 16 q^{12} + 8 q^{13} - 4 q^{14} + 6 q^{16} - 8 q^{17} - 10 q^{18} - 2 q^{20} + 8 q^{24} + 2 q^{25} + 4 q^{28} - 4 q^{29}+ \cdots + 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.41421
1.41421
−2.41421 −2.82843 3.82843 −1.00000 6.82843 2.00000 −4.41421 5.00000 2.41421
1.2 0.414214 2.82843 −1.82843 −1.00000 1.17157 2.00000 −1.58579 5.00000 −0.414214
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( +1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 605.2.a.d 2
3.b odd 2 1 5445.2.a.y 2
4.b odd 2 1 9680.2.a.bn 2
5.b even 2 1 3025.2.a.o 2
11.b odd 2 1 55.2.a.b 2
11.c even 5 4 605.2.g.l 8
11.d odd 10 4 605.2.g.f 8
33.d even 2 1 495.2.a.b 2
44.c even 2 1 880.2.a.m 2
55.d odd 2 1 275.2.a.c 2
55.e even 4 2 275.2.b.d 4
77.b even 2 1 2695.2.a.f 2
88.b odd 2 1 3520.2.a.bn 2
88.g even 2 1 3520.2.a.bo 2
132.d odd 2 1 7920.2.a.ch 2
143.d odd 2 1 9295.2.a.g 2
165.d even 2 1 2475.2.a.x 2
165.l odd 4 2 2475.2.c.l 4
220.g even 2 1 4400.2.a.bn 2
220.i odd 4 2 4400.2.b.q 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
55.2.a.b 2 11.b odd 2 1
275.2.a.c 2 55.d odd 2 1
275.2.b.d 4 55.e even 4 2
495.2.a.b 2 33.d even 2 1
605.2.a.d 2 1.a even 1 1 trivial
605.2.g.f 8 11.d odd 10 4
605.2.g.l 8 11.c even 5 4
880.2.a.m 2 44.c even 2 1
2475.2.a.x 2 165.d even 2 1
2475.2.c.l 4 165.l odd 4 2
2695.2.a.f 2 77.b even 2 1
3025.2.a.o 2 5.b even 2 1
3520.2.a.bn 2 88.b odd 2 1
3520.2.a.bo 2 88.g even 2 1
4400.2.a.bn 2 220.g even 2 1
4400.2.b.q 4 220.i odd 4 2
5445.2.a.y 2 3.b odd 2 1
7920.2.a.ch 2 132.d odd 2 1
9295.2.a.g 2 143.d odd 2 1
9680.2.a.bn 2 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(605))\):

\( T_{2}^{2} + 2T_{2} - 1 \) Copy content Toggle raw display
\( T_{3}^{2} - 8 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 2T - 1 \) Copy content Toggle raw display
$3$ \( T^{2} - 8 \) Copy content Toggle raw display
$5$ \( (T + 1)^{2} \) Copy content Toggle raw display
$7$ \( (T - 2)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} - 8T + 8 \) Copy content Toggle raw display
$17$ \( T^{2} + 8T + 8 \) Copy content Toggle raw display
$19$ \( T^{2} \) Copy content Toggle raw display
$23$ \( T^{2} - 8 \) Copy content Toggle raw display
$29$ \( T^{2} + 4T - 28 \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 4T - 28 \) Copy content Toggle raw display
$41$ \( (T + 6)^{2} \) Copy content Toggle raw display
$43$ \( (T - 6)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} - 8 \) Copy content Toggle raw display
$53$ \( T^{2} - 12T + 4 \) Copy content Toggle raw display
$59$ \( T^{2} + 8T - 16 \) Copy content Toggle raw display
$61$ \( T^{2} + 4T - 124 \) Copy content Toggle raw display
$67$ \( T^{2} - 8T - 56 \) Copy content Toggle raw display
$71$ \( T^{2} - 128 \) Copy content Toggle raw display
$73$ \( T^{2} - 8T + 8 \) Copy content Toggle raw display
$79$ \( (T + 4)^{2} \) Copy content Toggle raw display
$83$ \( (T - 6)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + 4T - 124 \) Copy content Toggle raw display
$97$ \( T^{2} + 4T - 28 \) Copy content Toggle raw display
show more
show less