Properties

Label 605.2.a.d.1.2
Level $605$
Weight $2$
Character 605.1
Self dual yes
Analytic conductor $4.831$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 605 = 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 605.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(4.83094932229\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 55)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.41421\) of defining polynomial
Character \(\chi\) \(=\) 605.1

$q$-expansion

\(f(q)\) \(=\) \(q+0.414214 q^{2} +2.82843 q^{3} -1.82843 q^{4} -1.00000 q^{5} +1.17157 q^{6} +2.00000 q^{7} -1.58579 q^{8} +5.00000 q^{9} +O(q^{10})\) \(q+0.414214 q^{2} +2.82843 q^{3} -1.82843 q^{4} -1.00000 q^{5} +1.17157 q^{6} +2.00000 q^{7} -1.58579 q^{8} +5.00000 q^{9} -0.414214 q^{10} -5.17157 q^{12} +6.82843 q^{13} +0.828427 q^{14} -2.82843 q^{15} +3.00000 q^{16} -1.17157 q^{17} +2.07107 q^{18} +1.82843 q^{20} +5.65685 q^{21} +2.82843 q^{23} -4.48528 q^{24} +1.00000 q^{25} +2.82843 q^{26} +5.65685 q^{27} -3.65685 q^{28} -7.65685 q^{29} -1.17157 q^{30} +4.41421 q^{32} -0.485281 q^{34} -2.00000 q^{35} -9.14214 q^{36} +3.65685 q^{37} +19.3137 q^{39} +1.58579 q^{40} -6.00000 q^{41} +2.34315 q^{42} +6.00000 q^{43} -5.00000 q^{45} +1.17157 q^{46} -2.82843 q^{47} +8.48528 q^{48} -3.00000 q^{49} +0.414214 q^{50} -3.31371 q^{51} -12.4853 q^{52} +0.343146 q^{53} +2.34315 q^{54} -3.17157 q^{56} -3.17157 q^{58} -9.65685 q^{59} +5.17157 q^{60} -13.3137 q^{61} +10.0000 q^{63} -4.17157 q^{64} -6.82843 q^{65} -4.48528 q^{67} +2.14214 q^{68} +8.00000 q^{69} -0.828427 q^{70} -11.3137 q^{71} -7.92893 q^{72} +6.82843 q^{73} +1.51472 q^{74} +2.82843 q^{75} +8.00000 q^{78} -4.00000 q^{79} -3.00000 q^{80} +1.00000 q^{81} -2.48528 q^{82} +6.00000 q^{83} -10.3431 q^{84} +1.17157 q^{85} +2.48528 q^{86} -21.6569 q^{87} +9.31371 q^{89} -2.07107 q^{90} +13.6569 q^{91} -5.17157 q^{92} -1.17157 q^{94} +12.4853 q^{96} -7.65685 q^{97} -1.24264 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{4} - 2 q^{5} + 8 q^{6} + 4 q^{7} - 6 q^{8} + 10 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{2} + 2 q^{4} - 2 q^{5} + 8 q^{6} + 4 q^{7} - 6 q^{8} + 10 q^{9} + 2 q^{10} - 16 q^{12} + 8 q^{13} - 4 q^{14} + 6 q^{16} - 8 q^{17} - 10 q^{18} - 2 q^{20} + 8 q^{24} + 2 q^{25} + 4 q^{28} - 4 q^{29} - 8 q^{30} + 6 q^{32} + 16 q^{34} - 4 q^{35} + 10 q^{36} - 4 q^{37} + 16 q^{39} + 6 q^{40} - 12 q^{41} + 16 q^{42} + 12 q^{43} - 10 q^{45} + 8 q^{46} - 6 q^{49} - 2 q^{50} + 16 q^{51} - 8 q^{52} + 12 q^{53} + 16 q^{54} - 12 q^{56} - 12 q^{58} - 8 q^{59} + 16 q^{60} - 4 q^{61} + 20 q^{63} - 14 q^{64} - 8 q^{65} + 8 q^{67} - 24 q^{68} + 16 q^{69} + 4 q^{70} - 30 q^{72} + 8 q^{73} + 20 q^{74} + 16 q^{78} - 8 q^{79} - 6 q^{80} + 2 q^{81} + 12 q^{82} + 12 q^{83} - 32 q^{84} + 8 q^{85} - 12 q^{86} - 32 q^{87} - 4 q^{89} + 10 q^{90} + 16 q^{91} - 16 q^{92} - 8 q^{94} + 8 q^{96} - 4 q^{97} + 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.414214 0.292893 0.146447 0.989219i \(-0.453216\pi\)
0.146447 + 0.989219i \(0.453216\pi\)
\(3\) 2.82843 1.63299 0.816497 0.577350i \(-0.195913\pi\)
0.816497 + 0.577350i \(0.195913\pi\)
\(4\) −1.82843 −0.914214
\(5\) −1.00000 −0.447214
\(6\) 1.17157 0.478293
\(7\) 2.00000 0.755929 0.377964 0.925820i \(-0.376624\pi\)
0.377964 + 0.925820i \(0.376624\pi\)
\(8\) −1.58579 −0.560660
\(9\) 5.00000 1.66667
\(10\) −0.414214 −0.130986
\(11\) 0 0
\(12\) −5.17157 −1.49290
\(13\) 6.82843 1.89386 0.946932 0.321433i \(-0.104164\pi\)
0.946932 + 0.321433i \(0.104164\pi\)
\(14\) 0.828427 0.221406
\(15\) −2.82843 −0.730297
\(16\) 3.00000 0.750000
\(17\) −1.17157 −0.284148 −0.142074 0.989856i \(-0.545377\pi\)
−0.142074 + 0.989856i \(0.545377\pi\)
\(18\) 2.07107 0.488155
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 1.82843 0.408849
\(21\) 5.65685 1.23443
\(22\) 0 0
\(23\) 2.82843 0.589768 0.294884 0.955533i \(-0.404719\pi\)
0.294884 + 0.955533i \(0.404719\pi\)
\(24\) −4.48528 −0.915554
\(25\) 1.00000 0.200000
\(26\) 2.82843 0.554700
\(27\) 5.65685 1.08866
\(28\) −3.65685 −0.691080
\(29\) −7.65685 −1.42184 −0.710921 0.703272i \(-0.751722\pi\)
−0.710921 + 0.703272i \(0.751722\pi\)
\(30\) −1.17157 −0.213899
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 4.41421 0.780330
\(33\) 0 0
\(34\) −0.485281 −0.0832251
\(35\) −2.00000 −0.338062
\(36\) −9.14214 −1.52369
\(37\) 3.65685 0.601183 0.300592 0.953753i \(-0.402816\pi\)
0.300592 + 0.953753i \(0.402816\pi\)
\(38\) 0 0
\(39\) 19.3137 3.09267
\(40\) 1.58579 0.250735
\(41\) −6.00000 −0.937043 −0.468521 0.883452i \(-0.655213\pi\)
−0.468521 + 0.883452i \(0.655213\pi\)
\(42\) 2.34315 0.361555
\(43\) 6.00000 0.914991 0.457496 0.889212i \(-0.348747\pi\)
0.457496 + 0.889212i \(0.348747\pi\)
\(44\) 0 0
\(45\) −5.00000 −0.745356
\(46\) 1.17157 0.172739
\(47\) −2.82843 −0.412568 −0.206284 0.978492i \(-0.566137\pi\)
−0.206284 + 0.978492i \(0.566137\pi\)
\(48\) 8.48528 1.22474
\(49\) −3.00000 −0.428571
\(50\) 0.414214 0.0585786
\(51\) −3.31371 −0.464012
\(52\) −12.4853 −1.73140
\(53\) 0.343146 0.0471347 0.0235673 0.999722i \(-0.492498\pi\)
0.0235673 + 0.999722i \(0.492498\pi\)
\(54\) 2.34315 0.318862
\(55\) 0 0
\(56\) −3.17157 −0.423819
\(57\) 0 0
\(58\) −3.17157 −0.416448
\(59\) −9.65685 −1.25722 −0.628608 0.777723i \(-0.716375\pi\)
−0.628608 + 0.777723i \(0.716375\pi\)
\(60\) 5.17157 0.667647
\(61\) −13.3137 −1.70465 −0.852323 0.523016i \(-0.824807\pi\)
−0.852323 + 0.523016i \(0.824807\pi\)
\(62\) 0 0
\(63\) 10.0000 1.25988
\(64\) −4.17157 −0.521447
\(65\) −6.82843 −0.846962
\(66\) 0 0
\(67\) −4.48528 −0.547964 −0.273982 0.961735i \(-0.588341\pi\)
−0.273982 + 0.961735i \(0.588341\pi\)
\(68\) 2.14214 0.259772
\(69\) 8.00000 0.963087
\(70\) −0.828427 −0.0990160
\(71\) −11.3137 −1.34269 −0.671345 0.741145i \(-0.734283\pi\)
−0.671345 + 0.741145i \(0.734283\pi\)
\(72\) −7.92893 −0.934434
\(73\) 6.82843 0.799207 0.399603 0.916688i \(-0.369148\pi\)
0.399603 + 0.916688i \(0.369148\pi\)
\(74\) 1.51472 0.176082
\(75\) 2.82843 0.326599
\(76\) 0 0
\(77\) 0 0
\(78\) 8.00000 0.905822
\(79\) −4.00000 −0.450035 −0.225018 0.974355i \(-0.572244\pi\)
−0.225018 + 0.974355i \(0.572244\pi\)
\(80\) −3.00000 −0.335410
\(81\) 1.00000 0.111111
\(82\) −2.48528 −0.274453
\(83\) 6.00000 0.658586 0.329293 0.944228i \(-0.393190\pi\)
0.329293 + 0.944228i \(0.393190\pi\)
\(84\) −10.3431 −1.12853
\(85\) 1.17157 0.127075
\(86\) 2.48528 0.267995
\(87\) −21.6569 −2.32186
\(88\) 0 0
\(89\) 9.31371 0.987251 0.493626 0.869675i \(-0.335671\pi\)
0.493626 + 0.869675i \(0.335671\pi\)
\(90\) −2.07107 −0.218310
\(91\) 13.6569 1.43163
\(92\) −5.17157 −0.539174
\(93\) 0 0
\(94\) −1.17157 −0.120839
\(95\) 0 0
\(96\) 12.4853 1.27427
\(97\) −7.65685 −0.777436 −0.388718 0.921357i \(-0.627082\pi\)
−0.388718 + 0.921357i \(0.627082\pi\)
\(98\) −1.24264 −0.125526
\(99\) 0 0
\(100\) −1.82843 −0.182843
\(101\) 13.3137 1.32476 0.662382 0.749166i \(-0.269546\pi\)
0.662382 + 0.749166i \(0.269546\pi\)
\(102\) −1.37258 −0.135906
\(103\) 1.17157 0.115439 0.0577193 0.998333i \(-0.481617\pi\)
0.0577193 + 0.998333i \(0.481617\pi\)
\(104\) −10.8284 −1.06181
\(105\) −5.65685 −0.552052
\(106\) 0.142136 0.0138054
\(107\) 3.65685 0.353521 0.176761 0.984254i \(-0.443438\pi\)
0.176761 + 0.984254i \(0.443438\pi\)
\(108\) −10.3431 −0.995270
\(109\) −3.65685 −0.350263 −0.175132 0.984545i \(-0.556035\pi\)
−0.175132 + 0.984545i \(0.556035\pi\)
\(110\) 0 0
\(111\) 10.3431 0.981728
\(112\) 6.00000 0.566947
\(113\) 8.34315 0.784857 0.392429 0.919782i \(-0.371635\pi\)
0.392429 + 0.919782i \(0.371635\pi\)
\(114\) 0 0
\(115\) −2.82843 −0.263752
\(116\) 14.0000 1.29987
\(117\) 34.1421 3.15644
\(118\) −4.00000 −0.368230
\(119\) −2.34315 −0.214796
\(120\) 4.48528 0.409448
\(121\) 0 0
\(122\) −5.51472 −0.499279
\(123\) −16.9706 −1.53018
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 4.14214 0.369011
\(127\) −15.6569 −1.38932 −0.694661 0.719338i \(-0.744445\pi\)
−0.694661 + 0.719338i \(0.744445\pi\)
\(128\) −10.5563 −0.933058
\(129\) 16.9706 1.49417
\(130\) −2.82843 −0.248069
\(131\) −11.3137 −0.988483 −0.494242 0.869325i \(-0.664554\pi\)
−0.494242 + 0.869325i \(0.664554\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −1.85786 −0.160495
\(135\) −5.65685 −0.486864
\(136\) 1.85786 0.159311
\(137\) 22.9706 1.96251 0.981254 0.192720i \(-0.0617309\pi\)
0.981254 + 0.192720i \(0.0617309\pi\)
\(138\) 3.31371 0.282082
\(139\) 4.00000 0.339276 0.169638 0.985506i \(-0.445740\pi\)
0.169638 + 0.985506i \(0.445740\pi\)
\(140\) 3.65685 0.309061
\(141\) −8.00000 −0.673722
\(142\) −4.68629 −0.393265
\(143\) 0 0
\(144\) 15.0000 1.25000
\(145\) 7.65685 0.635867
\(146\) 2.82843 0.234082
\(147\) −8.48528 −0.699854
\(148\) −6.68629 −0.549610
\(149\) −11.6569 −0.954967 −0.477483 0.878641i \(-0.658451\pi\)
−0.477483 + 0.878641i \(0.658451\pi\)
\(150\) 1.17157 0.0956585
\(151\) 12.0000 0.976546 0.488273 0.872691i \(-0.337627\pi\)
0.488273 + 0.872691i \(0.337627\pi\)
\(152\) 0 0
\(153\) −5.85786 −0.473580
\(154\) 0 0
\(155\) 0 0
\(156\) −35.3137 −2.82736
\(157\) −14.0000 −1.11732 −0.558661 0.829396i \(-0.688685\pi\)
−0.558661 + 0.829396i \(0.688685\pi\)
\(158\) −1.65685 −0.131812
\(159\) 0.970563 0.0769706
\(160\) −4.41421 −0.348974
\(161\) 5.65685 0.445823
\(162\) 0.414214 0.0325437
\(163\) −0.485281 −0.0380102 −0.0190051 0.999819i \(-0.506050\pi\)
−0.0190051 + 0.999819i \(0.506050\pi\)
\(164\) 10.9706 0.856657
\(165\) 0 0
\(166\) 2.48528 0.192895
\(167\) −10.9706 −0.848928 −0.424464 0.905445i \(-0.639537\pi\)
−0.424464 + 0.905445i \(0.639537\pi\)
\(168\) −8.97056 −0.692094
\(169\) 33.6274 2.58672
\(170\) 0.485281 0.0372194
\(171\) 0 0
\(172\) −10.9706 −0.836498
\(173\) −6.14214 −0.466978 −0.233489 0.972359i \(-0.575014\pi\)
−0.233489 + 0.972359i \(0.575014\pi\)
\(174\) −8.97056 −0.680057
\(175\) 2.00000 0.151186
\(176\) 0 0
\(177\) −27.3137 −2.05302
\(178\) 3.85786 0.289159
\(179\) −1.65685 −0.123839 −0.0619196 0.998081i \(-0.519722\pi\)
−0.0619196 + 0.998081i \(0.519722\pi\)
\(180\) 9.14214 0.681415
\(181\) −1.31371 −0.0976472 −0.0488236 0.998807i \(-0.515547\pi\)
−0.0488236 + 0.998807i \(0.515547\pi\)
\(182\) 5.65685 0.419314
\(183\) −37.6569 −2.78367
\(184\) −4.48528 −0.330659
\(185\) −3.65685 −0.268857
\(186\) 0 0
\(187\) 0 0
\(188\) 5.17157 0.377176
\(189\) 11.3137 0.822951
\(190\) 0 0
\(191\) −19.3137 −1.39749 −0.698745 0.715370i \(-0.746258\pi\)
−0.698745 + 0.715370i \(0.746258\pi\)
\(192\) −11.7990 −0.851519
\(193\) 6.82843 0.491521 0.245760 0.969331i \(-0.420962\pi\)
0.245760 + 0.969331i \(0.420962\pi\)
\(194\) −3.17157 −0.227706
\(195\) −19.3137 −1.38308
\(196\) 5.48528 0.391806
\(197\) 5.17157 0.368459 0.184230 0.982883i \(-0.441021\pi\)
0.184230 + 0.982883i \(0.441021\pi\)
\(198\) 0 0
\(199\) 21.6569 1.53521 0.767607 0.640921i \(-0.221447\pi\)
0.767607 + 0.640921i \(0.221447\pi\)
\(200\) −1.58579 −0.112132
\(201\) −12.6863 −0.894822
\(202\) 5.51472 0.388014
\(203\) −15.3137 −1.07481
\(204\) 6.05887 0.424206
\(205\) 6.00000 0.419058
\(206\) 0.485281 0.0338112
\(207\) 14.1421 0.982946
\(208\) 20.4853 1.42040
\(209\) 0 0
\(210\) −2.34315 −0.161692
\(211\) 16.0000 1.10149 0.550743 0.834675i \(-0.314345\pi\)
0.550743 + 0.834675i \(0.314345\pi\)
\(212\) −0.627417 −0.0430912
\(213\) −32.0000 −2.19260
\(214\) 1.51472 0.103544
\(215\) −6.00000 −0.409197
\(216\) −8.97056 −0.610369
\(217\) 0 0
\(218\) −1.51472 −0.102590
\(219\) 19.3137 1.30510
\(220\) 0 0
\(221\) −8.00000 −0.538138
\(222\) 4.28427 0.287541
\(223\) −5.17157 −0.346314 −0.173157 0.984894i \(-0.555397\pi\)
−0.173157 + 0.984894i \(0.555397\pi\)
\(224\) 8.82843 0.589874
\(225\) 5.00000 0.333333
\(226\) 3.45584 0.229879
\(227\) −2.68629 −0.178295 −0.0891477 0.996018i \(-0.528414\pi\)
−0.0891477 + 0.996018i \(0.528414\pi\)
\(228\) 0 0
\(229\) −21.3137 −1.40845 −0.704225 0.709977i \(-0.748705\pi\)
−0.704225 + 0.709977i \(0.748705\pi\)
\(230\) −1.17157 −0.0772512
\(231\) 0 0
\(232\) 12.1421 0.797170
\(233\) −22.1421 −1.45058 −0.725290 0.688444i \(-0.758294\pi\)
−0.725290 + 0.688444i \(0.758294\pi\)
\(234\) 14.1421 0.924500
\(235\) 2.82843 0.184506
\(236\) 17.6569 1.14936
\(237\) −11.3137 −0.734904
\(238\) −0.970563 −0.0629122
\(239\) 0.686292 0.0443925 0.0221963 0.999754i \(-0.492934\pi\)
0.0221963 + 0.999754i \(0.492934\pi\)
\(240\) −8.48528 −0.547723
\(241\) −6.00000 −0.386494 −0.193247 0.981150i \(-0.561902\pi\)
−0.193247 + 0.981150i \(0.561902\pi\)
\(242\) 0 0
\(243\) −14.1421 −0.907218
\(244\) 24.3431 1.55841
\(245\) 3.00000 0.191663
\(246\) −7.02944 −0.448181
\(247\) 0 0
\(248\) 0 0
\(249\) 16.9706 1.07547
\(250\) −0.414214 −0.0261972
\(251\) 12.0000 0.757433 0.378717 0.925513i \(-0.376365\pi\)
0.378717 + 0.925513i \(0.376365\pi\)
\(252\) −18.2843 −1.15180
\(253\) 0 0
\(254\) −6.48528 −0.406923
\(255\) 3.31371 0.207512
\(256\) 3.97056 0.248160
\(257\) 13.3137 0.830486 0.415243 0.909710i \(-0.363696\pi\)
0.415243 + 0.909710i \(0.363696\pi\)
\(258\) 7.02944 0.437634
\(259\) 7.31371 0.454452
\(260\) 12.4853 0.774304
\(261\) −38.2843 −2.36974
\(262\) −4.68629 −0.289520
\(263\) −22.9706 −1.41643 −0.708213 0.705999i \(-0.750498\pi\)
−0.708213 + 0.705999i \(0.750498\pi\)
\(264\) 0 0
\(265\) −0.343146 −0.0210793
\(266\) 0 0
\(267\) 26.3431 1.61217
\(268\) 8.20101 0.500956
\(269\) −5.31371 −0.323983 −0.161991 0.986792i \(-0.551792\pi\)
−0.161991 + 0.986792i \(0.551792\pi\)
\(270\) −2.34315 −0.142599
\(271\) 15.3137 0.930242 0.465121 0.885247i \(-0.346011\pi\)
0.465121 + 0.885247i \(0.346011\pi\)
\(272\) −3.51472 −0.213111
\(273\) 38.6274 2.33784
\(274\) 9.51472 0.574805
\(275\) 0 0
\(276\) −14.6274 −0.880467
\(277\) −1.17157 −0.0703930 −0.0351965 0.999380i \(-0.511206\pi\)
−0.0351965 + 0.999380i \(0.511206\pi\)
\(278\) 1.65685 0.0993715
\(279\) 0 0
\(280\) 3.17157 0.189538
\(281\) 5.31371 0.316989 0.158495 0.987360i \(-0.449336\pi\)
0.158495 + 0.987360i \(0.449336\pi\)
\(282\) −3.31371 −0.197328
\(283\) 12.6274 0.750622 0.375311 0.926899i \(-0.377536\pi\)
0.375311 + 0.926899i \(0.377536\pi\)
\(284\) 20.6863 1.22751
\(285\) 0 0
\(286\) 0 0
\(287\) −12.0000 −0.708338
\(288\) 22.0711 1.30055
\(289\) −15.6274 −0.919260
\(290\) 3.17157 0.186241
\(291\) −21.6569 −1.26955
\(292\) −12.4853 −0.730646
\(293\) 14.8284 0.866286 0.433143 0.901325i \(-0.357405\pi\)
0.433143 + 0.901325i \(0.357405\pi\)
\(294\) −3.51472 −0.204983
\(295\) 9.65685 0.562244
\(296\) −5.79899 −0.337059
\(297\) 0 0
\(298\) −4.82843 −0.279703
\(299\) 19.3137 1.11694
\(300\) −5.17157 −0.298581
\(301\) 12.0000 0.691669
\(302\) 4.97056 0.286024
\(303\) 37.6569 2.16333
\(304\) 0 0
\(305\) 13.3137 0.762341
\(306\) −2.42641 −0.138708
\(307\) 27.6569 1.57846 0.789230 0.614098i \(-0.210480\pi\)
0.789230 + 0.614098i \(0.210480\pi\)
\(308\) 0 0
\(309\) 3.31371 0.188510
\(310\) 0 0
\(311\) 27.3137 1.54882 0.774409 0.632685i \(-0.218047\pi\)
0.774409 + 0.632685i \(0.218047\pi\)
\(312\) −30.6274 −1.73394
\(313\) 21.3137 1.20472 0.602361 0.798224i \(-0.294227\pi\)
0.602361 + 0.798224i \(0.294227\pi\)
\(314\) −5.79899 −0.327256
\(315\) −10.0000 −0.563436
\(316\) 7.31371 0.411428
\(317\) 21.3137 1.19710 0.598549 0.801087i \(-0.295744\pi\)
0.598549 + 0.801087i \(0.295744\pi\)
\(318\) 0.402020 0.0225442
\(319\) 0 0
\(320\) 4.17157 0.233198
\(321\) 10.3431 0.577298
\(322\) 2.34315 0.130578
\(323\) 0 0
\(324\) −1.82843 −0.101579
\(325\) 6.82843 0.378773
\(326\) −0.201010 −0.0111329
\(327\) −10.3431 −0.571977
\(328\) 9.51472 0.525362
\(329\) −5.65685 −0.311872
\(330\) 0 0
\(331\) 15.3137 0.841718 0.420859 0.907126i \(-0.361729\pi\)
0.420859 + 0.907126i \(0.361729\pi\)
\(332\) −10.9706 −0.602088
\(333\) 18.2843 1.00197
\(334\) −4.54416 −0.248645
\(335\) 4.48528 0.245057
\(336\) 16.9706 0.925820
\(337\) 3.51472 0.191459 0.0957295 0.995407i \(-0.469482\pi\)
0.0957295 + 0.995407i \(0.469482\pi\)
\(338\) 13.9289 0.757634
\(339\) 23.5980 1.28167
\(340\) −2.14214 −0.116174
\(341\) 0 0
\(342\) 0 0
\(343\) −20.0000 −1.07990
\(344\) −9.51472 −0.512999
\(345\) −8.00000 −0.430706
\(346\) −2.54416 −0.136775
\(347\) 22.9706 1.23312 0.616562 0.787306i \(-0.288525\pi\)
0.616562 + 0.787306i \(0.288525\pi\)
\(348\) 39.5980 2.12267
\(349\) 6.97056 0.373126 0.186563 0.982443i \(-0.440265\pi\)
0.186563 + 0.982443i \(0.440265\pi\)
\(350\) 0.828427 0.0442813
\(351\) 38.6274 2.06178
\(352\) 0 0
\(353\) −1.31371 −0.0699216 −0.0349608 0.999389i \(-0.511131\pi\)
−0.0349608 + 0.999389i \(0.511131\pi\)
\(354\) −11.3137 −0.601317
\(355\) 11.3137 0.600469
\(356\) −17.0294 −0.902558
\(357\) −6.62742 −0.350760
\(358\) −0.686292 −0.0362716
\(359\) −23.3137 −1.23045 −0.615225 0.788351i \(-0.710935\pi\)
−0.615225 + 0.788351i \(0.710935\pi\)
\(360\) 7.92893 0.417891
\(361\) −19.0000 −1.00000
\(362\) −0.544156 −0.0286002
\(363\) 0 0
\(364\) −24.9706 −1.30881
\(365\) −6.82843 −0.357416
\(366\) −15.5980 −0.815319
\(367\) 8.48528 0.442928 0.221464 0.975169i \(-0.428916\pi\)
0.221464 + 0.975169i \(0.428916\pi\)
\(368\) 8.48528 0.442326
\(369\) −30.0000 −1.56174
\(370\) −1.51472 −0.0787465
\(371\) 0.686292 0.0356305
\(372\) 0 0
\(373\) 3.79899 0.196704 0.0983521 0.995152i \(-0.468643\pi\)
0.0983521 + 0.995152i \(0.468643\pi\)
\(374\) 0 0
\(375\) −2.82843 −0.146059
\(376\) 4.48528 0.231311
\(377\) −52.2843 −2.69278
\(378\) 4.68629 0.241037
\(379\) 22.3431 1.14769 0.573845 0.818964i \(-0.305451\pi\)
0.573845 + 0.818964i \(0.305451\pi\)
\(380\) 0 0
\(381\) −44.2843 −2.26875
\(382\) −8.00000 −0.409316
\(383\) −34.1421 −1.74458 −0.872291 0.488987i \(-0.837366\pi\)
−0.872291 + 0.488987i \(0.837366\pi\)
\(384\) −29.8579 −1.52368
\(385\) 0 0
\(386\) 2.82843 0.143963
\(387\) 30.0000 1.52499
\(388\) 14.0000 0.710742
\(389\) −24.6274 −1.24866 −0.624330 0.781161i \(-0.714628\pi\)
−0.624330 + 0.781161i \(0.714628\pi\)
\(390\) −8.00000 −0.405096
\(391\) −3.31371 −0.167581
\(392\) 4.75736 0.240283
\(393\) −32.0000 −1.61419
\(394\) 2.14214 0.107919
\(395\) 4.00000 0.201262
\(396\) 0 0
\(397\) 13.3137 0.668196 0.334098 0.942538i \(-0.391568\pi\)
0.334098 + 0.942538i \(0.391568\pi\)
\(398\) 8.97056 0.449654
\(399\) 0 0
\(400\) 3.00000 0.150000
\(401\) 17.3137 0.864605 0.432303 0.901729i \(-0.357701\pi\)
0.432303 + 0.901729i \(0.357701\pi\)
\(402\) −5.25483 −0.262087
\(403\) 0 0
\(404\) −24.3431 −1.21112
\(405\) −1.00000 −0.0496904
\(406\) −6.34315 −0.314805
\(407\) 0 0
\(408\) 5.25483 0.260153
\(409\) −34.9706 −1.72918 −0.864592 0.502475i \(-0.832423\pi\)
−0.864592 + 0.502475i \(0.832423\pi\)
\(410\) 2.48528 0.122739
\(411\) 64.9706 3.20476
\(412\) −2.14214 −0.105535
\(413\) −19.3137 −0.950365
\(414\) 5.85786 0.287898
\(415\) −6.00000 −0.294528
\(416\) 30.1421 1.47784
\(417\) 11.3137 0.554035
\(418\) 0 0
\(419\) −14.3431 −0.700709 −0.350354 0.936617i \(-0.613939\pi\)
−0.350354 + 0.936617i \(0.613939\pi\)
\(420\) 10.3431 0.504694
\(421\) −6.00000 −0.292422 −0.146211 0.989253i \(-0.546708\pi\)
−0.146211 + 0.989253i \(0.546708\pi\)
\(422\) 6.62742 0.322618
\(423\) −14.1421 −0.687614
\(424\) −0.544156 −0.0264265
\(425\) −1.17157 −0.0568296
\(426\) −13.2548 −0.642199
\(427\) −26.6274 −1.28859
\(428\) −6.68629 −0.323194
\(429\) 0 0
\(430\) −2.48528 −0.119851
\(431\) −11.3137 −0.544962 −0.272481 0.962161i \(-0.587844\pi\)
−0.272481 + 0.962161i \(0.587844\pi\)
\(432\) 16.9706 0.816497
\(433\) 3.65685 0.175737 0.0878686 0.996132i \(-0.471994\pi\)
0.0878686 + 0.996132i \(0.471994\pi\)
\(434\) 0 0
\(435\) 21.6569 1.03837
\(436\) 6.68629 0.320215
\(437\) 0 0
\(438\) 8.00000 0.382255
\(439\) 16.0000 0.763638 0.381819 0.924237i \(-0.375298\pi\)
0.381819 + 0.924237i \(0.375298\pi\)
\(440\) 0 0
\(441\) −15.0000 −0.714286
\(442\) −3.31371 −0.157617
\(443\) −21.1716 −1.00589 −0.502946 0.864318i \(-0.667751\pi\)
−0.502946 + 0.864318i \(0.667751\pi\)
\(444\) −18.9117 −0.897509
\(445\) −9.31371 −0.441512
\(446\) −2.14214 −0.101433
\(447\) −32.9706 −1.55945
\(448\) −8.34315 −0.394177
\(449\) −16.6274 −0.784696 −0.392348 0.919817i \(-0.628337\pi\)
−0.392348 + 0.919817i \(0.628337\pi\)
\(450\) 2.07107 0.0976311
\(451\) 0 0
\(452\) −15.2548 −0.717527
\(453\) 33.9411 1.59469
\(454\) −1.11270 −0.0522215
\(455\) −13.6569 −0.640243
\(456\) 0 0
\(457\) 16.4853 0.771149 0.385574 0.922677i \(-0.374003\pi\)
0.385574 + 0.922677i \(0.374003\pi\)
\(458\) −8.82843 −0.412525
\(459\) −6.62742 −0.309341
\(460\) 5.17157 0.241126
\(461\) 32.6274 1.51961 0.759805 0.650151i \(-0.225294\pi\)
0.759805 + 0.650151i \(0.225294\pi\)
\(462\) 0 0
\(463\) 22.1421 1.02903 0.514516 0.857481i \(-0.327972\pi\)
0.514516 + 0.857481i \(0.327972\pi\)
\(464\) −22.9706 −1.06638
\(465\) 0 0
\(466\) −9.17157 −0.424865
\(467\) −9.17157 −0.424410 −0.212205 0.977225i \(-0.568064\pi\)
−0.212205 + 0.977225i \(0.568064\pi\)
\(468\) −62.4264 −2.88566
\(469\) −8.97056 −0.414222
\(470\) 1.17157 0.0540406
\(471\) −39.5980 −1.82458
\(472\) 15.3137 0.704871
\(473\) 0 0
\(474\) −4.68629 −0.215248
\(475\) 0 0
\(476\) 4.28427 0.196369
\(477\) 1.71573 0.0785578
\(478\) 0.284271 0.0130023
\(479\) 36.0000 1.64488 0.822441 0.568850i \(-0.192612\pi\)
0.822441 + 0.568850i \(0.192612\pi\)
\(480\) −12.4853 −0.569873
\(481\) 24.9706 1.13856
\(482\) −2.48528 −0.113201
\(483\) 16.0000 0.728025
\(484\) 0 0
\(485\) 7.65685 0.347680
\(486\) −5.85786 −0.265718
\(487\) −7.51472 −0.340524 −0.170262 0.985399i \(-0.554461\pi\)
−0.170262 + 0.985399i \(0.554461\pi\)
\(488\) 21.1127 0.955727
\(489\) −1.37258 −0.0620703
\(490\) 1.24264 0.0561368
\(491\) 23.3137 1.05213 0.526066 0.850443i \(-0.323666\pi\)
0.526066 + 0.850443i \(0.323666\pi\)
\(492\) 31.0294 1.39892
\(493\) 8.97056 0.404014
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −22.6274 −1.01498
\(498\) 7.02944 0.314997
\(499\) −1.65685 −0.0741710 −0.0370855 0.999312i \(-0.511807\pi\)
−0.0370855 + 0.999312i \(0.511807\pi\)
\(500\) 1.82843 0.0817697
\(501\) −31.0294 −1.38629
\(502\) 4.97056 0.221847
\(503\) 28.6274 1.27643 0.638217 0.769857i \(-0.279672\pi\)
0.638217 + 0.769857i \(0.279672\pi\)
\(504\) −15.8579 −0.706365
\(505\) −13.3137 −0.592452
\(506\) 0 0
\(507\) 95.1127 4.22410
\(508\) 28.6274 1.27014
\(509\) 9.31371 0.412823 0.206411 0.978465i \(-0.433821\pi\)
0.206411 + 0.978465i \(0.433821\pi\)
\(510\) 1.37258 0.0607790
\(511\) 13.6569 0.604144
\(512\) 22.7574 1.00574
\(513\) 0 0
\(514\) 5.51472 0.243244
\(515\) −1.17157 −0.0516257
\(516\) −31.0294 −1.36599
\(517\) 0 0
\(518\) 3.02944 0.133106
\(519\) −17.3726 −0.762572
\(520\) 10.8284 0.474858
\(521\) 2.68629 0.117689 0.0588443 0.998267i \(-0.481258\pi\)
0.0588443 + 0.998267i \(0.481258\pi\)
\(522\) −15.8579 −0.694080
\(523\) −37.5980 −1.64404 −0.822022 0.569455i \(-0.807154\pi\)
−0.822022 + 0.569455i \(0.807154\pi\)
\(524\) 20.6863 0.903685
\(525\) 5.65685 0.246885
\(526\) −9.51472 −0.414861
\(527\) 0 0
\(528\) 0 0
\(529\) −15.0000 −0.652174
\(530\) −0.142136 −0.00617398
\(531\) −48.2843 −2.09536
\(532\) 0 0
\(533\) −40.9706 −1.77463
\(534\) 10.9117 0.472195
\(535\) −3.65685 −0.158100
\(536\) 7.11270 0.307222
\(537\) −4.68629 −0.202228
\(538\) −2.20101 −0.0948923
\(539\) 0 0
\(540\) 10.3431 0.445098
\(541\) −6.00000 −0.257960 −0.128980 0.991647i \(-0.541170\pi\)
−0.128980 + 0.991647i \(0.541170\pi\)
\(542\) 6.34315 0.272461
\(543\) −3.71573 −0.159457
\(544\) −5.17157 −0.221729
\(545\) 3.65685 0.156642
\(546\) 16.0000 0.684737
\(547\) 34.0000 1.45374 0.726868 0.686778i \(-0.240975\pi\)
0.726868 + 0.686778i \(0.240975\pi\)
\(548\) −42.0000 −1.79415
\(549\) −66.5685 −2.84108
\(550\) 0 0
\(551\) 0 0
\(552\) −12.6863 −0.539964
\(553\) −8.00000 −0.340195
\(554\) −0.485281 −0.0206176
\(555\) −10.3431 −0.439042
\(556\) −7.31371 −0.310170
\(557\) −38.1421 −1.61613 −0.808067 0.589090i \(-0.799486\pi\)
−0.808067 + 0.589090i \(0.799486\pi\)
\(558\) 0 0
\(559\) 40.9706 1.73287
\(560\) −6.00000 −0.253546
\(561\) 0 0
\(562\) 2.20101 0.0928440
\(563\) −11.6569 −0.491278 −0.245639 0.969361i \(-0.578998\pi\)
−0.245639 + 0.969361i \(0.578998\pi\)
\(564\) 14.6274 0.615925
\(565\) −8.34315 −0.350999
\(566\) 5.23045 0.219852
\(567\) 2.00000 0.0839921
\(568\) 17.9411 0.752793
\(569\) −20.3431 −0.852829 −0.426415 0.904528i \(-0.640224\pi\)
−0.426415 + 0.904528i \(0.640224\pi\)
\(570\) 0 0
\(571\) −45.9411 −1.92258 −0.961288 0.275545i \(-0.911142\pi\)
−0.961288 + 0.275545i \(0.911142\pi\)
\(572\) 0 0
\(573\) −54.6274 −2.28209
\(574\) −4.97056 −0.207467
\(575\) 2.82843 0.117954
\(576\) −20.8579 −0.869078
\(577\) 6.97056 0.290188 0.145094 0.989418i \(-0.453651\pi\)
0.145094 + 0.989418i \(0.453651\pi\)
\(578\) −6.47309 −0.269245
\(579\) 19.3137 0.802650
\(580\) −14.0000 −0.581318
\(581\) 12.0000 0.497844
\(582\) −8.97056 −0.371842
\(583\) 0 0
\(584\) −10.8284 −0.448084
\(585\) −34.1421 −1.41160
\(586\) 6.14214 0.253729
\(587\) 26.1421 1.07900 0.539501 0.841985i \(-0.318613\pi\)
0.539501 + 0.841985i \(0.318613\pi\)
\(588\) 15.5147 0.639816
\(589\) 0 0
\(590\) 4.00000 0.164677
\(591\) 14.6274 0.601692
\(592\) 10.9706 0.450887
\(593\) −20.4853 −0.841230 −0.420615 0.907239i \(-0.638186\pi\)
−0.420615 + 0.907239i \(0.638186\pi\)
\(594\) 0 0
\(595\) 2.34315 0.0960596
\(596\) 21.3137 0.873044
\(597\) 61.2548 2.50699
\(598\) 8.00000 0.327144
\(599\) 5.65685 0.231133 0.115566 0.993300i \(-0.463132\pi\)
0.115566 + 0.993300i \(0.463132\pi\)
\(600\) −4.48528 −0.183111
\(601\) 43.9411 1.79240 0.896198 0.443654i \(-0.146318\pi\)
0.896198 + 0.443654i \(0.146318\pi\)
\(602\) 4.97056 0.202585
\(603\) −22.4264 −0.913274
\(604\) −21.9411 −0.892772
\(605\) 0 0
\(606\) 15.5980 0.633625
\(607\) 18.2843 0.742136 0.371068 0.928606i \(-0.378992\pi\)
0.371068 + 0.928606i \(0.378992\pi\)
\(608\) 0 0
\(609\) −43.3137 −1.75516
\(610\) 5.51472 0.223284
\(611\) −19.3137 −0.781349
\(612\) 10.7107 0.432954
\(613\) −25.4558 −1.02815 −0.514076 0.857745i \(-0.671865\pi\)
−0.514076 + 0.857745i \(0.671865\pi\)
\(614\) 11.4558 0.462320
\(615\) 16.9706 0.684319
\(616\) 0 0
\(617\) 11.6569 0.469287 0.234644 0.972081i \(-0.424608\pi\)
0.234644 + 0.972081i \(0.424608\pi\)
\(618\) 1.37258 0.0552134
\(619\) −25.6569 −1.03124 −0.515618 0.856819i \(-0.672438\pi\)
−0.515618 + 0.856819i \(0.672438\pi\)
\(620\) 0 0
\(621\) 16.0000 0.642058
\(622\) 11.3137 0.453638
\(623\) 18.6274 0.746292
\(624\) 57.9411 2.31950
\(625\) 1.00000 0.0400000
\(626\) 8.82843 0.352855
\(627\) 0 0
\(628\) 25.5980 1.02147
\(629\) −4.28427 −0.170825
\(630\) −4.14214 −0.165027
\(631\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(632\) 6.34315 0.252317
\(633\) 45.2548 1.79872
\(634\) 8.82843 0.350622
\(635\) 15.6569 0.621323
\(636\) −1.77460 −0.0703676
\(637\) −20.4853 −0.811656
\(638\) 0 0
\(639\) −56.5685 −2.23782
\(640\) 10.5563 0.417276
\(641\) 30.0000 1.18493 0.592464 0.805597i \(-0.298155\pi\)
0.592464 + 0.805597i \(0.298155\pi\)
\(642\) 4.28427 0.169087
\(643\) 49.4558 1.95035 0.975174 0.221440i \(-0.0710756\pi\)
0.975174 + 0.221440i \(0.0710756\pi\)
\(644\) −10.3431 −0.407577
\(645\) −16.9706 −0.668215
\(646\) 0 0
\(647\) −35.1127 −1.38042 −0.690211 0.723608i \(-0.742482\pi\)
−0.690211 + 0.723608i \(0.742482\pi\)
\(648\) −1.58579 −0.0622956
\(649\) 0 0
\(650\) 2.82843 0.110940
\(651\) 0 0
\(652\) 0.887302 0.0347494
\(653\) 0.343146 0.0134283 0.00671417 0.999977i \(-0.497863\pi\)
0.00671417 + 0.999977i \(0.497863\pi\)
\(654\) −4.28427 −0.167528
\(655\) 11.3137 0.442063
\(656\) −18.0000 −0.702782
\(657\) 34.1421 1.33201
\(658\) −2.34315 −0.0913453
\(659\) 21.9411 0.854705 0.427352 0.904085i \(-0.359446\pi\)
0.427352 + 0.904085i \(0.359446\pi\)
\(660\) 0 0
\(661\) −0.627417 −0.0244037 −0.0122018 0.999926i \(-0.503884\pi\)
−0.0122018 + 0.999926i \(0.503884\pi\)
\(662\) 6.34315 0.246533
\(663\) −22.6274 −0.878776
\(664\) −9.51472 −0.369243
\(665\) 0 0
\(666\) 7.57359 0.293471
\(667\) −21.6569 −0.838557
\(668\) 20.0589 0.776101
\(669\) −14.6274 −0.565529
\(670\) 1.85786 0.0717756
\(671\) 0 0
\(672\) 24.9706 0.963260
\(673\) −4.48528 −0.172895 −0.0864474 0.996256i \(-0.527551\pi\)
−0.0864474 + 0.996256i \(0.527551\pi\)
\(674\) 1.45584 0.0560770
\(675\) 5.65685 0.217732
\(676\) −61.4853 −2.36482
\(677\) −17.1716 −0.659957 −0.329979 0.943988i \(-0.607042\pi\)
−0.329979 + 0.943988i \(0.607042\pi\)
\(678\) 9.77460 0.375391
\(679\) −15.3137 −0.587686
\(680\) −1.85786 −0.0712458
\(681\) −7.59798 −0.291155
\(682\) 0 0
\(683\) 31.7990 1.21675 0.608377 0.793648i \(-0.291821\pi\)
0.608377 + 0.793648i \(0.291821\pi\)
\(684\) 0 0
\(685\) −22.9706 −0.877660
\(686\) −8.28427 −0.316295
\(687\) −60.2843 −2.29999
\(688\) 18.0000 0.686244
\(689\) 2.34315 0.0892667
\(690\) −3.31371 −0.126151
\(691\) −16.6863 −0.634776 −0.317388 0.948296i \(-0.602806\pi\)
−0.317388 + 0.948296i \(0.602806\pi\)
\(692\) 11.2304 0.426918
\(693\) 0 0
\(694\) 9.51472 0.361174
\(695\) −4.00000 −0.151729
\(696\) 34.3431 1.30177
\(697\) 7.02944 0.266259
\(698\) 2.88730 0.109286
\(699\) −62.6274 −2.36879
\(700\) −3.65685 −0.138216
\(701\) −32.6274 −1.23232 −0.616160 0.787621i \(-0.711313\pi\)
−0.616160 + 0.787621i \(0.711313\pi\)
\(702\) 16.0000 0.603881
\(703\) 0 0
\(704\) 0 0
\(705\) 8.00000 0.301297
\(706\) −0.544156 −0.0204796
\(707\) 26.6274 1.00143
\(708\) 49.9411 1.87690
\(709\) −20.6274 −0.774679 −0.387339 0.921937i \(-0.626606\pi\)
−0.387339 + 0.921937i \(0.626606\pi\)
\(710\) 4.68629 0.175873
\(711\) −20.0000 −0.750059
\(712\) −14.7696 −0.553512
\(713\) 0 0
\(714\) −2.74517 −0.102735
\(715\) 0 0
\(716\) 3.02944 0.113215
\(717\) 1.94113 0.0724927
\(718\) −9.65685 −0.360391
\(719\) 29.6569 1.10601 0.553007 0.833177i \(-0.313480\pi\)
0.553007 + 0.833177i \(0.313480\pi\)
\(720\) −15.0000 −0.559017
\(721\) 2.34315 0.0872633
\(722\) −7.87006 −0.292893
\(723\) −16.9706 −0.631142
\(724\) 2.40202 0.0892704
\(725\) −7.65685 −0.284368
\(726\) 0 0
\(727\) −36.4853 −1.35316 −0.676582 0.736367i \(-0.736540\pi\)
−0.676582 + 0.736367i \(0.736540\pi\)
\(728\) −21.6569 −0.802656
\(729\) −43.0000 −1.59259
\(730\) −2.82843 −0.104685
\(731\) −7.02944 −0.259993
\(732\) 68.8528 2.54487
\(733\) −33.4558 −1.23572 −0.617860 0.786288i \(-0.712000\pi\)
−0.617860 + 0.786288i \(0.712000\pi\)
\(734\) 3.51472 0.129731
\(735\) 8.48528 0.312984
\(736\) 12.4853 0.460214
\(737\) 0 0
\(738\) −12.4264 −0.457422
\(739\) 37.9411 1.39569 0.697843 0.716250i \(-0.254143\pi\)
0.697843 + 0.716250i \(0.254143\pi\)
\(740\) 6.68629 0.245793
\(741\) 0 0
\(742\) 0.284271 0.0104359
\(743\) −29.5980 −1.08584 −0.542922 0.839783i \(-0.682682\pi\)
−0.542922 + 0.839783i \(0.682682\pi\)
\(744\) 0 0
\(745\) 11.6569 0.427074
\(746\) 1.57359 0.0576133
\(747\) 30.0000 1.09764
\(748\) 0 0
\(749\) 7.31371 0.267237
\(750\) −1.17157 −0.0427798
\(751\) −16.0000 −0.583848 −0.291924 0.956441i \(-0.594295\pi\)
−0.291924 + 0.956441i \(0.594295\pi\)
\(752\) −8.48528 −0.309426
\(753\) 33.9411 1.23688
\(754\) −21.6569 −0.788696
\(755\) −12.0000 −0.436725
\(756\) −20.6863 −0.752353
\(757\) −9.31371 −0.338512 −0.169256 0.985572i \(-0.554137\pi\)
−0.169256 + 0.985572i \(0.554137\pi\)
\(758\) 9.25483 0.336151
\(759\) 0 0
\(760\) 0 0
\(761\) 30.0000 1.08750 0.543750 0.839248i \(-0.317004\pi\)
0.543750 + 0.839248i \(0.317004\pi\)
\(762\) −18.3431 −0.664502
\(763\) −7.31371 −0.264774
\(764\) 35.3137 1.27761
\(765\) 5.85786 0.211792
\(766\) −14.1421 −0.510976
\(767\) −65.9411 −2.38100
\(768\) 11.2304 0.405244
\(769\) −14.9706 −0.539852 −0.269926 0.962881i \(-0.586999\pi\)
−0.269926 + 0.962881i \(0.586999\pi\)
\(770\) 0 0
\(771\) 37.6569 1.35618
\(772\) −12.4853 −0.449355
\(773\) −30.2843 −1.08925 −0.544625 0.838680i \(-0.683328\pi\)
−0.544625 + 0.838680i \(0.683328\pi\)
\(774\) 12.4264 0.446658
\(775\) 0 0
\(776\) 12.1421 0.435877
\(777\) 20.6863 0.742117
\(778\) −10.2010 −0.365724
\(779\) 0 0
\(780\) 35.3137 1.26443
\(781\) 0 0
\(782\) −1.37258 −0.0490835
\(783\) −43.3137 −1.54791
\(784\) −9.00000 −0.321429
\(785\) 14.0000 0.499681
\(786\) −13.2548 −0.472784
\(787\) −18.9706 −0.676228 −0.338114 0.941105i \(-0.609789\pi\)
−0.338114 + 0.941105i \(0.609789\pi\)
\(788\) −9.45584 −0.336850
\(789\) −64.9706 −2.31301
\(790\) 1.65685 0.0589482
\(791\) 16.6863 0.593296
\(792\) 0 0
\(793\) −90.9117 −3.22837
\(794\) 5.51472 0.195710
\(795\) −0.970563 −0.0344223
\(796\) −39.5980 −1.40351
\(797\) −12.6274 −0.447286 −0.223643 0.974671i \(-0.571795\pi\)
−0.223643 + 0.974671i \(0.571795\pi\)
\(798\) 0 0
\(799\) 3.31371 0.117231
\(800\) 4.41421 0.156066
\(801\) 46.5685 1.64542
\(802\) 7.17157 0.253237
\(803\) 0 0
\(804\) 23.1960 0.818058
\(805\) −5.65685 −0.199378
\(806\) 0 0
\(807\) −15.0294 −0.529061
\(808\) −21.1127 −0.742742
\(809\) −22.9706 −0.807602 −0.403801 0.914847i \(-0.632311\pi\)
−0.403801 + 0.914847i \(0.632311\pi\)
\(810\) −0.414214 −0.0145540
\(811\) 13.9411 0.489539 0.244770 0.969581i \(-0.421288\pi\)
0.244770 + 0.969581i \(0.421288\pi\)
\(812\) 28.0000 0.982607
\(813\) 43.3137 1.51908
\(814\) 0 0
\(815\) 0.485281 0.0169987
\(816\) −9.94113 −0.348009
\(817\) 0 0
\(818\) −14.4853 −0.506466
\(819\) 68.2843 2.38605
\(820\) −10.9706 −0.383109
\(821\) 18.6863 0.652156 0.326078 0.945343i \(-0.394273\pi\)
0.326078 + 0.945343i \(0.394273\pi\)
\(822\) 26.9117 0.938653
\(823\) 36.4853 1.27180 0.635898 0.771773i \(-0.280630\pi\)
0.635898 + 0.771773i \(0.280630\pi\)
\(824\) −1.85786 −0.0647218
\(825\) 0 0
\(826\) −8.00000 −0.278356
\(827\) 34.2843 1.19218 0.596090 0.802917i \(-0.296720\pi\)
0.596090 + 0.802917i \(0.296720\pi\)
\(828\) −25.8579 −0.898623
\(829\) 18.0000 0.625166 0.312583 0.949890i \(-0.398806\pi\)
0.312583 + 0.949890i \(0.398806\pi\)
\(830\) −2.48528 −0.0862654
\(831\) −3.31371 −0.114951
\(832\) −28.4853 −0.987549
\(833\) 3.51472 0.121778
\(834\) 4.68629 0.162273
\(835\) 10.9706 0.379652
\(836\) 0 0
\(837\) 0 0
\(838\) −5.94113 −0.205233
\(839\) 37.6569 1.30006 0.650029 0.759909i \(-0.274757\pi\)
0.650029 + 0.759909i \(0.274757\pi\)
\(840\) 8.97056 0.309514
\(841\) 29.6274 1.02164
\(842\) −2.48528 −0.0856485
\(843\) 15.0294 0.517641
\(844\) −29.2548 −1.00699
\(845\) −33.6274 −1.15682
\(846\) −5.85786 −0.201398
\(847\) 0 0
\(848\) 1.02944 0.0353510
\(849\) 35.7157 1.22576
\(850\) −0.485281 −0.0166450
\(851\) 10.3431 0.354558
\(852\) 58.5097 2.00451
\(853\) 32.4853 1.11227 0.556137 0.831090i \(-0.312283\pi\)
0.556137 + 0.831090i \(0.312283\pi\)
\(854\) −11.0294 −0.377420
\(855\) 0 0
\(856\) −5.79899 −0.198205
\(857\) 48.7696 1.66594 0.832968 0.553321i \(-0.186640\pi\)
0.832968 + 0.553321i \(0.186640\pi\)
\(858\) 0 0
\(859\) −32.2843 −1.10153 −0.550763 0.834662i \(-0.685663\pi\)
−0.550763 + 0.834662i \(0.685663\pi\)
\(860\) 10.9706 0.374093
\(861\) −33.9411 −1.15671
\(862\) −4.68629 −0.159616
\(863\) −14.8284 −0.504766 −0.252383 0.967627i \(-0.581214\pi\)
−0.252383 + 0.967627i \(0.581214\pi\)
\(864\) 24.9706 0.849516
\(865\) 6.14214 0.208839
\(866\) 1.51472 0.0514722
\(867\) −44.2010 −1.50115
\(868\) 0 0
\(869\) 0 0
\(870\) 8.97056 0.304131
\(871\) −30.6274 −1.03777
\(872\) 5.79899 0.196379
\(873\) −38.2843 −1.29573
\(874\) 0 0
\(875\) −2.00000 −0.0676123
\(876\) −35.3137 −1.19314
\(877\) −1.45584 −0.0491604 −0.0245802 0.999698i \(-0.507825\pi\)
−0.0245802 + 0.999698i \(0.507825\pi\)
\(878\) 6.62742 0.223664
\(879\) 41.9411 1.41464
\(880\) 0 0
\(881\) −52.6274 −1.77306 −0.886531 0.462668i \(-0.846892\pi\)
−0.886531 + 0.462668i \(0.846892\pi\)
\(882\) −6.21320 −0.209209
\(883\) 42.8284 1.44129 0.720646 0.693304i \(-0.243845\pi\)
0.720646 + 0.693304i \(0.243845\pi\)
\(884\) 14.6274 0.491973
\(885\) 27.3137 0.918140
\(886\) −8.76955 −0.294619
\(887\) 18.2843 0.613926 0.306963 0.951721i \(-0.400687\pi\)
0.306963 + 0.951721i \(0.400687\pi\)
\(888\) −16.4020 −0.550416
\(889\) −31.3137 −1.05023
\(890\) −3.85786 −0.129316
\(891\) 0 0
\(892\) 9.45584 0.316605
\(893\) 0 0
\(894\) −13.6569 −0.456754
\(895\) 1.65685 0.0553825
\(896\) −21.1127 −0.705326
\(897\) 54.6274 1.82396
\(898\) −6.88730 −0.229832
\(899\) 0 0
\(900\) −9.14214 −0.304738
\(901\) −0.402020 −0.0133932
\(902\) 0 0
\(903\) 33.9411 1.12949
\(904\) −13.2304 −0.440038
\(905\) 1.31371 0.0436691
\(906\) 14.0589 0.467075
\(907\) −44.4853 −1.47711 −0.738555 0.674193i \(-0.764491\pi\)
−0.738555 + 0.674193i \(0.764491\pi\)
\(908\) 4.91169 0.163000
\(909\) 66.5685 2.20794
\(910\) −5.65685 −0.187523
\(911\) 57.9411 1.91968 0.959838 0.280556i \(-0.0905189\pi\)
0.959838 + 0.280556i \(0.0905189\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 6.82843 0.225864
\(915\) 37.6569 1.24490
\(916\) 38.9706 1.28762
\(917\) −22.6274 −0.747223
\(918\) −2.74517 −0.0906040
\(919\) 32.0000 1.05558 0.527791 0.849374i \(-0.323020\pi\)
0.527791 + 0.849374i \(0.323020\pi\)
\(920\) 4.48528 0.147875
\(921\) 78.2254 2.57761
\(922\) 13.5147 0.445084
\(923\) −77.2548 −2.54287
\(924\) 0 0
\(925\) 3.65685 0.120237
\(926\) 9.17157 0.301397
\(927\) 5.85786 0.192398
\(928\) −33.7990 −1.10951
\(929\) −17.3137 −0.568044 −0.284022 0.958818i \(-0.591669\pi\)
−0.284022 + 0.958818i \(0.591669\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 40.4853 1.32614
\(933\) 77.2548 2.52921
\(934\) −3.79899 −0.124307
\(935\) 0 0
\(936\) −54.1421 −1.76969
\(937\) −49.4558 −1.61565 −0.807826 0.589421i \(-0.799356\pi\)
−0.807826 + 0.589421i \(0.799356\pi\)
\(938\) −3.71573 −0.121323
\(939\) 60.2843 1.96730
\(940\) −5.17157 −0.168678
\(941\) 29.3137 0.955600 0.477800 0.878469i \(-0.341434\pi\)
0.477800 + 0.878469i \(0.341434\pi\)
\(942\) −16.4020 −0.534407
\(943\) −16.9706 −0.552638
\(944\) −28.9706 −0.942912
\(945\) −11.3137 −0.368035
\(946\) 0 0
\(947\) 46.8284 1.52172 0.760860 0.648916i \(-0.224778\pi\)
0.760860 + 0.648916i \(0.224778\pi\)
\(948\) 20.6863 0.671860
\(949\) 46.6274 1.51359
\(950\) 0 0
\(951\) 60.2843 1.95485
\(952\) 3.71573 0.120427
\(953\) −58.8284 −1.90564 −0.952820 0.303536i \(-0.901833\pi\)
−0.952820 + 0.303536i \(0.901833\pi\)
\(954\) 0.710678 0.0230091
\(955\) 19.3137 0.624977
\(956\) −1.25483 −0.0405842
\(957\) 0 0
\(958\) 14.9117 0.481775
\(959\) 45.9411 1.48352
\(960\) 11.7990 0.380811
\(961\) −31.0000 −1.00000
\(962\) 10.3431 0.333476
\(963\) 18.2843 0.589202
\(964\) 10.9706 0.353338
\(965\) −6.82843 −0.219815
\(966\) 6.62742 0.213234
\(967\) −18.9706 −0.610052 −0.305026 0.952344i \(-0.598665\pi\)
−0.305026 + 0.952344i \(0.598665\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 3.17157 0.101833
\(971\) −31.3137 −1.00490 −0.502452 0.864605i \(-0.667569\pi\)
−0.502452 + 0.864605i \(0.667569\pi\)
\(972\) 25.8579 0.829391
\(973\) 8.00000 0.256468
\(974\) −3.11270 −0.0997373
\(975\) 19.3137 0.618534
\(976\) −39.9411 −1.27848
\(977\) 43.6569 1.39671 0.698353 0.715753i \(-0.253916\pi\)
0.698353 + 0.715753i \(0.253916\pi\)
\(978\) −0.568542 −0.0181800
\(979\) 0 0
\(980\) −5.48528 −0.175221
\(981\) −18.2843 −0.583772
\(982\) 9.65685 0.308163
\(983\) −50.1421 −1.59929 −0.799643 0.600476i \(-0.794978\pi\)
−0.799643 + 0.600476i \(0.794978\pi\)
\(984\) 26.9117 0.857913
\(985\) −5.17157 −0.164780
\(986\) 3.71573 0.118333
\(987\) −16.0000 −0.509286
\(988\) 0 0
\(989\) 16.9706 0.539633
\(990\) 0 0
\(991\) 9.94113 0.315790 0.157895 0.987456i \(-0.449529\pi\)
0.157895 + 0.987456i \(0.449529\pi\)
\(992\) 0 0
\(993\) 43.3137 1.37452
\(994\) −9.37258 −0.297280
\(995\) −21.6569 −0.686568
\(996\) −31.0294 −0.983205
\(997\) −9.45584 −0.299470 −0.149735 0.988726i \(-0.547842\pi\)
−0.149735 + 0.988726i \(0.547842\pi\)
\(998\) −0.686292 −0.0217242
\(999\) 20.6863 0.654485
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 605.2.a.d.1.2 2
3.2 odd 2 5445.2.a.y.1.1 2
4.3 odd 2 9680.2.a.bn.1.1 2
5.4 even 2 3025.2.a.o.1.1 2
11.2 odd 10 605.2.g.f.81.2 8
11.3 even 5 605.2.g.l.251.2 8
11.4 even 5 605.2.g.l.511.2 8
11.5 even 5 605.2.g.l.366.1 8
11.6 odd 10 605.2.g.f.366.2 8
11.7 odd 10 605.2.g.f.511.1 8
11.8 odd 10 605.2.g.f.251.1 8
11.9 even 5 605.2.g.l.81.1 8
11.10 odd 2 55.2.a.b.1.1 2
33.32 even 2 495.2.a.b.1.2 2
44.43 even 2 880.2.a.m.1.1 2
55.32 even 4 275.2.b.d.199.2 4
55.43 even 4 275.2.b.d.199.3 4
55.54 odd 2 275.2.a.c.1.2 2
77.76 even 2 2695.2.a.f.1.1 2
88.21 odd 2 3520.2.a.bn.1.1 2
88.43 even 2 3520.2.a.bo.1.2 2
132.131 odd 2 7920.2.a.ch.1.1 2
143.142 odd 2 9295.2.a.g.1.2 2
165.32 odd 4 2475.2.c.l.199.3 4
165.98 odd 4 2475.2.c.l.199.2 4
165.164 even 2 2475.2.a.x.1.1 2
220.43 odd 4 4400.2.b.q.4049.1 4
220.87 odd 4 4400.2.b.q.4049.4 4
220.219 even 2 4400.2.a.bn.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.2.a.b.1.1 2 11.10 odd 2
275.2.a.c.1.2 2 55.54 odd 2
275.2.b.d.199.2 4 55.32 even 4
275.2.b.d.199.3 4 55.43 even 4
495.2.a.b.1.2 2 33.32 even 2
605.2.a.d.1.2 2 1.1 even 1 trivial
605.2.g.f.81.2 8 11.2 odd 10
605.2.g.f.251.1 8 11.8 odd 10
605.2.g.f.366.2 8 11.6 odd 10
605.2.g.f.511.1 8 11.7 odd 10
605.2.g.l.81.1 8 11.9 even 5
605.2.g.l.251.2 8 11.3 even 5
605.2.g.l.366.1 8 11.5 even 5
605.2.g.l.511.2 8 11.4 even 5
880.2.a.m.1.1 2 44.43 even 2
2475.2.a.x.1.1 2 165.164 even 2
2475.2.c.l.199.2 4 165.98 odd 4
2475.2.c.l.199.3 4 165.32 odd 4
2695.2.a.f.1.1 2 77.76 even 2
3025.2.a.o.1.1 2 5.4 even 2
3520.2.a.bn.1.1 2 88.21 odd 2
3520.2.a.bo.1.2 2 88.43 even 2
4400.2.a.bn.1.2 2 220.219 even 2
4400.2.b.q.4049.1 4 220.43 odd 4
4400.2.b.q.4049.4 4 220.87 odd 4
5445.2.a.y.1.1 2 3.2 odd 2
7920.2.a.ch.1.1 2 132.131 odd 2
9295.2.a.g.1.2 2 143.142 odd 2
9680.2.a.bn.1.1 2 4.3 odd 2