Properties

Label 4352.2.a.bd.1.4
Level $4352$
Weight $2$
Character 4352.1
Self dual yes
Analytic conductor $34.751$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4352,2,Mod(1,4352)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4352.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4352, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 4352 = 2^{8} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4352.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,32,0,0,0,0,0,0,0,-8,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(23)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(34.7508949597\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.8.16845963264.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 10x^{6} + 23x^{4} - 16x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: no (minimal twist has level 2176)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(1.24296\) of defining polynomial
Character \(\chi\) \(=\) 4352.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.84240 q^{3} +1.67000 q^{5} -5.08101 q^{7} +0.394449 q^{9} -4.67083 q^{11} -1.67000 q^{13} -3.07681 q^{15} -1.00000 q^{17} -6.51323 q^{19} +9.36127 q^{21} -2.71927 q^{23} -2.21110 q^{25} +4.80048 q^{27} +1.67000 q^{29} -7.44274 q^{31} +8.60555 q^{33} -8.48528 q^{35} -9.36127 q^{37} +3.07681 q^{39} -6.00000 q^{41} +0.658729 q^{45} +13.2388 q^{47} +18.8167 q^{49} +1.84240 q^{51} -7.69127 q^{53} -7.80028 q^{55} +12.0000 q^{57} +5.65685 q^{59} -5.01000 q^{61} -2.00420 q^{63} -2.78890 q^{65} -8.48528 q^{67} +5.01000 q^{69} +10.5196 q^{71} -7.21110 q^{73} +4.07374 q^{75} +23.7325 q^{77} -7.44274 q^{79} -10.0278 q^{81} -7.36961 q^{83} -1.67000 q^{85} -3.07681 q^{87} +10.6056 q^{89} +8.48528 q^{91} +13.7125 q^{93} -10.8771 q^{95} +2.00000 q^{97} -1.84240 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 32 q^{9} - 8 q^{17} + 40 q^{25} + 40 q^{33} - 48 q^{41} + 64 q^{49} + 96 q^{57} - 80 q^{65} + 64 q^{81} + 56 q^{89} + 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.84240 −1.06371 −0.531856 0.846835i \(-0.678505\pi\)
−0.531856 + 0.846835i \(0.678505\pi\)
\(4\) 0 0
\(5\) 1.67000 0.746846 0.373423 0.927661i \(-0.378184\pi\)
0.373423 + 0.927661i \(0.378184\pi\)
\(6\) 0 0
\(7\) −5.08101 −1.92044 −0.960220 0.279243i \(-0.909917\pi\)
−0.960220 + 0.279243i \(0.909917\pi\)
\(8\) 0 0
\(9\) 0.394449 0.131483
\(10\) 0 0
\(11\) −4.67083 −1.40831 −0.704154 0.710047i \(-0.748674\pi\)
−0.704154 + 0.710047i \(0.748674\pi\)
\(12\) 0 0
\(13\) −1.67000 −0.463174 −0.231587 0.972814i \(-0.574392\pi\)
−0.231587 + 0.972814i \(0.574392\pi\)
\(14\) 0 0
\(15\) −3.07681 −0.794429
\(16\) 0 0
\(17\) −1.00000 −0.242536
\(18\) 0 0
\(19\) −6.51323 −1.49424 −0.747119 0.664690i \(-0.768564\pi\)
−0.747119 + 0.664690i \(0.768564\pi\)
\(20\) 0 0
\(21\) 9.36127 2.04280
\(22\) 0 0
\(23\) −2.71927 −0.567008 −0.283504 0.958971i \(-0.591497\pi\)
−0.283504 + 0.958971i \(0.591497\pi\)
\(24\) 0 0
\(25\) −2.21110 −0.442221
\(26\) 0 0
\(27\) 4.80048 0.923852
\(28\) 0 0
\(29\) 1.67000 0.310111 0.155056 0.987906i \(-0.450444\pi\)
0.155056 + 0.987906i \(0.450444\pi\)
\(30\) 0 0
\(31\) −7.44274 −1.33676 −0.668378 0.743822i \(-0.733011\pi\)
−0.668378 + 0.743822i \(0.733011\pi\)
\(32\) 0 0
\(33\) 8.60555 1.49803
\(34\) 0 0
\(35\) −8.48528 −1.43427
\(36\) 0 0
\(37\) −9.36127 −1.53898 −0.769491 0.638657i \(-0.779490\pi\)
−0.769491 + 0.638657i \(0.779490\pi\)
\(38\) 0 0
\(39\) 3.07681 0.492684
\(40\) 0 0
\(41\) −6.00000 −0.937043 −0.468521 0.883452i \(-0.655213\pi\)
−0.468521 + 0.883452i \(0.655213\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 0 0
\(45\) 0.658729 0.0981975
\(46\) 0 0
\(47\) 13.2388 1.93108 0.965541 0.260251i \(-0.0838054\pi\)
0.965541 + 0.260251i \(0.0838054\pi\)
\(48\) 0 0
\(49\) 18.8167 2.68809
\(50\) 0 0
\(51\) 1.84240 0.257988
\(52\) 0 0
\(53\) −7.69127 −1.05648 −0.528238 0.849096i \(-0.677147\pi\)
−0.528238 + 0.849096i \(0.677147\pi\)
\(54\) 0 0
\(55\) −7.80028 −1.05179
\(56\) 0 0
\(57\) 12.0000 1.58944
\(58\) 0 0
\(59\) 5.65685 0.736460 0.368230 0.929735i \(-0.379964\pi\)
0.368230 + 0.929735i \(0.379964\pi\)
\(60\) 0 0
\(61\) −5.01000 −0.641464 −0.320732 0.947170i \(-0.603929\pi\)
−0.320732 + 0.947170i \(0.603929\pi\)
\(62\) 0 0
\(63\) −2.00420 −0.252505
\(64\) 0 0
\(65\) −2.78890 −0.345920
\(66\) 0 0
\(67\) −8.48528 −1.03664 −0.518321 0.855186i \(-0.673443\pi\)
−0.518321 + 0.855186i \(0.673443\pi\)
\(68\) 0 0
\(69\) 5.01000 0.603133
\(70\) 0 0
\(71\) 10.5196 1.24844 0.624221 0.781248i \(-0.285417\pi\)
0.624221 + 0.781248i \(0.285417\pi\)
\(72\) 0 0
\(73\) −7.21110 −0.843996 −0.421998 0.906597i \(-0.638671\pi\)
−0.421998 + 0.906597i \(0.638671\pi\)
\(74\) 0 0
\(75\) 4.07374 0.470395
\(76\) 0 0
\(77\) 23.7325 2.70457
\(78\) 0 0
\(79\) −7.44274 −0.837374 −0.418687 0.908131i \(-0.637510\pi\)
−0.418687 + 0.908131i \(0.637510\pi\)
\(80\) 0 0
\(81\) −10.0278 −1.11420
\(82\) 0 0
\(83\) −7.36961 −0.808920 −0.404460 0.914556i \(-0.632541\pi\)
−0.404460 + 0.914556i \(0.632541\pi\)
\(84\) 0 0
\(85\) −1.67000 −0.181137
\(86\) 0 0
\(87\) −3.07681 −0.329869
\(88\) 0 0
\(89\) 10.6056 1.12419 0.562093 0.827074i \(-0.309996\pi\)
0.562093 + 0.827074i \(0.309996\pi\)
\(90\) 0 0
\(91\) 8.48528 0.889499
\(92\) 0 0
\(93\) 13.7125 1.42192
\(94\) 0 0
\(95\) −10.8771 −1.11597
\(96\) 0 0
\(97\) 2.00000 0.203069 0.101535 0.994832i \(-0.467625\pi\)
0.101535 + 0.994832i \(0.467625\pi\)
\(98\) 0 0
\(99\) −1.84240 −0.185168
\(100\) 0 0
\(101\) −1.67000 −0.166171 −0.0830856 0.996542i \(-0.526477\pi\)
−0.0830856 + 0.996542i \(0.526477\pi\)
\(102\) 0 0
\(103\) 15.6006 1.53717 0.768585 0.639748i \(-0.220961\pi\)
0.768585 + 0.639748i \(0.220961\pi\)
\(104\) 0 0
\(105\) 15.6333 1.52565
\(106\) 0 0
\(107\) −3.81445 −0.368757 −0.184378 0.982855i \(-0.559027\pi\)
−0.184378 + 0.982855i \(0.559027\pi\)
\(108\) 0 0
\(109\) −9.36127 −0.896647 −0.448323 0.893871i \(-0.647979\pi\)
−0.448323 + 0.893871i \(0.647979\pi\)
\(110\) 0 0
\(111\) 17.2472 1.63703
\(112\) 0 0
\(113\) −3.21110 −0.302075 −0.151038 0.988528i \(-0.548261\pi\)
−0.151038 + 0.988528i \(0.548261\pi\)
\(114\) 0 0
\(115\) −4.54118 −0.423468
\(116\) 0 0
\(117\) −0.658729 −0.0608995
\(118\) 0 0
\(119\) 5.08101 0.465775
\(120\) 0 0
\(121\) 10.8167 0.983332
\(122\) 0 0
\(123\) 11.0544 0.996743
\(124\) 0 0
\(125\) −12.0425 −1.07712
\(126\) 0 0
\(127\) 0.715076 0.0634527 0.0317264 0.999497i \(-0.489899\pi\)
0.0317264 + 0.999497i \(0.489899\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 1.84240 0.160971 0.0804857 0.996756i \(-0.474353\pi\)
0.0804857 + 0.996756i \(0.474353\pi\)
\(132\) 0 0
\(133\) 33.0938 2.86960
\(134\) 0 0
\(135\) 8.01679 0.689975
\(136\) 0 0
\(137\) 19.8167 1.69305 0.846525 0.532348i \(-0.178690\pi\)
0.846525 + 0.532348i \(0.178690\pi\)
\(138\) 0 0
\(139\) 2.95807 0.250900 0.125450 0.992100i \(-0.459962\pi\)
0.125450 + 0.992100i \(0.459962\pi\)
\(140\) 0 0
\(141\) −24.3913 −2.05411
\(142\) 0 0
\(143\) 7.80028 0.652292
\(144\) 0 0
\(145\) 2.78890 0.231605
\(146\) 0 0
\(147\) −34.6679 −2.85936
\(148\) 0 0
\(149\) −22.0625 −1.80743 −0.903716 0.428131i \(-0.859172\pi\)
−0.903716 + 0.428131i \(0.859172\pi\)
\(150\) 0 0
\(151\) −5.43855 −0.442583 −0.221291 0.975208i \(-0.571027\pi\)
−0.221291 + 0.975208i \(0.571027\pi\)
\(152\) 0 0
\(153\) −0.394449 −0.0318893
\(154\) 0 0
\(155\) −12.4294 −0.998352
\(156\) 0 0
\(157\) −11.0313 −0.880391 −0.440195 0.897902i \(-0.645091\pi\)
−0.440195 + 0.897902i \(0.645091\pi\)
\(158\) 0 0
\(159\) 14.1704 1.12379
\(160\) 0 0
\(161\) 13.8167 1.08890
\(162\) 0 0
\(163\) 12.0404 0.943080 0.471540 0.881845i \(-0.343698\pi\)
0.471540 + 0.881845i \(0.343698\pi\)
\(164\) 0 0
\(165\) 14.3713 1.11880
\(166\) 0 0
\(167\) −4.36593 −0.337846 −0.168923 0.985629i \(-0.554029\pi\)
−0.168923 + 0.985629i \(0.554029\pi\)
\(168\) 0 0
\(169\) −10.2111 −0.785469
\(170\) 0 0
\(171\) −2.56914 −0.196467
\(172\) 0 0
\(173\) 12.7013 0.965659 0.482830 0.875714i \(-0.339609\pi\)
0.482830 + 0.875714i \(0.339609\pi\)
\(174\) 0 0
\(175\) 11.2346 0.849258
\(176\) 0 0
\(177\) −10.4222 −0.783381
\(178\) 0 0
\(179\) 4.80048 0.358804 0.179402 0.983776i \(-0.442584\pi\)
0.179402 + 0.983776i \(0.442584\pi\)
\(180\) 0 0
\(181\) −12.7013 −0.944078 −0.472039 0.881578i \(-0.656482\pi\)
−0.472039 + 0.881578i \(0.656482\pi\)
\(182\) 0 0
\(183\) 9.23043 0.682333
\(184\) 0 0
\(185\) −15.6333 −1.14938
\(186\) 0 0
\(187\) 4.67083 0.341565
\(188\) 0 0
\(189\) −24.3913 −1.77420
\(190\) 0 0
\(191\) −13.2388 −0.957928 −0.478964 0.877835i \(-0.658988\pi\)
−0.478964 + 0.877835i \(0.658988\pi\)
\(192\) 0 0
\(193\) 7.21110 0.519067 0.259533 0.965734i \(-0.416431\pi\)
0.259533 + 0.965734i \(0.416431\pi\)
\(194\) 0 0
\(195\) 5.13827 0.367959
\(196\) 0 0
\(197\) −9.36127 −0.666963 −0.333481 0.942757i \(-0.608223\pi\)
−0.333481 + 0.942757i \(0.608223\pi\)
\(198\) 0 0
\(199\) 2.71927 0.192764 0.0963821 0.995344i \(-0.469273\pi\)
0.0963821 + 0.995344i \(0.469273\pi\)
\(200\) 0 0
\(201\) 15.6333 1.10269
\(202\) 0 0
\(203\) −8.48528 −0.595550
\(204\) 0 0
\(205\) −10.0200 −0.699827
\(206\) 0 0
\(207\) −1.07261 −0.0745518
\(208\) 0 0
\(209\) 30.4222 2.10435
\(210\) 0 0
\(211\) −24.4698 −1.68457 −0.842286 0.539031i \(-0.818791\pi\)
−0.842286 + 0.539031i \(0.818791\pi\)
\(212\) 0 0
\(213\) −19.3813 −1.32798
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 37.8167 2.56716
\(218\) 0 0
\(219\) 13.2858 0.897768
\(220\) 0 0
\(221\) 1.67000 0.112336
\(222\) 0 0
\(223\) −28.1243 −1.88334 −0.941672 0.336532i \(-0.890746\pi\)
−0.941672 + 0.336532i \(0.890746\pi\)
\(224\) 0 0
\(225\) −0.872167 −0.0581444
\(226\) 0 0
\(227\) 17.6973 1.17461 0.587305 0.809365i \(-0.300189\pi\)
0.587305 + 0.809365i \(0.300189\pi\)
\(228\) 0 0
\(229\) −27.0725 −1.78900 −0.894502 0.447065i \(-0.852469\pi\)
−0.894502 + 0.447065i \(0.852469\pi\)
\(230\) 0 0
\(231\) −43.7249 −2.87689
\(232\) 0 0
\(233\) 6.00000 0.393073 0.196537 0.980497i \(-0.437031\pi\)
0.196537 + 0.980497i \(0.437031\pi\)
\(234\) 0 0
\(235\) 22.1088 1.44222
\(236\) 0 0
\(237\) 13.7125 0.890725
\(238\) 0 0
\(239\) 17.9623 1.16188 0.580942 0.813945i \(-0.302684\pi\)
0.580942 + 0.813945i \(0.302684\pi\)
\(240\) 0 0
\(241\) −4.78890 −0.308480 −0.154240 0.988033i \(-0.549293\pi\)
−0.154240 + 0.988033i \(0.549293\pi\)
\(242\) 0 0
\(243\) 4.07374 0.261331
\(244\) 0 0
\(245\) 31.4238 2.00759
\(246\) 0 0
\(247\) 10.8771 0.692093
\(248\) 0 0
\(249\) 13.5778 0.860458
\(250\) 0 0
\(251\) 19.7990 1.24970 0.624851 0.780744i \(-0.285160\pi\)
0.624851 + 0.780744i \(0.285160\pi\)
\(252\) 0 0
\(253\) 12.7013 0.798522
\(254\) 0 0
\(255\) 3.07681 0.192677
\(256\) 0 0
\(257\) 13.3944 0.835523 0.417761 0.908557i \(-0.362815\pi\)
0.417761 + 0.908557i \(0.362815\pi\)
\(258\) 0 0
\(259\) 47.5647 2.95553
\(260\) 0 0
\(261\) 0.658729 0.0407743
\(262\) 0 0
\(263\) −10.1620 −0.626617 −0.313308 0.949651i \(-0.601437\pi\)
−0.313308 + 0.949651i \(0.601437\pi\)
\(264\) 0 0
\(265\) −12.8444 −0.789026
\(266\) 0 0
\(267\) −19.5397 −1.19581
\(268\) 0 0
\(269\) 11.6900 0.712752 0.356376 0.934343i \(-0.384012\pi\)
0.356376 + 0.934343i \(0.384012\pi\)
\(270\) 0 0
\(271\) −17.9623 −1.09113 −0.545566 0.838068i \(-0.683685\pi\)
−0.545566 + 0.838068i \(0.683685\pi\)
\(272\) 0 0
\(273\) −15.6333 −0.946171
\(274\) 0 0
\(275\) 10.3277 0.622783
\(276\) 0 0
\(277\) 9.36127 0.562464 0.281232 0.959640i \(-0.409257\pi\)
0.281232 + 0.959640i \(0.409257\pi\)
\(278\) 0 0
\(279\) −2.93578 −0.175761
\(280\) 0 0
\(281\) 15.2111 0.907418 0.453709 0.891150i \(-0.350101\pi\)
0.453709 + 0.891150i \(0.350101\pi\)
\(282\) 0 0
\(283\) −15.9845 −0.950182 −0.475091 0.879937i \(-0.657585\pi\)
−0.475091 + 0.879937i \(0.657585\pi\)
\(284\) 0 0
\(285\) 20.0400 1.18707
\(286\) 0 0
\(287\) 30.4861 1.79953
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) −3.68481 −0.216007
\(292\) 0 0
\(293\) 6.68000 0.390250 0.195125 0.980778i \(-0.437489\pi\)
0.195125 + 0.980778i \(0.437489\pi\)
\(294\) 0 0
\(295\) 9.44694 0.550022
\(296\) 0 0
\(297\) −22.4222 −1.30107
\(298\) 0 0
\(299\) 4.54118 0.262623
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 3.07681 0.176758
\(304\) 0 0
\(305\) −8.36669 −0.479075
\(306\) 0 0
\(307\) −18.9426 −1.08111 −0.540556 0.841308i \(-0.681786\pi\)
−0.540556 + 0.841308i \(0.681786\pi\)
\(308\) 0 0
\(309\) −28.7425 −1.63511
\(310\) 0 0
\(311\) 11.2346 0.637058 0.318529 0.947913i \(-0.396811\pi\)
0.318529 + 0.947913i \(0.396811\pi\)
\(312\) 0 0
\(313\) 26.8444 1.51734 0.758668 0.651478i \(-0.225851\pi\)
0.758668 + 0.651478i \(0.225851\pi\)
\(314\) 0 0
\(315\) −3.34701 −0.188583
\(316\) 0 0
\(317\) 13.7125 0.770173 0.385086 0.922881i \(-0.374172\pi\)
0.385086 + 0.922881i \(0.374172\pi\)
\(318\) 0 0
\(319\) −7.80028 −0.436732
\(320\) 0 0
\(321\) 7.02776 0.392251
\(322\) 0 0
\(323\) 6.51323 0.362406
\(324\) 0 0
\(325\) 3.69254 0.204825
\(326\) 0 0
\(327\) 17.2472 0.953774
\(328\) 0 0
\(329\) −67.2666 −3.70853
\(330\) 0 0
\(331\) 26.0529 1.43200 0.715999 0.698101i \(-0.245971\pi\)
0.715999 + 0.698101i \(0.245971\pi\)
\(332\) 0 0
\(333\) −3.69254 −0.202350
\(334\) 0 0
\(335\) −14.1704 −0.774212
\(336\) 0 0
\(337\) 16.4222 0.894575 0.447287 0.894390i \(-0.352390\pi\)
0.447287 + 0.894390i \(0.352390\pi\)
\(338\) 0 0
\(339\) 5.91614 0.321321
\(340\) 0 0
\(341\) 34.7638 1.88257
\(342\) 0 0
\(343\) −60.0405 −3.24188
\(344\) 0 0
\(345\) 8.36669 0.450448
\(346\) 0 0
\(347\) −19.6693 −1.05591 −0.527953 0.849274i \(-0.677040\pi\)
−0.527953 + 0.849274i \(0.677040\pi\)
\(348\) 0 0
\(349\) 14.3713 0.769276 0.384638 0.923067i \(-0.374326\pi\)
0.384638 + 0.923067i \(0.374326\pi\)
\(350\) 0 0
\(351\) −8.01679 −0.427905
\(352\) 0 0
\(353\) 15.2111 0.809605 0.404803 0.914404i \(-0.367340\pi\)
0.404803 + 0.914404i \(0.367340\pi\)
\(354\) 0 0
\(355\) 17.5677 0.932394
\(356\) 0 0
\(357\) −9.36127 −0.495451
\(358\) 0 0
\(359\) −28.1243 −1.48434 −0.742172 0.670209i \(-0.766204\pi\)
−0.742172 + 0.670209i \(0.766204\pi\)
\(360\) 0 0
\(361\) 23.4222 1.23275
\(362\) 0 0
\(363\) −19.9286 −1.04598
\(364\) 0 0
\(365\) −12.0425 −0.630335
\(366\) 0 0
\(367\) −26.1201 −1.36346 −0.681730 0.731604i \(-0.738772\pi\)
−0.681730 + 0.731604i \(0.738772\pi\)
\(368\) 0 0
\(369\) −2.36669 −0.123205
\(370\) 0 0
\(371\) 39.0794 2.02890
\(372\) 0 0
\(373\) −11.6900 −0.605285 −0.302642 0.953104i \(-0.597869\pi\)
−0.302642 + 0.953104i \(0.597869\pi\)
\(374\) 0 0
\(375\) 22.1872 1.14574
\(376\) 0 0
\(377\) −2.78890 −0.143636
\(378\) 0 0
\(379\) 1.58311 0.0813190 0.0406595 0.999173i \(-0.487054\pi\)
0.0406595 + 0.999173i \(0.487054\pi\)
\(380\) 0 0
\(381\) −1.31746 −0.0674954
\(382\) 0 0
\(383\) −0.715076 −0.0365387 −0.0182693 0.999833i \(-0.505816\pi\)
−0.0182693 + 0.999833i \(0.505816\pi\)
\(384\) 0 0
\(385\) 39.6333 2.01990
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −17.0525 −0.864598 −0.432299 0.901730i \(-0.642297\pi\)
−0.432299 + 0.901730i \(0.642297\pi\)
\(390\) 0 0
\(391\) 2.71927 0.137520
\(392\) 0 0
\(393\) −3.39445 −0.171227
\(394\) 0 0
\(395\) −12.4294 −0.625390
\(396\) 0 0
\(397\) 6.02127 0.302199 0.151099 0.988519i \(-0.451719\pi\)
0.151099 + 0.988519i \(0.451719\pi\)
\(398\) 0 0
\(399\) −60.9721 −3.05242
\(400\) 0 0
\(401\) 21.6333 1.08032 0.540158 0.841564i \(-0.318365\pi\)
0.540158 + 0.841564i \(0.318365\pi\)
\(402\) 0 0
\(403\) 12.4294 0.619151
\(404\) 0 0
\(405\) −16.7463 −0.832133
\(406\) 0 0
\(407\) 43.7249 2.16736
\(408\) 0 0
\(409\) −20.4222 −1.00981 −0.504907 0.863174i \(-0.668473\pi\)
−0.504907 + 0.863174i \(0.668473\pi\)
\(410\) 0 0
\(411\) −36.5103 −1.80092
\(412\) 0 0
\(413\) −28.7425 −1.41433
\(414\) 0 0
\(415\) −12.3072 −0.604139
\(416\) 0 0
\(417\) −5.44996 −0.266886
\(418\) 0 0
\(419\) 17.1002 0.835400 0.417700 0.908585i \(-0.362836\pi\)
0.417700 + 0.908585i \(0.362836\pi\)
\(420\) 0 0
\(421\) 37.0925 1.80778 0.903890 0.427766i \(-0.140699\pi\)
0.903890 + 0.427766i \(0.140699\pi\)
\(422\) 0 0
\(423\) 5.22204 0.253904
\(424\) 0 0
\(425\) 2.21110 0.107254
\(426\) 0 0
\(427\) 25.4558 1.23189
\(428\) 0 0
\(429\) −14.3713 −0.693851
\(430\) 0 0
\(431\) 6.72767 0.324060 0.162030 0.986786i \(-0.448196\pi\)
0.162030 + 0.986786i \(0.448196\pi\)
\(432\) 0 0
\(433\) 6.60555 0.317443 0.158721 0.987323i \(-0.449263\pi\)
0.158721 + 0.987323i \(0.449263\pi\)
\(434\) 0 0
\(435\) −5.13827 −0.246361
\(436\) 0 0
\(437\) 17.7113 0.847245
\(438\) 0 0
\(439\) −26.8352 −1.28077 −0.640387 0.768052i \(-0.721226\pi\)
−0.640387 + 0.768052i \(0.721226\pi\)
\(440\) 0 0
\(441\) 7.42221 0.353438
\(442\) 0 0
\(443\) 28.8814 1.37219 0.686097 0.727510i \(-0.259322\pi\)
0.686097 + 0.727510i \(0.259322\pi\)
\(444\) 0 0
\(445\) 17.7113 0.839594
\(446\) 0 0
\(447\) 40.6481 1.92259
\(448\) 0 0
\(449\) −18.0000 −0.849473 −0.424736 0.905317i \(-0.639633\pi\)
−0.424736 + 0.905317i \(0.639633\pi\)
\(450\) 0 0
\(451\) 28.0250 1.31964
\(452\) 0 0
\(453\) 10.0200 0.470780
\(454\) 0 0
\(455\) 14.1704 0.664319
\(456\) 0 0
\(457\) −3.81665 −0.178536 −0.0892678 0.996008i \(-0.528453\pi\)
−0.0892678 + 0.996008i \(0.528453\pi\)
\(458\) 0 0
\(459\) −4.80048 −0.224067
\(460\) 0 0
\(461\) −7.69127 −0.358218 −0.179109 0.983829i \(-0.557321\pi\)
−0.179109 + 0.983829i \(0.557321\pi\)
\(462\) 0 0
\(463\) 10.8771 0.505501 0.252751 0.967531i \(-0.418665\pi\)
0.252751 + 0.967531i \(0.418665\pi\)
\(464\) 0 0
\(465\) 22.8999 1.06196
\(466\) 0 0
\(467\) 25.1966 1.16596 0.582979 0.812487i \(-0.301887\pi\)
0.582979 + 0.812487i \(0.301887\pi\)
\(468\) 0 0
\(469\) 43.1138 1.99081
\(470\) 0 0
\(471\) 20.3240 0.936482
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 14.4014 0.660783
\(476\) 0 0
\(477\) −3.03381 −0.138909
\(478\) 0 0
\(479\) 8.87290 0.405413 0.202706 0.979240i \(-0.435026\pi\)
0.202706 + 0.979240i \(0.435026\pi\)
\(480\) 0 0
\(481\) 15.6333 0.712817
\(482\) 0 0
\(483\) −25.4558 −1.15828
\(484\) 0 0
\(485\) 3.34000 0.151662
\(486\) 0 0
\(487\) −5.79609 −0.262646 −0.131323 0.991340i \(-0.541922\pi\)
−0.131323 + 0.991340i \(0.541922\pi\)
\(488\) 0 0
\(489\) −22.1833 −1.00317
\(490\) 0 0
\(491\) −17.8269 −0.804519 −0.402259 0.915526i \(-0.631775\pi\)
−0.402259 + 0.915526i \(0.631775\pi\)
\(492\) 0 0
\(493\) −1.67000 −0.0752130
\(494\) 0 0
\(495\) −3.07681 −0.138292
\(496\) 0 0
\(497\) −53.4500 −2.39756
\(498\) 0 0
\(499\) 14.6096 0.654015 0.327007 0.945022i \(-0.393960\pi\)
0.327007 + 0.945022i \(0.393960\pi\)
\(500\) 0 0
\(501\) 8.04381 0.359371
\(502\) 0 0
\(503\) −1.07261 −0.0478255 −0.0239127 0.999714i \(-0.507612\pi\)
−0.0239127 + 0.999714i \(0.507612\pi\)
\(504\) 0 0
\(505\) −2.78890 −0.124104
\(506\) 0 0
\(507\) 18.8130 0.835513
\(508\) 0 0
\(509\) −15.3825 −0.681819 −0.340909 0.940096i \(-0.610735\pi\)
−0.340909 + 0.940096i \(0.610735\pi\)
\(510\) 0 0
\(511\) 36.6397 1.62084
\(512\) 0 0
\(513\) −31.2666 −1.38045
\(514\) 0 0
\(515\) 26.0529 1.14803
\(516\) 0 0
\(517\) −61.8363 −2.71956
\(518\) 0 0
\(519\) −23.4008 −1.02718
\(520\) 0 0
\(521\) −24.4222 −1.06996 −0.534978 0.844866i \(-0.679680\pi\)
−0.534978 + 0.844866i \(0.679680\pi\)
\(522\) 0 0
\(523\) −8.48528 −0.371035 −0.185518 0.982641i \(-0.559396\pi\)
−0.185518 + 0.982641i \(0.559396\pi\)
\(524\) 0 0
\(525\) −20.6987 −0.903366
\(526\) 0 0
\(527\) 7.44274 0.324211
\(528\) 0 0
\(529\) −15.6056 −0.678502
\(530\) 0 0
\(531\) 2.23134 0.0968319
\(532\) 0 0
\(533\) 10.0200 0.434014
\(534\) 0 0
\(535\) −6.37013 −0.275405
\(536\) 0 0
\(537\) −8.84441 −0.381664
\(538\) 0 0
\(539\) −87.8894 −3.78566
\(540\) 0 0
\(541\) −28.0838 −1.20742 −0.603708 0.797205i \(-0.706311\pi\)
−0.603708 + 0.797205i \(0.706311\pi\)
\(542\) 0 0
\(543\) 23.4008 1.00423
\(544\) 0 0
\(545\) −15.6333 −0.669657
\(546\) 0 0
\(547\) −31.5801 −1.35027 −0.675135 0.737695i \(-0.735914\pi\)
−0.675135 + 0.737695i \(0.735914\pi\)
\(548\) 0 0
\(549\) −1.97619 −0.0843416
\(550\) 0 0
\(551\) −10.8771 −0.463380
\(552\) 0 0
\(553\) 37.8167 1.60813
\(554\) 0 0
\(555\) 28.8029 1.22261
\(556\) 0 0
\(557\) 23.7325 1.00558 0.502790 0.864409i \(-0.332307\pi\)
0.502790 + 0.864409i \(0.332307\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −8.60555 −0.363327
\(562\) 0 0
\(563\) 18.6833 0.787408 0.393704 0.919237i \(-0.371193\pi\)
0.393704 + 0.919237i \(0.371193\pi\)
\(564\) 0 0
\(565\) −5.36254 −0.225604
\(566\) 0 0
\(567\) 50.9511 2.13975
\(568\) 0 0
\(569\) −9.63331 −0.403849 −0.201925 0.979401i \(-0.564720\pi\)
−0.201925 + 0.979401i \(0.564720\pi\)
\(570\) 0 0
\(571\) −31.5801 −1.32159 −0.660794 0.750567i \(-0.729780\pi\)
−0.660794 + 0.750567i \(0.729780\pi\)
\(572\) 0 0
\(573\) 24.3913 1.01896
\(574\) 0 0
\(575\) 6.01259 0.250742
\(576\) 0 0
\(577\) 14.6056 0.608037 0.304019 0.952666i \(-0.401672\pi\)
0.304019 + 0.952666i \(0.401672\pi\)
\(578\) 0 0
\(579\) −13.2858 −0.552137
\(580\) 0 0
\(581\) 37.4451 1.55348
\(582\) 0 0
\(583\) 35.9246 1.48784
\(584\) 0 0
\(585\) −1.10008 −0.0454826
\(586\) 0 0
\(587\) −30.8534 −1.27346 −0.636728 0.771088i \(-0.719713\pi\)
−0.636728 + 0.771088i \(0.719713\pi\)
\(588\) 0 0
\(589\) 48.4763 1.99743
\(590\) 0 0
\(591\) 17.2472 0.709456
\(592\) 0 0
\(593\) −21.6333 −0.888373 −0.444187 0.895934i \(-0.646507\pi\)
−0.444187 + 0.895934i \(0.646507\pi\)
\(594\) 0 0
\(595\) 8.48528 0.347863
\(596\) 0 0
\(597\) −5.01000 −0.205046
\(598\) 0 0
\(599\) −31.2011 −1.27484 −0.637422 0.770515i \(-0.719999\pi\)
−0.637422 + 0.770515i \(0.719999\pi\)
\(600\) 0 0
\(601\) 4.78890 0.195343 0.0976716 0.995219i \(-0.468861\pi\)
0.0976716 + 0.995219i \(0.468861\pi\)
\(602\) 0 0
\(603\) −3.34701 −0.136301
\(604\) 0 0
\(605\) 18.0638 0.734398
\(606\) 0 0
\(607\) 6.72767 0.273068 0.136534 0.990635i \(-0.456404\pi\)
0.136534 + 0.990635i \(0.456404\pi\)
\(608\) 0 0
\(609\) 15.6333 0.633494
\(610\) 0 0
\(611\) −22.1088 −0.894428
\(612\) 0 0
\(613\) −22.0625 −0.891097 −0.445549 0.895258i \(-0.646991\pi\)
−0.445549 + 0.895258i \(0.646991\pi\)
\(614\) 0 0
\(615\) 18.4609 0.744414
\(616\) 0 0
\(617\) 6.00000 0.241551 0.120775 0.992680i \(-0.461462\pi\)
0.120775 + 0.992680i \(0.461462\pi\)
\(618\) 0 0
\(619\) 8.09635 0.325420 0.162710 0.986674i \(-0.447977\pi\)
0.162710 + 0.986674i \(0.447977\pi\)
\(620\) 0 0
\(621\) −13.0538 −0.523831
\(622\) 0 0
\(623\) −53.8869 −2.15893
\(624\) 0 0
\(625\) −9.05551 −0.362221
\(626\) 0 0
\(627\) −56.0500 −2.23842
\(628\) 0 0
\(629\) 9.36127 0.373258
\(630\) 0 0
\(631\) 7.80028 0.310524 0.155262 0.987873i \(-0.450378\pi\)
0.155262 + 0.987873i \(0.450378\pi\)
\(632\) 0 0
\(633\) 45.0833 1.79190
\(634\) 0 0
\(635\) 1.19418 0.0473894
\(636\) 0 0
\(637\) −31.4238 −1.24506
\(638\) 0 0
\(639\) 4.14943 0.164149
\(640\) 0 0
\(641\) −24.4222 −0.964619 −0.482310 0.876001i \(-0.660202\pi\)
−0.482310 + 0.876001i \(0.660202\pi\)
\(642\) 0 0
\(643\) −11.4434 −0.451282 −0.225641 0.974211i \(-0.572448\pi\)
−0.225641 + 0.974211i \(0.572448\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 34.9930 1.37572 0.687859 0.725845i \(-0.258551\pi\)
0.687859 + 0.725845i \(0.258551\pi\)
\(648\) 0 0
\(649\) −26.4222 −1.03716
\(650\) 0 0
\(651\) −69.6735 −2.73072
\(652\) 0 0
\(653\) −23.7325 −0.928726 −0.464363 0.885645i \(-0.653717\pi\)
−0.464363 + 0.885645i \(0.653717\pi\)
\(654\) 0 0
\(655\) 3.07681 0.120221
\(656\) 0 0
\(657\) −2.84441 −0.110971
\(658\) 0 0
\(659\) 9.34166 0.363899 0.181950 0.983308i \(-0.441759\pi\)
0.181950 + 0.983308i \(0.441759\pi\)
\(660\) 0 0
\(661\) −25.4025 −0.988044 −0.494022 0.869449i \(-0.664474\pi\)
−0.494022 + 0.869449i \(0.664474\pi\)
\(662\) 0 0
\(663\) −3.07681 −0.119493
\(664\) 0 0
\(665\) 55.2666 2.14315
\(666\) 0 0
\(667\) −4.54118 −0.175835
\(668\) 0 0
\(669\) 51.8163 2.00334
\(670\) 0 0
\(671\) 23.4008 0.903380
\(672\) 0 0
\(673\) 19.5778 0.754669 0.377334 0.926077i \(-0.376841\pi\)
0.377334 + 0.926077i \(0.376841\pi\)
\(674\) 0 0
\(675\) −10.6143 −0.408546
\(676\) 0 0
\(677\) 2.68127 0.103050 0.0515248 0.998672i \(-0.483592\pi\)
0.0515248 + 0.998672i \(0.483592\pi\)
\(678\) 0 0
\(679\) −10.1620 −0.389982
\(680\) 0 0
\(681\) −32.6056 −1.24945
\(682\) 0 0
\(683\) −30.1267 −1.15277 −0.576383 0.817180i \(-0.695536\pi\)
−0.576383 + 0.817180i \(0.695536\pi\)
\(684\) 0 0
\(685\) 33.0938 1.26445
\(686\) 0 0
\(687\) 49.8785 1.90298
\(688\) 0 0
\(689\) 12.8444 0.489333
\(690\) 0 0
\(691\) −45.9816 −1.74922 −0.874611 0.484826i \(-0.838883\pi\)
−0.874611 + 0.484826i \(0.838883\pi\)
\(692\) 0 0
\(693\) 9.36127 0.355605
\(694\) 0 0
\(695\) 4.93998 0.187384
\(696\) 0 0
\(697\) 6.00000 0.227266
\(698\) 0 0
\(699\) −11.0544 −0.418116
\(700\) 0 0
\(701\) 29.0951 1.09891 0.549453 0.835525i \(-0.314836\pi\)
0.549453 + 0.835525i \(0.314836\pi\)
\(702\) 0 0
\(703\) 60.9721 2.29961
\(704\) 0 0
\(705\) −40.7334 −1.53411
\(706\) 0 0
\(707\) 8.48528 0.319122
\(708\) 0 0
\(709\) −32.4351 −1.21812 −0.609062 0.793122i \(-0.708454\pi\)
−0.609062 + 0.793122i \(0.708454\pi\)
\(710\) 0 0
\(711\) −2.93578 −0.110100
\(712\) 0 0
\(713\) 20.2389 0.757951
\(714\) 0 0
\(715\) 13.0265 0.487162
\(716\) 0 0
\(717\) −33.0938 −1.23591
\(718\) 0 0
\(719\) −15.9581 −0.595137 −0.297568 0.954700i \(-0.596176\pi\)
−0.297568 + 0.954700i \(0.596176\pi\)
\(720\) 0 0
\(721\) −79.2666 −2.95204
\(722\) 0 0
\(723\) 8.82308 0.328134
\(724\) 0 0
\(725\) −3.69254 −0.137137
\(726\) 0 0
\(727\) −11.8087 −0.437960 −0.218980 0.975729i \(-0.570273\pi\)
−0.218980 + 0.975729i \(0.570273\pi\)
\(728\) 0 0
\(729\) 22.5778 0.836215
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 38.7625 1.43173 0.715863 0.698241i \(-0.246033\pi\)
0.715863 + 0.698241i \(0.246033\pi\)
\(734\) 0 0
\(735\) −57.8953 −2.13550
\(736\) 0 0
\(737\) 39.6333 1.45991
\(738\) 0 0
\(739\) 36.5103 1.34305 0.671526 0.740981i \(-0.265639\pi\)
0.671526 + 0.740981i \(0.265639\pi\)
\(740\) 0 0
\(741\) −20.0400 −0.736187
\(742\) 0 0
\(743\) −40.0740 −1.47017 −0.735087 0.677973i \(-0.762859\pi\)
−0.735087 + 0.677973i \(0.762859\pi\)
\(744\) 0 0
\(745\) −36.8444 −1.34987
\(746\) 0 0
\(747\) −2.90693 −0.106359
\(748\) 0 0
\(749\) 19.3813 0.708176
\(750\) 0 0
\(751\) −6.51116 −0.237596 −0.118798 0.992918i \(-0.537904\pi\)
−0.118798 + 0.992918i \(0.537904\pi\)
\(752\) 0 0
\(753\) −36.4777 −1.32932
\(754\) 0 0
\(755\) −9.08237 −0.330541
\(756\) 0 0
\(757\) −32.4351 −1.17887 −0.589436 0.807815i \(-0.700650\pi\)
−0.589436 + 0.807815i \(0.700650\pi\)
\(758\) 0 0
\(759\) −23.4008 −0.849397
\(760\) 0 0
\(761\) −4.18335 −0.151646 −0.0758231 0.997121i \(-0.524158\pi\)
−0.0758231 + 0.997121i \(0.524158\pi\)
\(762\) 0 0
\(763\) 47.5647 1.72196
\(764\) 0 0
\(765\) −0.658729 −0.0238164
\(766\) 0 0
\(767\) −9.44694 −0.341109
\(768\) 0 0
\(769\) −19.4500 −0.701384 −0.350692 0.936491i \(-0.614054\pi\)
−0.350692 + 0.936491i \(0.614054\pi\)
\(770\) 0 0
\(771\) −24.6780 −0.888755
\(772\) 0 0
\(773\) −7.03254 −0.252943 −0.126471 0.991970i \(-0.540365\pi\)
−0.126471 + 0.991970i \(0.540365\pi\)
\(774\) 0 0
\(775\) 16.4567 0.591141
\(776\) 0 0
\(777\) −87.6333 −3.14383
\(778\) 0 0
\(779\) 39.0794 1.40016
\(780\) 0 0
\(781\) −49.1351 −1.75819
\(782\) 0 0
\(783\) 8.01679 0.286497
\(784\) 0 0
\(785\) −18.4222 −0.657517
\(786\) 0 0
\(787\) −10.0684 −0.358899 −0.179450 0.983767i \(-0.557432\pi\)
−0.179450 + 0.983767i \(0.557432\pi\)
\(788\) 0 0
\(789\) 18.7225 0.666540
\(790\) 0 0
\(791\) 16.3156 0.580117
\(792\) 0 0
\(793\) 8.36669 0.297110
\(794\) 0 0
\(795\) 23.6646 0.839296
\(796\) 0 0
\(797\) −38.7625 −1.37304 −0.686520 0.727111i \(-0.740862\pi\)
−0.686520 + 0.727111i \(0.740862\pi\)
\(798\) 0 0
\(799\) −13.2388 −0.468356
\(800\) 0 0
\(801\) 4.18335 0.147811
\(802\) 0 0
\(803\) 33.6818 1.18861
\(804\) 0 0
\(805\) 23.0738 0.813245
\(806\) 0 0
\(807\) −21.5377 −0.758162
\(808\) 0 0
\(809\) −32.7889 −1.15280 −0.576398 0.817169i \(-0.695542\pi\)
−0.576398 + 0.817169i \(0.695542\pi\)
\(810\) 0 0
\(811\) −42.0375 −1.47614 −0.738068 0.674727i \(-0.764261\pi\)
−0.738068 + 0.674727i \(0.764261\pi\)
\(812\) 0 0
\(813\) 33.0938 1.16065
\(814\) 0 0
\(815\) 20.1075 0.704336
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 3.34701 0.116954
\(820\) 0 0
\(821\) −28.0838 −0.980131 −0.490066 0.871686i \(-0.663027\pi\)
−0.490066 + 0.871686i \(0.663027\pi\)
\(822\) 0 0
\(823\) −33.9204 −1.18239 −0.591195 0.806528i \(-0.701344\pi\)
−0.591195 + 0.806528i \(0.701344\pi\)
\(824\) 0 0
\(825\) −19.0278 −0.662461
\(826\) 0 0
\(827\) 28.1546 0.979032 0.489516 0.871994i \(-0.337173\pi\)
0.489516 + 0.871994i \(0.337173\pi\)
\(828\) 0 0
\(829\) −53.1338 −1.84541 −0.922706 0.385504i \(-0.874028\pi\)
−0.922706 + 0.385504i \(0.874028\pi\)
\(830\) 0 0
\(831\) −17.2472 −0.598300
\(832\) 0 0
\(833\) −18.8167 −0.651958
\(834\) 0 0
\(835\) −7.29111 −0.252319
\(836\) 0 0
\(837\) −35.7287 −1.23496
\(838\) 0 0
\(839\) −36.2821 −1.25260 −0.626299 0.779583i \(-0.715431\pi\)
−0.626299 + 0.779583i \(0.715431\pi\)
\(840\) 0 0
\(841\) −26.2111 −0.903831
\(842\) 0 0
\(843\) −28.0250 −0.965232
\(844\) 0 0
\(845\) −17.0525 −0.586625
\(846\) 0 0
\(847\) −54.9595 −1.88843
\(848\) 0 0
\(849\) 29.4500 1.01072
\(850\) 0 0
\(851\) 25.4558 0.872615
\(852\) 0 0
\(853\) 54.4976 1.86596 0.932981 0.359925i \(-0.117198\pi\)
0.932981 + 0.359925i \(0.117198\pi\)
\(854\) 0 0
\(855\) −4.29046 −0.146730
\(856\) 0 0
\(857\) −36.4222 −1.24416 −0.622079 0.782954i \(-0.713712\pi\)
−0.622079 + 0.782954i \(0.713712\pi\)
\(858\) 0 0
\(859\) 3.94410 0.134571 0.0672854 0.997734i \(-0.478566\pi\)
0.0672854 + 0.997734i \(0.478566\pi\)
\(860\) 0 0
\(861\) −56.1676 −1.91419
\(862\) 0 0
\(863\) −6.15362 −0.209472 −0.104736 0.994500i \(-0.533400\pi\)
−0.104736 + 0.994500i \(0.533400\pi\)
\(864\) 0 0
\(865\) 21.2111 0.721199
\(866\) 0 0
\(867\) −1.84240 −0.0625713
\(868\) 0 0
\(869\) 34.7638 1.17928
\(870\) 0 0
\(871\) 14.1704 0.480146
\(872\) 0 0
\(873\) 0.788897 0.0267001
\(874\) 0 0
\(875\) 61.1882 2.06854
\(876\) 0 0
\(877\) 6.02127 0.203324 0.101662 0.994819i \(-0.467584\pi\)
0.101662 + 0.994819i \(0.467584\pi\)
\(878\) 0 0
\(879\) −12.3072 −0.415113
\(880\) 0 0
\(881\) 6.00000 0.202145 0.101073 0.994879i \(-0.467773\pi\)
0.101073 + 0.994879i \(0.467773\pi\)
\(882\) 0 0
\(883\) 4.54118 0.152823 0.0764115 0.997076i \(-0.475654\pi\)
0.0764115 + 0.997076i \(0.475654\pi\)
\(884\) 0 0
\(885\) −17.4051 −0.585065
\(886\) 0 0
\(887\) 37.2137 1.24951 0.624757 0.780819i \(-0.285198\pi\)
0.624757 + 0.780819i \(0.285198\pi\)
\(888\) 0 0
\(889\) −3.63331 −0.121857
\(890\) 0 0
\(891\) 46.8379 1.56913
\(892\) 0 0
\(893\) −86.2276 −2.88550
\(894\) 0 0
\(895\) 8.01679 0.267972
\(896\) 0 0
\(897\) −8.36669 −0.279356
\(898\) 0 0
\(899\) −12.4294 −0.414543
\(900\) 0 0
\(901\) 7.69127 0.256233
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −21.2111 −0.705081
\(906\) 0 0
\(907\) −12.0404 −0.399796 −0.199898 0.979817i \(-0.564061\pi\)
−0.199898 + 0.979817i \(0.564061\pi\)
\(908\) 0 0
\(909\) −0.658729 −0.0218487
\(910\) 0 0
\(911\) −39.5755 −1.31119 −0.655597 0.755111i \(-0.727583\pi\)
−0.655597 + 0.755111i \(0.727583\pi\)
\(912\) 0 0
\(913\) 34.4222 1.13921
\(914\) 0 0
\(915\) 15.4148 0.509598
\(916\) 0 0
\(917\) −9.36127 −0.309136
\(918\) 0 0
\(919\) 34.9930 1.15431 0.577157 0.816634i \(-0.304162\pi\)
0.577157 + 0.816634i \(0.304162\pi\)
\(920\) 0 0
\(921\) 34.8999 1.14999
\(922\) 0 0
\(923\) −17.5677 −0.578246
\(924\) 0 0
\(925\) 20.6987 0.680570
\(926\) 0 0
\(927\) 6.15362 0.202112
\(928\) 0 0
\(929\) −44.7889 −1.46948 −0.734738 0.678351i \(-0.762695\pi\)
−0.734738 + 0.678351i \(0.762695\pi\)
\(930\) 0 0
\(931\) −122.557 −4.01665
\(932\) 0 0
\(933\) −20.6987 −0.677646
\(934\) 0 0
\(935\) 7.80028 0.255097
\(936\) 0 0
\(937\) 46.8444 1.53034 0.765170 0.643828i \(-0.222655\pi\)
0.765170 + 0.643828i \(0.222655\pi\)
\(938\) 0 0
\(939\) −49.4582 −1.61401
\(940\) 0 0
\(941\) 0.658729 0.0214740 0.0107370 0.999942i \(-0.496582\pi\)
0.0107370 + 0.999942i \(0.496582\pi\)
\(942\) 0 0
\(943\) 16.3156 0.531310
\(944\) 0 0
\(945\) −40.7334 −1.32506
\(946\) 0 0
\(947\) 1.24531 0.0404673 0.0202336 0.999795i \(-0.493559\pi\)
0.0202336 + 0.999795i \(0.493559\pi\)
\(948\) 0 0
\(949\) 12.0425 0.390917
\(950\) 0 0
\(951\) −25.2640 −0.819242
\(952\) 0 0
\(953\) 31.8167 1.03064 0.515321 0.856997i \(-0.327673\pi\)
0.515321 + 0.856997i \(0.327673\pi\)
\(954\) 0 0
\(955\) −22.1088 −0.715425
\(956\) 0 0
\(957\) 14.3713 0.464557
\(958\) 0 0
\(959\) −100.689 −3.25140
\(960\) 0 0
\(961\) 24.3944 0.786918
\(962\) 0 0
\(963\) −1.50461 −0.0484852
\(964\) 0 0
\(965\) 12.0425 0.387663
\(966\) 0 0
\(967\) −12.5238 −0.402737 −0.201368 0.979516i \(-0.564539\pi\)
−0.201368 + 0.979516i \(0.564539\pi\)
\(968\) 0 0
\(969\) −12.0000 −0.385496
\(970\) 0 0
\(971\) 54.3372 1.74376 0.871882 0.489716i \(-0.162900\pi\)
0.871882 + 0.489716i \(0.162900\pi\)
\(972\) 0 0
\(973\) −15.0300 −0.481839
\(974\) 0 0
\(975\) −6.80315 −0.217875
\(976\) 0 0
\(977\) −15.2111 −0.486646 −0.243323 0.969945i \(-0.578238\pi\)
−0.243323 + 0.969945i \(0.578238\pi\)
\(978\) 0 0
\(979\) −49.5367 −1.58320
\(980\) 0 0
\(981\) −3.69254 −0.117894
\(982\) 0 0
\(983\) −5.08101 −0.162059 −0.0810295 0.996712i \(-0.525821\pi\)
−0.0810295 + 0.996712i \(0.525821\pi\)
\(984\) 0 0
\(985\) −15.6333 −0.498119
\(986\) 0 0
\(987\) 123.932 3.94481
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 2.93578 0.0932582 0.0466291 0.998912i \(-0.485152\pi\)
0.0466291 + 0.998912i \(0.485152\pi\)
\(992\) 0 0
\(993\) −48.0000 −1.52323
\(994\) 0 0
\(995\) 4.54118 0.143965
\(996\) 0 0
\(997\) 28.0838 0.889423 0.444711 0.895674i \(-0.353306\pi\)
0.444711 + 0.895674i \(0.353306\pi\)
\(998\) 0 0
\(999\) −44.9385 −1.42179
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4352.2.a.bd.1.4 8
4.3 odd 2 inner 4352.2.a.bd.1.6 8
8.3 odd 2 inner 4352.2.a.bd.1.3 8
8.5 even 2 inner 4352.2.a.bd.1.5 8
16.3 odd 4 2176.2.c.h.1089.5 yes 8
16.5 even 4 2176.2.c.h.1089.6 yes 8
16.11 odd 4 2176.2.c.h.1089.4 yes 8
16.13 even 4 2176.2.c.h.1089.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2176.2.c.h.1089.3 8 16.13 even 4
2176.2.c.h.1089.4 yes 8 16.11 odd 4
2176.2.c.h.1089.5 yes 8 16.3 odd 4
2176.2.c.h.1089.6 yes 8 16.5 even 4
4352.2.a.bd.1.3 8 8.3 odd 2 inner
4352.2.a.bd.1.4 8 1.1 even 1 trivial
4352.2.a.bd.1.5 8 8.5 even 2 inner
4352.2.a.bd.1.6 8 4.3 odd 2 inner