Properties

Label 2-4352-1.1-c1-0-1
Degree $2$
Conductor $4352$
Sign $1$
Analytic cond. $34.7508$
Root an. cond. $5.89498$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.84·3-s + 1.66·5-s − 5.08·7-s + 0.394·9-s − 4.67·11-s − 1.66·13-s − 3.07·15-s − 17-s − 6.51·19-s + 9.36·21-s − 2.71·23-s − 2.21·25-s + 4.80·27-s + 1.66·29-s − 7.44·31-s + 8.60·33-s − 8.48·35-s − 9.36·37-s + 3.07·39-s − 6·41-s + 0.658·45-s + 13.2·47-s + 18.8·49-s + 1.84·51-s − 7.69·53-s − 7.80·55-s + 12·57-s + ⋯
L(s)  = 1  − 1.06·3-s + 0.746·5-s − 1.92·7-s + 0.131·9-s − 1.40·11-s − 0.463·13-s − 0.794·15-s − 0.242·17-s − 1.49·19-s + 2.04·21-s − 0.567·23-s − 0.442·25-s + 0.923·27-s + 0.310·29-s − 1.33·31-s + 1.49·33-s − 1.43·35-s − 1.53·37-s + 0.492·39-s − 0.937·41-s + 0.0981·45-s + 1.93·47-s + 2.68·49-s + 0.257·51-s − 1.05·53-s − 1.05·55-s + 1.58·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4352 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4352 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4352\)    =    \(2^{8} \cdot 17\)
Sign: $1$
Analytic conductor: \(34.7508\)
Root analytic conductor: \(5.89498\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4352,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.08453476494\)
\(L(\frac12)\) \(\approx\) \(0.08453476494\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
17 \( 1 + T \)
good3 \( 1 + 1.84T + 3T^{2} \)
5 \( 1 - 1.66T + 5T^{2} \)
7 \( 1 + 5.08T + 7T^{2} \)
11 \( 1 + 4.67T + 11T^{2} \)
13 \( 1 + 1.66T + 13T^{2} \)
19 \( 1 + 6.51T + 19T^{2} \)
23 \( 1 + 2.71T + 23T^{2} \)
29 \( 1 - 1.66T + 29T^{2} \)
31 \( 1 + 7.44T + 31T^{2} \)
37 \( 1 + 9.36T + 37T^{2} \)
41 \( 1 + 6T + 41T^{2} \)
43 \( 1 + 43T^{2} \)
47 \( 1 - 13.2T + 47T^{2} \)
53 \( 1 + 7.69T + 53T^{2} \)
59 \( 1 - 5.65T + 59T^{2} \)
61 \( 1 + 5.00T + 61T^{2} \)
67 \( 1 + 8.48T + 67T^{2} \)
71 \( 1 - 10.5T + 71T^{2} \)
73 \( 1 + 7.21T + 73T^{2} \)
79 \( 1 + 7.44T + 79T^{2} \)
83 \( 1 + 7.36T + 83T^{2} \)
89 \( 1 - 10.6T + 89T^{2} \)
97 \( 1 - 2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.511499700728094978765449647835, −7.35451239873856486411526829176, −6.72888224988072777728914005333, −6.01310117865802403434823542908, −5.69328513186209026730232088089, −4.88542415015083113753156712522, −3.78826543306011391215625692822, −2.81612591920773637757732566832, −2.07372168691640597569569590620, −0.15717216124819489558650268447, 0.15717216124819489558650268447, 2.07372168691640597569569590620, 2.81612591920773637757732566832, 3.78826543306011391215625692822, 4.88542415015083113753156712522, 5.69328513186209026730232088089, 6.01310117865802403434823542908, 6.72888224988072777728914005333, 7.35451239873856486411526829176, 8.511499700728094978765449647835

Graph of the $Z$-function along the critical line