Properties

Label 4352.2.a.bd
Level $4352$
Weight $2$
Character orbit 4352.a
Self dual yes
Analytic conductor $34.751$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4352,2,Mod(1,4352)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4352.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4352, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 4352 = 2^{8} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4352.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,32,0,0,0,0,0,0,0,-8,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(23)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(34.7508949597\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.8.16845963264.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 10x^{6} + 23x^{4} - 16x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: no (minimal twist has level 2176)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{3} + \beta_{2} q^{5} - \beta_{7} q^{7} + (\beta_{3} + 4) q^{9} + (\beta_{4} - \beta_1) q^{11} - \beta_{2} q^{13} + (\beta_{7} + 3 \beta_{5}) q^{15} - q^{17} + (\beta_{4} - 2 \beta_1) q^{19}+ \cdots - \beta_1 q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 32 q^{9} - 8 q^{17} + 40 q^{25} + 40 q^{33} - 48 q^{41} + 64 q^{49} + 96 q^{57} - 80 q^{65} + 64 q^{81} + 56 q^{89} + 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 10x^{6} + 23x^{4} - 16x^{2} + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{5} - 9\nu^{3} + 13\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( 2\nu^{6} - 18\nu^{4} + 28\nu^{2} - 6 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 4\nu^{6} - 34\nu^{4} + 40\nu^{2} + 1 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( 2\nu^{7} - 16\nu^{5} + 12\nu^{3} + 10\nu \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( -2\nu^{7} + 19\nu^{5} - 37\nu^{3} + 17\nu \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( 8\nu^{6} - 68\nu^{4} + 84\nu^{2} - 8 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( -4\nu^{7} + 35\nu^{5} - 49\nu^{3} + 11\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{7} - \beta_{5} + \beta_{4} ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{6} - 2\beta_{3} + 10 ) / 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 3\beta_{7} - 2\beta_{5} + 4\beta_{4} - 3\beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 4\beta_{6} - 7\beta_{3} - 2\beta_{2} + 27 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 41\beta_{7} - 23\beta_{5} + 59\beta_{4} - 50\beta_1 ) / 4 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( 29\beta_{6} - 49\beta_{3} - 17\beta_{2} + 179 ) / 2 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 287\beta_{7} - 155\beta_{5} + 421\beta_{4} - 364\beta_1 ) / 4 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0.263007
1.15121
−2.65718
1.24296
2.65718
−1.24296
−0.263007
−1.15121
0 −3.25662 0 −4.14863 0 −2.04532 0 7.60555 0
1.2 0 −3.25662 0 4.14863 0 2.04532 0 7.60555 0
1.3 0 −1.84240 0 −1.67000 0 5.08101 0 0.394449 0
1.4 0 −1.84240 0 1.67000 0 −5.08101 0 0.394449 0
1.5 0 1.84240 0 −1.67000 0 −5.08101 0 0.394449 0
1.6 0 1.84240 0 1.67000 0 5.08101 0 0.394449 0
1.7 0 3.25662 0 −4.14863 0 2.04532 0 7.60555 0
1.8 0 3.25662 0 4.14863 0 −2.04532 0 7.60555 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.8
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(17\) \( +1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
8.b even 2 1 inner
8.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4352.2.a.bd 8
4.b odd 2 1 inner 4352.2.a.bd 8
8.b even 2 1 inner 4352.2.a.bd 8
8.d odd 2 1 inner 4352.2.a.bd 8
16.e even 4 2 2176.2.c.h 8
16.f odd 4 2 2176.2.c.h 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2176.2.c.h 8 16.e even 4 2
2176.2.c.h 8 16.f odd 4 2
4352.2.a.bd 8 1.a even 1 1 trivial
4352.2.a.bd 8 4.b odd 2 1 inner
4352.2.a.bd 8 8.b even 2 1 inner
4352.2.a.bd 8 8.d odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4352))\):

\( T_{3}^{4} - 14T_{3}^{2} + 36 \) Copy content Toggle raw display
\( T_{5}^{4} - 20T_{5}^{2} + 48 \) Copy content Toggle raw display
\( T_{7}^{4} - 30T_{7}^{2} + 108 \) Copy content Toggle raw display
\( T_{13}^{4} - 20T_{13}^{2} + 48 \) Copy content Toggle raw display
\( T_{23}^{4} - 22T_{23}^{2} + 108 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( (T^{4} - 14 T^{2} + 36)^{2} \) Copy content Toggle raw display
$5$ \( (T^{4} - 20 T^{2} + 48)^{2} \) Copy content Toggle raw display
$7$ \( (T^{4} - 30 T^{2} + 108)^{2} \) Copy content Toggle raw display
$11$ \( (T^{4} - 22 T^{2} + 4)^{2} \) Copy content Toggle raw display
$13$ \( (T^{4} - 20 T^{2} + 48)^{2} \) Copy content Toggle raw display
$17$ \( (T + 1)^{8} \) Copy content Toggle raw display
$19$ \( (T^{4} - 56 T^{2} + 576)^{2} \) Copy content Toggle raw display
$23$ \( (T^{4} - 22 T^{2} + 108)^{2} \) Copy content Toggle raw display
$29$ \( (T^{4} - 20 T^{2} + 48)^{2} \) Copy content Toggle raw display
$31$ \( (T^{4} - 118 T^{2} + 3468)^{2} \) Copy content Toggle raw display
$37$ \( (T^{4} - 132 T^{2} + 3888)^{2} \) Copy content Toggle raw display
$41$ \( (T + 6)^{8} \) Copy content Toggle raw display
$43$ \( T^{8} \) Copy content Toggle raw display
$47$ \( (T^{4} - 264 T^{2} + 15552)^{2} \) Copy content Toggle raw display
$53$ \( (T^{4} - 176 T^{2} + 6912)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} - 32)^{4} \) Copy content Toggle raw display
$61$ \( (T^{4} - 180 T^{2} + 3888)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} - 72)^{4} \) Copy content Toggle raw display
$71$ \( (T^{4} - 142 T^{2} + 3468)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} - 52)^{4} \) Copy content Toggle raw display
$79$ \( (T^{4} - 118 T^{2} + 3468)^{2} \) Copy content Toggle raw display
$83$ \( (T^{4} - 224 T^{2} + 9216)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} - 14 T + 36)^{4} \) Copy content Toggle raw display
$97$ \( (T - 2)^{8} \) Copy content Toggle raw display
show more
show less