Newspace parameters
Level: | \( N \) | \(=\) | \( 4334 = 2 \cdot 11 \cdot 197 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 4334.a (trivial) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(34.6071642360\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Twist minimal: | yes |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 | 1.00000 | −3.03203 | 1.00000 | 0.166109 | −3.03203 | −3.81414 | 1.00000 | 6.19318 | 0.166109 | ||||||||||||||||||
1.2 | 1.00000 | −2.68443 | 1.00000 | 2.21213 | −2.68443 | 4.45954 | 1.00000 | 4.20617 | 2.21213 | ||||||||||||||||||
1.3 | 1.00000 | −2.41920 | 1.00000 | 1.09702 | −2.41920 | −0.318081 | 1.00000 | 2.85254 | 1.09702 | ||||||||||||||||||
1.4 | 1.00000 | −2.38598 | 1.00000 | −3.46177 | −2.38598 | 0.0815889 | 1.00000 | 2.69289 | −3.46177 | ||||||||||||||||||
1.5 | 1.00000 | −2.11945 | 1.00000 | 2.85950 | −2.11945 | 0.696891 | 1.00000 | 1.49205 | 2.85950 | ||||||||||||||||||
1.6 | 1.00000 | −1.69982 | 1.00000 | −2.89069 | −1.69982 | 4.96470 | 1.00000 | −0.110611 | −2.89069 | ||||||||||||||||||
1.7 | 1.00000 | −1.57237 | 1.00000 | −0.555853 | −1.57237 | −2.43578 | 1.00000 | −0.527653 | −0.555853 | ||||||||||||||||||
1.8 | 1.00000 | −0.533021 | 1.00000 | −1.76896 | −0.533021 | −1.67093 | 1.00000 | −2.71589 | −1.76896 | ||||||||||||||||||
1.9 | 1.00000 | −0.469459 | 1.00000 | 1.92533 | −0.469459 | −0.231234 | 1.00000 | −2.77961 | 1.92533 | ||||||||||||||||||
1.10 | 1.00000 | −0.352502 | 1.00000 | −2.30147 | −0.352502 | 2.78311 | 1.00000 | −2.87574 | −2.30147 | ||||||||||||||||||
1.11 | 1.00000 | −0.0840258 | 1.00000 | −4.26587 | −0.0840258 | −4.02549 | 1.00000 | −2.99294 | −4.26587 | ||||||||||||||||||
1.12 | 1.00000 | 0.272392 | 1.00000 | 2.45255 | 0.272392 | 2.51117 | 1.00000 | −2.92580 | 2.45255 | ||||||||||||||||||
1.13 | 1.00000 | 0.709515 | 1.00000 | 1.53976 | 0.709515 | 3.26507 | 1.00000 | −2.49659 | 1.53976 | ||||||||||||||||||
1.14 | 1.00000 | 0.844390 | 1.00000 | 4.22697 | 0.844390 | −3.69998 | 1.00000 | −2.28700 | 4.22697 | ||||||||||||||||||
1.15 | 1.00000 | 1.07362 | 1.00000 | −2.05678 | 1.07362 | −3.40944 | 1.00000 | −1.84733 | −2.05678 | ||||||||||||||||||
1.16 | 1.00000 | 1.56353 | 1.00000 | −2.07613 | 1.56353 | 4.64853 | 1.00000 | −0.555380 | −2.07613 | ||||||||||||||||||
1.17 | 1.00000 | 1.76169 | 1.00000 | −3.63225 | 1.76169 | −3.98143 | 1.00000 | 0.103544 | −3.63225 | ||||||||||||||||||
1.18 | 1.00000 | 1.85453 | 1.00000 | 3.38544 | 1.85453 | 1.90407 | 1.00000 | 0.439283 | 3.38544 | ||||||||||||||||||
1.19 | 1.00000 | 2.48464 | 1.00000 | 3.25684 | 2.48464 | 4.41893 | 1.00000 | 3.17343 | 3.25684 | ||||||||||||||||||
1.20 | 1.00000 | 2.64860 | 1.00000 | 0.167624 | 2.64860 | −0.427188 | 1.00000 | 4.01506 | 0.167624 | ||||||||||||||||||
See all 24 embeddings |
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(2\) | \(-1\) |
\(11\) | \(1\) |
\(197\) | \(1\) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 4334.2.a.f | ✓ | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
4334.2.a.f | ✓ | 24 | 1.a | even | 1 | 1 | trivial |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{24} - 8 T_{3}^{23} - 18 T_{3}^{22} + 291 T_{3}^{21} - 165 T_{3}^{20} - 4323 T_{3}^{19} + 7188 T_{3}^{18} + 33320 T_{3}^{17} - 82504 T_{3}^{16} - 136319 T_{3}^{15} + 486835 T_{3}^{14} + 235205 T_{3}^{13} - 1631078 T_{3}^{12} + \cdots - 980 \)
acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4334))\).