Defining parameters
Level: | \( N \) | \(=\) | \( 4334 = 2 \cdot 11 \cdot 197 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 4334.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 8 \) | ||
Sturm bound: | \(1188\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(4334))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 598 | 165 | 433 |
Cusp forms | 591 | 165 | 426 |
Eisenstein series | 7 | 0 | 7 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(11\) | \(197\) | Fricke | Dim |
---|---|---|---|---|
\(+\) | \(+\) | \(+\) | $+$ | \(17\) |
\(+\) | \(+\) | \(-\) | $-$ | \(24\) |
\(+\) | \(-\) | \(+\) | $-$ | \(27\) |
\(+\) | \(-\) | \(-\) | $+$ | \(15\) |
\(-\) | \(+\) | \(+\) | $-$ | \(24\) |
\(-\) | \(+\) | \(-\) | $+$ | \(17\) |
\(-\) | \(-\) | \(+\) | $+$ | \(15\) |
\(-\) | \(-\) | \(-\) | $-$ | \(26\) |
Plus space | \(+\) | \(64\) | ||
Minus space | \(-\) | \(101\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(4334))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(4334))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(4334)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_0(2167))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(197))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(394))\)\(^{\oplus 2}\)