# Properties

 Label 4334.2 Level 4334 Weight 2 Dimension 190799 Nonzero newspaces 18 Sturm bound 2328480

## Defining parameters

 Level: $$N$$ = $$4334 = 2 \cdot 11 \cdot 197$$ Weight: $$k$$ = $$2$$ Nonzero newspaces: $$18$$ Sturm bound: $$2328480$$

## Dimensions

The following table gives the dimensions of various subspaces of $$M_{2}(\Gamma_1(4334))$$.

Total New Old
Modular forms 586040 190799 395241
Cusp forms 578201 190799 387402
Eisenstein series 7839 0 7839

## Decomposition of $$S_{2}^{\mathrm{new}}(\Gamma_1(4334))$$

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space $$S_k^{\mathrm{new}}(N, \chi)$$ we list available newforms together with their dimension.

Label $$\chi$$ Newforms Dimension $$\chi$$ degree
4334.2.a $$\chi_{4334}(1, \cdot)$$ 4334.2.a.a 15 1
4334.2.a.b 15
4334.2.a.c 17
4334.2.a.d 17
4334.2.a.e 24
4334.2.a.f 24
4334.2.a.g 26
4334.2.a.h 27
4334.2.c $$\chi_{4334}(3939, \cdot)$$ n/a 166 1
4334.2.f $$\chi_{4334}(1759, \cdot)$$ n/a 396 2
4334.2.g $$\chi_{4334}(1577, \cdot)$$ n/a 784 4
4334.2.h $$\chi_{4334}(375, \cdot)$$ n/a 984 6
4334.2.j $$\chi_{4334}(1181, \cdot)$$ n/a 792 4
4334.2.m $$\chi_{4334}(881, \cdot)$$ n/a 996 6
4334.2.o $$\chi_{4334}(183, \cdot)$$ n/a 1584 8
4334.2.q $$\chi_{4334}(87, \cdot)$$ n/a 2376 12
4334.2.s $$\chi_{4334}(191, \cdot)$$ n/a 4752 24
4334.2.t $$\chi_{4334}(23, \cdot)$$ n/a 6888 42
4334.2.v $$\chi_{4334}(93, \cdot)$$ n/a 4752 24
4334.2.x $$\chi_{4334}(155, \cdot)$$ n/a 6972 42
4334.2.bb $$\chi_{4334}(129, \cdot)$$ n/a 9504 48
4334.2.bc $$\chi_{4334}(21, \cdot)$$ n/a 16632 84
4334.2.be $$\chi_{4334}(37, \cdot)$$ n/a 33264 168
4334.2.bh $$\chi_{4334}(9, \cdot)$$ n/a 33264 168
4334.2.bj $$\chi_{4334}(13, \cdot)$$ n/a 66528 336

"n/a" means that newforms for that character have not been added to the database yet

## Decomposition of $$S_{2}^{\mathrm{old}}(\Gamma_1(4334))$$ into lower level spaces

$$S_{2}^{\mathrm{old}}(\Gamma_1(4334)) \cong$$ $$S_{2}^{\mathrm{new}}(\Gamma_1(1))$$$$^{\oplus 8}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(2))$$$$^{\oplus 4}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(11))$$$$^{\oplus 4}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(22))$$$$^{\oplus 2}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(197))$$$$^{\oplus 4}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(394))$$$$^{\oplus 2}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(2167))$$$$^{\oplus 2}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(4334))$$$$^{\oplus 1}$$