Defining parameters
Level: | \( N \) | = | \( 4334 = 2 \cdot 11 \cdot 197 \) |
Weight: | \( k \) | = | \( 2 \) |
Nonzero newspaces: | \( 18 \) | ||
Sturm bound: | \(2328480\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(4334))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 586040 | 190799 | 395241 |
Cusp forms | 578201 | 190799 | 387402 |
Eisenstein series | 7839 | 0 | 7839 |
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(4334))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(4334))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_1(4334)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(22))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(197))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(394))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2167))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4334))\)\(^{\oplus 1}\)