Properties

Label 4334.2
Level 4334
Weight 2
Dimension 190799
Nonzero newspaces 18
Sturm bound 2328480

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 4334 = 2 \cdot 11 \cdot 197 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 18 \)
Sturm bound: \(2328480\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(4334))\).

Total New Old
Modular forms 586040 190799 395241
Cusp forms 578201 190799 387402
Eisenstein series 7839 0 7839

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(4334))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
4334.2.a \(\chi_{4334}(1, \cdot)\) 4334.2.a.a 15 1
4334.2.a.b 15
4334.2.a.c 17
4334.2.a.d 17
4334.2.a.e 24
4334.2.a.f 24
4334.2.a.g 26
4334.2.a.h 27
4334.2.c \(\chi_{4334}(3939, \cdot)\) n/a 166 1
4334.2.f \(\chi_{4334}(1759, \cdot)\) n/a 396 2
4334.2.g \(\chi_{4334}(1577, \cdot)\) n/a 784 4
4334.2.h \(\chi_{4334}(375, \cdot)\) n/a 984 6
4334.2.j \(\chi_{4334}(1181, \cdot)\) n/a 792 4
4334.2.m \(\chi_{4334}(881, \cdot)\) n/a 996 6
4334.2.o \(\chi_{4334}(183, \cdot)\) n/a 1584 8
4334.2.q \(\chi_{4334}(87, \cdot)\) n/a 2376 12
4334.2.s \(\chi_{4334}(191, \cdot)\) n/a 4752 24
4334.2.t \(\chi_{4334}(23, \cdot)\) n/a 6888 42
4334.2.v \(\chi_{4334}(93, \cdot)\) n/a 4752 24
4334.2.x \(\chi_{4334}(155, \cdot)\) n/a 6972 42
4334.2.bb \(\chi_{4334}(129, \cdot)\) n/a 9504 48
4334.2.bc \(\chi_{4334}(21, \cdot)\) n/a 16632 84
4334.2.be \(\chi_{4334}(37, \cdot)\) n/a 33264 168
4334.2.bh \(\chi_{4334}(9, \cdot)\) n/a 33264 168
4334.2.bj \(\chi_{4334}(13, \cdot)\) n/a 66528 336

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(4334))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(4334)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(22))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(197))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(394))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2167))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4334))\)\(^{\oplus 1}\)