Properties

Label 4332.2.a.t.1.5
Level $4332$
Weight $2$
Character 4332.1
Self dual yes
Analytic conductor $34.591$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4332,2,Mod(1,4332)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4332, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4332.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 4332 = 2^{2} \cdot 3 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4332.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,-6,0,3,0,9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(34.5911941556\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.73227321.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} - 18x^{4} + 27x^{3} + 96x^{2} - 48x - 127 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 228)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-2.32474\) of defining polynomial
Character \(\chi\) \(=\) 4332.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{3} +3.32474 q^{5} +1.19263 q^{7} +1.00000 q^{9} +1.29512 q^{11} +2.85683 q^{13} -3.32474 q^{15} -2.21885 q^{17} -1.19263 q^{21} +7.92884 q^{23} +6.05389 q^{25} -1.00000 q^{27} -4.48970 q^{29} +7.83427 q^{31} -1.29512 q^{33} +3.96517 q^{35} -7.86729 q^{37} -2.85683 q^{39} +8.06264 q^{41} -1.78889 q^{43} +3.32474 q^{45} +5.70881 q^{47} -5.57764 q^{49} +2.21885 q^{51} -6.31291 q^{53} +4.30594 q^{55} -7.89384 q^{59} +14.6331 q^{61} +1.19263 q^{63} +9.49821 q^{65} +4.58548 q^{67} -7.92884 q^{69} +4.18036 q^{71} +1.94679 q^{73} -6.05389 q^{75} +1.54460 q^{77} -6.20504 q^{79} +1.00000 q^{81} +7.83717 q^{83} -7.37709 q^{85} +4.48970 q^{87} -4.27972 q^{89} +3.40713 q^{91} -7.83427 q^{93} -2.53635 q^{97} +1.29512 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{3} + 3 q^{5} + 9 q^{7} + 6 q^{9} + 9 q^{11} - 9 q^{13} - 3 q^{15} + 9 q^{17} - 9 q^{21} + 12 q^{23} + 15 q^{25} - 6 q^{27} - 9 q^{29} + 6 q^{31} - 9 q^{33} - 3 q^{35} + 6 q^{37} + 9 q^{39} + 18 q^{41}+ \cdots + 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350
\(4\) 0 0
\(5\) 3.32474 1.48687 0.743434 0.668809i \(-0.233196\pi\)
0.743434 + 0.668809i \(0.233196\pi\)
\(6\) 0 0
\(7\) 1.19263 0.450770 0.225385 0.974270i \(-0.427636\pi\)
0.225385 + 0.974270i \(0.427636\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 1.29512 0.390494 0.195247 0.980754i \(-0.437449\pi\)
0.195247 + 0.980754i \(0.437449\pi\)
\(12\) 0 0
\(13\) 2.85683 0.792342 0.396171 0.918177i \(-0.370339\pi\)
0.396171 + 0.918177i \(0.370339\pi\)
\(14\) 0 0
\(15\) −3.32474 −0.858444
\(16\) 0 0
\(17\) −2.21885 −0.538150 −0.269075 0.963119i \(-0.586718\pi\)
−0.269075 + 0.963119i \(0.586718\pi\)
\(18\) 0 0
\(19\) 0 0
\(20\) 0 0
\(21\) −1.19263 −0.260252
\(22\) 0 0
\(23\) 7.92884 1.65328 0.826639 0.562733i \(-0.190250\pi\)
0.826639 + 0.562733i \(0.190250\pi\)
\(24\) 0 0
\(25\) 6.05389 1.21078
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) −4.48970 −0.833716 −0.416858 0.908972i \(-0.636869\pi\)
−0.416858 + 0.908972i \(0.636869\pi\)
\(30\) 0 0
\(31\) 7.83427 1.40708 0.703538 0.710657i \(-0.251602\pi\)
0.703538 + 0.710657i \(0.251602\pi\)
\(32\) 0 0
\(33\) −1.29512 −0.225452
\(34\) 0 0
\(35\) 3.96517 0.670236
\(36\) 0 0
\(37\) −7.86729 −1.29337 −0.646687 0.762755i \(-0.723846\pi\)
−0.646687 + 0.762755i \(0.723846\pi\)
\(38\) 0 0
\(39\) −2.85683 −0.457459
\(40\) 0 0
\(41\) 8.06264 1.25917 0.629586 0.776931i \(-0.283224\pi\)
0.629586 + 0.776931i \(0.283224\pi\)
\(42\) 0 0
\(43\) −1.78889 −0.272804 −0.136402 0.990654i \(-0.543554\pi\)
−0.136402 + 0.990654i \(0.543554\pi\)
\(44\) 0 0
\(45\) 3.32474 0.495623
\(46\) 0 0
\(47\) 5.70881 0.832716 0.416358 0.909201i \(-0.363306\pi\)
0.416358 + 0.909201i \(0.363306\pi\)
\(48\) 0 0
\(49\) −5.57764 −0.796806
\(50\) 0 0
\(51\) 2.21885 0.310701
\(52\) 0 0
\(53\) −6.31291 −0.867145 −0.433573 0.901119i \(-0.642747\pi\)
−0.433573 + 0.901119i \(0.642747\pi\)
\(54\) 0 0
\(55\) 4.30594 0.580613
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −7.89384 −1.02769 −0.513845 0.857883i \(-0.671779\pi\)
−0.513845 + 0.857883i \(0.671779\pi\)
\(60\) 0 0
\(61\) 14.6331 1.87358 0.936790 0.349893i \(-0.113782\pi\)
0.936790 + 0.349893i \(0.113782\pi\)
\(62\) 0 0
\(63\) 1.19263 0.150257
\(64\) 0 0
\(65\) 9.49821 1.17811
\(66\) 0 0
\(67\) 4.58548 0.560205 0.280103 0.959970i \(-0.409632\pi\)
0.280103 + 0.959970i \(0.409632\pi\)
\(68\) 0 0
\(69\) −7.92884 −0.954520
\(70\) 0 0
\(71\) 4.18036 0.496117 0.248058 0.968745i \(-0.420207\pi\)
0.248058 + 0.968745i \(0.420207\pi\)
\(72\) 0 0
\(73\) 1.94679 0.227854 0.113927 0.993489i \(-0.463657\pi\)
0.113927 + 0.993489i \(0.463657\pi\)
\(74\) 0 0
\(75\) −6.05389 −0.699043
\(76\) 0 0
\(77\) 1.54460 0.176023
\(78\) 0 0
\(79\) −6.20504 −0.698121 −0.349061 0.937100i \(-0.613499\pi\)
−0.349061 + 0.937100i \(0.613499\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 7.83717 0.860241 0.430120 0.902772i \(-0.358471\pi\)
0.430120 + 0.902772i \(0.358471\pi\)
\(84\) 0 0
\(85\) −7.37709 −0.800158
\(86\) 0 0
\(87\) 4.48970 0.481346
\(88\) 0 0
\(89\) −4.27972 −0.453650 −0.226825 0.973936i \(-0.572834\pi\)
−0.226825 + 0.973936i \(0.572834\pi\)
\(90\) 0 0
\(91\) 3.40713 0.357164
\(92\) 0 0
\(93\) −7.83427 −0.812376
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −2.53635 −0.257527 −0.128764 0.991675i \(-0.541101\pi\)
−0.128764 + 0.991675i \(0.541101\pi\)
\(98\) 0 0
\(99\) 1.29512 0.130165
\(100\) 0 0
\(101\) 12.4763 1.24144 0.620718 0.784034i \(-0.286841\pi\)
0.620718 + 0.784034i \(0.286841\pi\)
\(102\) 0 0
\(103\) 17.5778 1.73199 0.865997 0.500049i \(-0.166685\pi\)
0.865997 + 0.500049i \(0.166685\pi\)
\(104\) 0 0
\(105\) −3.96517 −0.386961
\(106\) 0 0
\(107\) −8.71759 −0.842761 −0.421381 0.906884i \(-0.638454\pi\)
−0.421381 + 0.906884i \(0.638454\pi\)
\(108\) 0 0
\(109\) −19.5311 −1.87074 −0.935372 0.353667i \(-0.884935\pi\)
−0.935372 + 0.353667i \(0.884935\pi\)
\(110\) 0 0
\(111\) 7.86729 0.746730
\(112\) 0 0
\(113\) 0.595683 0.0560372 0.0280186 0.999607i \(-0.491080\pi\)
0.0280186 + 0.999607i \(0.491080\pi\)
\(114\) 0 0
\(115\) 26.3613 2.45821
\(116\) 0 0
\(117\) 2.85683 0.264114
\(118\) 0 0
\(119\) −2.64626 −0.242582
\(120\) 0 0
\(121\) −9.32266 −0.847515
\(122\) 0 0
\(123\) −8.06264 −0.726983
\(124\) 0 0
\(125\) 3.50391 0.313400
\(126\) 0 0
\(127\) 9.78123 0.867944 0.433972 0.900926i \(-0.357112\pi\)
0.433972 + 0.900926i \(0.357112\pi\)
\(128\) 0 0
\(129\) 1.78889 0.157503
\(130\) 0 0
\(131\) −15.6461 −1.36700 −0.683502 0.729949i \(-0.739544\pi\)
−0.683502 + 0.729949i \(0.739544\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −3.32474 −0.286148
\(136\) 0 0
\(137\) −15.4793 −1.32249 −0.661243 0.750171i \(-0.729971\pi\)
−0.661243 + 0.750171i \(0.729971\pi\)
\(138\) 0 0
\(139\) 11.5448 0.979214 0.489607 0.871943i \(-0.337140\pi\)
0.489607 + 0.871943i \(0.337140\pi\)
\(140\) 0 0
\(141\) −5.70881 −0.480769
\(142\) 0 0
\(143\) 3.69994 0.309404
\(144\) 0 0
\(145\) −14.9271 −1.23963
\(146\) 0 0
\(147\) 5.57764 0.460036
\(148\) 0 0
\(149\) −23.3235 −1.91073 −0.955366 0.295425i \(-0.904539\pi\)
−0.955366 + 0.295425i \(0.904539\pi\)
\(150\) 0 0
\(151\) −3.39770 −0.276501 −0.138250 0.990397i \(-0.544148\pi\)
−0.138250 + 0.990397i \(0.544148\pi\)
\(152\) 0 0
\(153\) −2.21885 −0.179383
\(154\) 0 0
\(155\) 26.0469 2.09214
\(156\) 0 0
\(157\) −22.7640 −1.81676 −0.908381 0.418143i \(-0.862681\pi\)
−0.908381 + 0.418143i \(0.862681\pi\)
\(158\) 0 0
\(159\) 6.31291 0.500646
\(160\) 0 0
\(161\) 9.45614 0.745249
\(162\) 0 0
\(163\) −13.0725 −1.02392 −0.511960 0.859009i \(-0.671080\pi\)
−0.511960 + 0.859009i \(0.671080\pi\)
\(164\) 0 0
\(165\) −4.30594 −0.335217
\(166\) 0 0
\(167\) −15.1710 −1.17396 −0.586982 0.809600i \(-0.699684\pi\)
−0.586982 + 0.809600i \(0.699684\pi\)
\(168\) 0 0
\(169\) −4.83853 −0.372195
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 16.7006 1.26972 0.634861 0.772626i \(-0.281057\pi\)
0.634861 + 0.772626i \(0.281057\pi\)
\(174\) 0 0
\(175\) 7.22003 0.545783
\(176\) 0 0
\(177\) 7.89384 0.593337
\(178\) 0 0
\(179\) 13.6942 1.02356 0.511778 0.859118i \(-0.328987\pi\)
0.511778 + 0.859118i \(0.328987\pi\)
\(180\) 0 0
\(181\) 20.3687 1.51400 0.756998 0.653417i \(-0.226665\pi\)
0.756998 + 0.653417i \(0.226665\pi\)
\(182\) 0 0
\(183\) −14.6331 −1.08171
\(184\) 0 0
\(185\) −26.1567 −1.92308
\(186\) 0 0
\(187\) −2.87368 −0.210144
\(188\) 0 0
\(189\) −1.19263 −0.0867508
\(190\) 0 0
\(191\) 21.2065 1.53445 0.767224 0.641380i \(-0.221638\pi\)
0.767224 + 0.641380i \(0.221638\pi\)
\(192\) 0 0
\(193\) 14.0188 1.00910 0.504549 0.863383i \(-0.331659\pi\)
0.504549 + 0.863383i \(0.331659\pi\)
\(194\) 0 0
\(195\) −9.49821 −0.680181
\(196\) 0 0
\(197\) 5.68277 0.404880 0.202440 0.979295i \(-0.435113\pi\)
0.202440 + 0.979295i \(0.435113\pi\)
\(198\) 0 0
\(199\) 10.7421 0.761491 0.380745 0.924680i \(-0.375667\pi\)
0.380745 + 0.924680i \(0.375667\pi\)
\(200\) 0 0
\(201\) −4.58548 −0.323435
\(202\) 0 0
\(203\) −5.35453 −0.375814
\(204\) 0 0
\(205\) 26.8062 1.87222
\(206\) 0 0
\(207\) 7.92884 0.551092
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −20.1260 −1.38553 −0.692767 0.721162i \(-0.743609\pi\)
−0.692767 + 0.721162i \(0.743609\pi\)
\(212\) 0 0
\(213\) −4.18036 −0.286433
\(214\) 0 0
\(215\) −5.94760 −0.405623
\(216\) 0 0
\(217\) 9.34336 0.634269
\(218\) 0 0
\(219\) −1.94679 −0.131552
\(220\) 0 0
\(221\) −6.33887 −0.426398
\(222\) 0 0
\(223\) 3.39571 0.227394 0.113697 0.993515i \(-0.463731\pi\)
0.113697 + 0.993515i \(0.463731\pi\)
\(224\) 0 0
\(225\) 6.05389 0.403593
\(226\) 0 0
\(227\) 11.7293 0.778503 0.389251 0.921132i \(-0.372734\pi\)
0.389251 + 0.921132i \(0.372734\pi\)
\(228\) 0 0
\(229\) 7.83401 0.517686 0.258843 0.965919i \(-0.416659\pi\)
0.258843 + 0.965919i \(0.416659\pi\)
\(230\) 0 0
\(231\) −1.54460 −0.101627
\(232\) 0 0
\(233\) −2.74354 −0.179735 −0.0898677 0.995954i \(-0.528644\pi\)
−0.0898677 + 0.995954i \(0.528644\pi\)
\(234\) 0 0
\(235\) 18.9803 1.23814
\(236\) 0 0
\(237\) 6.20504 0.403060
\(238\) 0 0
\(239\) 17.0871 1.10527 0.552636 0.833423i \(-0.313622\pi\)
0.552636 + 0.833423i \(0.313622\pi\)
\(240\) 0 0
\(241\) 3.23596 0.208447 0.104223 0.994554i \(-0.466764\pi\)
0.104223 + 0.994554i \(0.466764\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) −18.5442 −1.18475
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −7.83717 −0.496660
\(250\) 0 0
\(251\) 6.61629 0.417616 0.208808 0.977957i \(-0.433042\pi\)
0.208808 + 0.977957i \(0.433042\pi\)
\(252\) 0 0
\(253\) 10.2688 0.645594
\(254\) 0 0
\(255\) 7.37709 0.461971
\(256\) 0 0
\(257\) 14.5749 0.909159 0.454579 0.890706i \(-0.349790\pi\)
0.454579 + 0.890706i \(0.349790\pi\)
\(258\) 0 0
\(259\) −9.38274 −0.583015
\(260\) 0 0
\(261\) −4.48970 −0.277905
\(262\) 0 0
\(263\) 9.82446 0.605802 0.302901 0.953022i \(-0.402045\pi\)
0.302901 + 0.953022i \(0.402045\pi\)
\(264\) 0 0
\(265\) −20.9888 −1.28933
\(266\) 0 0
\(267\) 4.27972 0.261915
\(268\) 0 0
\(269\) 21.6388 1.31934 0.659669 0.751556i \(-0.270696\pi\)
0.659669 + 0.751556i \(0.270696\pi\)
\(270\) 0 0
\(271\) −6.09081 −0.369990 −0.184995 0.982739i \(-0.559227\pi\)
−0.184995 + 0.982739i \(0.559227\pi\)
\(272\) 0 0
\(273\) −3.40713 −0.206209
\(274\) 0 0
\(275\) 7.84052 0.472801
\(276\) 0 0
\(277\) 16.2276 0.975023 0.487512 0.873116i \(-0.337905\pi\)
0.487512 + 0.873116i \(0.337905\pi\)
\(278\) 0 0
\(279\) 7.83427 0.469026
\(280\) 0 0
\(281\) 4.11893 0.245715 0.122857 0.992424i \(-0.460794\pi\)
0.122857 + 0.992424i \(0.460794\pi\)
\(282\) 0 0
\(283\) 26.9812 1.60387 0.801933 0.597414i \(-0.203805\pi\)
0.801933 + 0.597414i \(0.203805\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 9.61571 0.567598
\(288\) 0 0
\(289\) −12.0767 −0.710395
\(290\) 0 0
\(291\) 2.53635 0.148683
\(292\) 0 0
\(293\) 6.24794 0.365009 0.182504 0.983205i \(-0.441580\pi\)
0.182504 + 0.983205i \(0.441580\pi\)
\(294\) 0 0
\(295\) −26.2450 −1.52804
\(296\) 0 0
\(297\) −1.29512 −0.0751505
\(298\) 0 0
\(299\) 22.6513 1.30996
\(300\) 0 0
\(301\) −2.13348 −0.122972
\(302\) 0 0
\(303\) −12.4763 −0.716743
\(304\) 0 0
\(305\) 48.6513 2.78577
\(306\) 0 0
\(307\) −11.9806 −0.683769 −0.341885 0.939742i \(-0.611065\pi\)
−0.341885 + 0.939742i \(0.611065\pi\)
\(308\) 0 0
\(309\) −17.5778 −0.999967
\(310\) 0 0
\(311\) −9.08216 −0.515002 −0.257501 0.966278i \(-0.582899\pi\)
−0.257501 + 0.966278i \(0.582899\pi\)
\(312\) 0 0
\(313\) −16.5092 −0.933155 −0.466577 0.884480i \(-0.654513\pi\)
−0.466577 + 0.884480i \(0.654513\pi\)
\(314\) 0 0
\(315\) 3.96517 0.223412
\(316\) 0 0
\(317\) 19.4219 1.09084 0.545422 0.838161i \(-0.316369\pi\)
0.545422 + 0.838161i \(0.316369\pi\)
\(318\) 0 0
\(319\) −5.81470 −0.325561
\(320\) 0 0
\(321\) 8.71759 0.486568
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 17.2949 0.959350
\(326\) 0 0
\(327\) 19.5311 1.08007
\(328\) 0 0
\(329\) 6.80848 0.375364
\(330\) 0 0
\(331\) −14.9691 −0.822775 −0.411387 0.911461i \(-0.634956\pi\)
−0.411387 + 0.911461i \(0.634956\pi\)
\(332\) 0 0
\(333\) −7.86729 −0.431125
\(334\) 0 0
\(335\) 15.2455 0.832951
\(336\) 0 0
\(337\) 16.1502 0.879759 0.439879 0.898057i \(-0.355021\pi\)
0.439879 + 0.898057i \(0.355021\pi\)
\(338\) 0 0
\(339\) −0.595683 −0.0323531
\(340\) 0 0
\(341\) 10.1463 0.549454
\(342\) 0 0
\(343\) −15.0004 −0.809947
\(344\) 0 0
\(345\) −26.3613 −1.41925
\(346\) 0 0
\(347\) 31.8046 1.70736 0.853680 0.520798i \(-0.174366\pi\)
0.853680 + 0.520798i \(0.174366\pi\)
\(348\) 0 0
\(349\) −3.55421 −0.190252 −0.0951261 0.995465i \(-0.530325\pi\)
−0.0951261 + 0.995465i \(0.530325\pi\)
\(350\) 0 0
\(351\) −2.85683 −0.152486
\(352\) 0 0
\(353\) −31.4019 −1.67136 −0.835678 0.549219i \(-0.814925\pi\)
−0.835678 + 0.549219i \(0.814925\pi\)
\(354\) 0 0
\(355\) 13.8986 0.737661
\(356\) 0 0
\(357\) 2.64626 0.140055
\(358\) 0 0
\(359\) −16.9204 −0.893027 −0.446513 0.894777i \(-0.647335\pi\)
−0.446513 + 0.894777i \(0.647335\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) 0 0
\(363\) 9.32266 0.489313
\(364\) 0 0
\(365\) 6.47256 0.338789
\(366\) 0 0
\(367\) 9.50220 0.496011 0.248005 0.968759i \(-0.420225\pi\)
0.248005 + 0.968759i \(0.420225\pi\)
\(368\) 0 0
\(369\) 8.06264 0.419724
\(370\) 0 0
\(371\) −7.52895 −0.390883
\(372\) 0 0
\(373\) −23.3929 −1.21124 −0.605619 0.795755i \(-0.707074\pi\)
−0.605619 + 0.795755i \(0.707074\pi\)
\(374\) 0 0
\(375\) −3.50391 −0.180941
\(376\) 0 0
\(377\) −12.8263 −0.660587
\(378\) 0 0
\(379\) −22.1013 −1.13527 −0.567634 0.823281i \(-0.692141\pi\)
−0.567634 + 0.823281i \(0.692141\pi\)
\(380\) 0 0
\(381\) −9.78123 −0.501108
\(382\) 0 0
\(383\) 18.0824 0.923970 0.461985 0.886888i \(-0.347137\pi\)
0.461985 + 0.886888i \(0.347137\pi\)
\(384\) 0 0
\(385\) 5.13538 0.261723
\(386\) 0 0
\(387\) −1.78889 −0.0909346
\(388\) 0 0
\(389\) 33.8958 1.71859 0.859293 0.511484i \(-0.170904\pi\)
0.859293 + 0.511484i \(0.170904\pi\)
\(390\) 0 0
\(391\) −17.5929 −0.889711
\(392\) 0 0
\(393\) 15.6461 0.789240
\(394\) 0 0
\(395\) −20.6301 −1.03801
\(396\) 0 0
\(397\) −17.4561 −0.876096 −0.438048 0.898952i \(-0.644330\pi\)
−0.438048 + 0.898952i \(0.644330\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −32.9012 −1.64301 −0.821503 0.570205i \(-0.806864\pi\)
−0.821503 + 0.570205i \(0.806864\pi\)
\(402\) 0 0
\(403\) 22.3812 1.11489
\(404\) 0 0
\(405\) 3.32474 0.165208
\(406\) 0 0
\(407\) −10.1891 −0.505055
\(408\) 0 0
\(409\) 7.73471 0.382457 0.191228 0.981546i \(-0.438753\pi\)
0.191228 + 0.981546i \(0.438753\pi\)
\(410\) 0 0
\(411\) 15.4793 0.763538
\(412\) 0 0
\(413\) −9.41440 −0.463252
\(414\) 0 0
\(415\) 26.0565 1.27907
\(416\) 0 0
\(417\) −11.5448 −0.565350
\(418\) 0 0
\(419\) −26.4903 −1.29414 −0.647068 0.762432i \(-0.724005\pi\)
−0.647068 + 0.762432i \(0.724005\pi\)
\(420\) 0 0
\(421\) 10.5701 0.515153 0.257577 0.966258i \(-0.417076\pi\)
0.257577 + 0.966258i \(0.417076\pi\)
\(422\) 0 0
\(423\) 5.70881 0.277572
\(424\) 0 0
\(425\) −13.4327 −0.651580
\(426\) 0 0
\(427\) 17.4518 0.844554
\(428\) 0 0
\(429\) −3.69994 −0.178635
\(430\) 0 0
\(431\) 15.0543 0.725140 0.362570 0.931957i \(-0.381899\pi\)
0.362570 + 0.931957i \(0.381899\pi\)
\(432\) 0 0
\(433\) −38.8432 −1.86668 −0.933342 0.358989i \(-0.883122\pi\)
−0.933342 + 0.358989i \(0.883122\pi\)
\(434\) 0 0
\(435\) 14.9271 0.715698
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 1.01644 0.0485120 0.0242560 0.999706i \(-0.492278\pi\)
0.0242560 + 0.999706i \(0.492278\pi\)
\(440\) 0 0
\(441\) −5.57764 −0.265602
\(442\) 0 0
\(443\) −11.9863 −0.569485 −0.284742 0.958604i \(-0.591908\pi\)
−0.284742 + 0.958604i \(0.591908\pi\)
\(444\) 0 0
\(445\) −14.2290 −0.674517
\(446\) 0 0
\(447\) 23.3235 1.10316
\(448\) 0 0
\(449\) 31.4582 1.48460 0.742301 0.670066i \(-0.233734\pi\)
0.742301 + 0.670066i \(0.233734\pi\)
\(450\) 0 0
\(451\) 10.4421 0.491699
\(452\) 0 0
\(453\) 3.39770 0.159638
\(454\) 0 0
\(455\) 11.3278 0.531056
\(456\) 0 0
\(457\) −5.25795 −0.245956 −0.122978 0.992409i \(-0.539245\pi\)
−0.122978 + 0.992409i \(0.539245\pi\)
\(458\) 0 0
\(459\) 2.21885 0.103567
\(460\) 0 0
\(461\) 16.7782 0.781438 0.390719 0.920510i \(-0.372226\pi\)
0.390719 + 0.920510i \(0.372226\pi\)
\(462\) 0 0
\(463\) 9.46597 0.439921 0.219961 0.975509i \(-0.429407\pi\)
0.219961 + 0.975509i \(0.429407\pi\)
\(464\) 0 0
\(465\) −26.0469 −1.20790
\(466\) 0 0
\(467\) −18.5583 −0.858775 −0.429387 0.903120i \(-0.641270\pi\)
−0.429387 + 0.903120i \(0.641270\pi\)
\(468\) 0 0
\(469\) 5.46876 0.252524
\(470\) 0 0
\(471\) 22.7640 1.04891
\(472\) 0 0
\(473\) −2.31683 −0.106528
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −6.31291 −0.289048
\(478\) 0 0
\(479\) −7.21580 −0.329698 −0.164849 0.986319i \(-0.552714\pi\)
−0.164849 + 0.986319i \(0.552714\pi\)
\(480\) 0 0
\(481\) −22.4755 −1.02479
\(482\) 0 0
\(483\) −9.45614 −0.430269
\(484\) 0 0
\(485\) −8.43270 −0.382909
\(486\) 0 0
\(487\) 4.65410 0.210897 0.105449 0.994425i \(-0.466372\pi\)
0.105449 + 0.994425i \(0.466372\pi\)
\(488\) 0 0
\(489\) 13.0725 0.591160
\(490\) 0 0
\(491\) 3.97523 0.179399 0.0896997 0.995969i \(-0.471409\pi\)
0.0896997 + 0.995969i \(0.471409\pi\)
\(492\) 0 0
\(493\) 9.96195 0.448664
\(494\) 0 0
\(495\) 4.30594 0.193538
\(496\) 0 0
\(497\) 4.98560 0.223635
\(498\) 0 0
\(499\) 0.281073 0.0125826 0.00629129 0.999980i \(-0.497997\pi\)
0.00629129 + 0.999980i \(0.497997\pi\)
\(500\) 0 0
\(501\) 15.1710 0.677788
\(502\) 0 0
\(503\) 36.8744 1.64415 0.822074 0.569380i \(-0.192817\pi\)
0.822074 + 0.569380i \(0.192817\pi\)
\(504\) 0 0
\(505\) 41.4803 1.84585
\(506\) 0 0
\(507\) 4.83853 0.214887
\(508\) 0 0
\(509\) 26.0449 1.15442 0.577210 0.816596i \(-0.304141\pi\)
0.577210 + 0.816596i \(0.304141\pi\)
\(510\) 0 0
\(511\) 2.32179 0.102710
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 58.4417 2.57525
\(516\) 0 0
\(517\) 7.39360 0.325170
\(518\) 0 0
\(519\) −16.7006 −0.733074
\(520\) 0 0
\(521\) 9.94224 0.435577 0.217789 0.975996i \(-0.430116\pi\)
0.217789 + 0.975996i \(0.430116\pi\)
\(522\) 0 0
\(523\) −37.5695 −1.64280 −0.821399 0.570354i \(-0.806806\pi\)
−0.821399 + 0.570354i \(0.806806\pi\)
\(524\) 0 0
\(525\) −7.22003 −0.315108
\(526\) 0 0
\(527\) −17.3831 −0.757218
\(528\) 0 0
\(529\) 39.8665 1.73333
\(530\) 0 0
\(531\) −7.89384 −0.342563
\(532\) 0 0
\(533\) 23.0336 0.997695
\(534\) 0 0
\(535\) −28.9837 −1.25308
\(536\) 0 0
\(537\) −13.6942 −0.590950
\(538\) 0 0
\(539\) −7.22372 −0.311148
\(540\) 0 0
\(541\) −2.66625 −0.114631 −0.0573155 0.998356i \(-0.518254\pi\)
−0.0573155 + 0.998356i \(0.518254\pi\)
\(542\) 0 0
\(543\) −20.3687 −0.874106
\(544\) 0 0
\(545\) −64.9359 −2.78155
\(546\) 0 0
\(547\) −22.9448 −0.981048 −0.490524 0.871428i \(-0.663195\pi\)
−0.490524 + 0.871428i \(0.663195\pi\)
\(548\) 0 0
\(549\) 14.6331 0.624526
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −7.40029 −0.314692
\(554\) 0 0
\(555\) 26.1567 1.11029
\(556\) 0 0
\(557\) −7.30091 −0.309350 −0.154675 0.987965i \(-0.549433\pi\)
−0.154675 + 0.987965i \(0.549433\pi\)
\(558\) 0 0
\(559\) −5.11056 −0.216154
\(560\) 0 0
\(561\) 2.87368 0.121327
\(562\) 0 0
\(563\) 42.2689 1.78142 0.890712 0.454569i \(-0.150207\pi\)
0.890712 + 0.454569i \(0.150207\pi\)
\(564\) 0 0
\(565\) 1.98049 0.0833199
\(566\) 0 0
\(567\) 1.19263 0.0500856
\(568\) 0 0
\(569\) 15.0782 0.632112 0.316056 0.948741i \(-0.397641\pi\)
0.316056 + 0.948741i \(0.397641\pi\)
\(570\) 0 0
\(571\) −42.7731 −1.79000 −0.894998 0.446070i \(-0.852823\pi\)
−0.894998 + 0.446070i \(0.852823\pi\)
\(572\) 0 0
\(573\) −21.2065 −0.885914
\(574\) 0 0
\(575\) 48.0003 2.00175
\(576\) 0 0
\(577\) 23.2799 0.969153 0.484576 0.874749i \(-0.338974\pi\)
0.484576 + 0.874749i \(0.338974\pi\)
\(578\) 0 0
\(579\) −14.0188 −0.582603
\(580\) 0 0
\(581\) 9.34681 0.387771
\(582\) 0 0
\(583\) −8.17598 −0.338615
\(584\) 0 0
\(585\) 9.49821 0.392703
\(586\) 0 0
\(587\) 21.8768 0.902951 0.451475 0.892284i \(-0.350898\pi\)
0.451475 + 0.892284i \(0.350898\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) −5.68277 −0.233758
\(592\) 0 0
\(593\) −32.8159 −1.34759 −0.673794 0.738919i \(-0.735337\pi\)
−0.673794 + 0.738919i \(0.735337\pi\)
\(594\) 0 0
\(595\) −8.79811 −0.360687
\(596\) 0 0
\(597\) −10.7421 −0.439647
\(598\) 0 0
\(599\) −6.91197 −0.282415 −0.141208 0.989980i \(-0.545099\pi\)
−0.141208 + 0.989980i \(0.545099\pi\)
\(600\) 0 0
\(601\) −34.0010 −1.38693 −0.693465 0.720491i \(-0.743917\pi\)
−0.693465 + 0.720491i \(0.743917\pi\)
\(602\) 0 0
\(603\) 4.58548 0.186735
\(604\) 0 0
\(605\) −30.9954 −1.26014
\(606\) 0 0
\(607\) 21.1493 0.858424 0.429212 0.903204i \(-0.358791\pi\)
0.429212 + 0.903204i \(0.358791\pi\)
\(608\) 0 0
\(609\) 5.35453 0.216977
\(610\) 0 0
\(611\) 16.3091 0.659795
\(612\) 0 0
\(613\) −5.12714 −0.207083 −0.103542 0.994625i \(-0.533018\pi\)
−0.103542 + 0.994625i \(0.533018\pi\)
\(614\) 0 0
\(615\) −26.8062 −1.08093
\(616\) 0 0
\(617\) −27.2061 −1.09528 −0.547639 0.836715i \(-0.684473\pi\)
−0.547639 + 0.836715i \(0.684473\pi\)
\(618\) 0 0
\(619\) −11.4844 −0.461599 −0.230799 0.973001i \(-0.574134\pi\)
−0.230799 + 0.973001i \(0.574134\pi\)
\(620\) 0 0
\(621\) −7.92884 −0.318173
\(622\) 0 0
\(623\) −5.10411 −0.204492
\(624\) 0 0
\(625\) −18.6199 −0.744794
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 17.4563 0.696029
\(630\) 0 0
\(631\) 3.58436 0.142691 0.0713456 0.997452i \(-0.477271\pi\)
0.0713456 + 0.997452i \(0.477271\pi\)
\(632\) 0 0
\(633\) 20.1260 0.799938
\(634\) 0 0
\(635\) 32.5201 1.29052
\(636\) 0 0
\(637\) −15.9344 −0.631343
\(638\) 0 0
\(639\) 4.18036 0.165372
\(640\) 0 0
\(641\) 4.32078 0.170661 0.0853303 0.996353i \(-0.472805\pi\)
0.0853303 + 0.996353i \(0.472805\pi\)
\(642\) 0 0
\(643\) −18.2228 −0.718638 −0.359319 0.933215i \(-0.616991\pi\)
−0.359319 + 0.933215i \(0.616991\pi\)
\(644\) 0 0
\(645\) 5.94760 0.234187
\(646\) 0 0
\(647\) −26.4490 −1.03982 −0.519910 0.854221i \(-0.674034\pi\)
−0.519910 + 0.854221i \(0.674034\pi\)
\(648\) 0 0
\(649\) −10.2235 −0.401307
\(650\) 0 0
\(651\) −9.34336 −0.366195
\(652\) 0 0
\(653\) −0.870759 −0.0340754 −0.0170377 0.999855i \(-0.505424\pi\)
−0.0170377 + 0.999855i \(0.505424\pi\)
\(654\) 0 0
\(655\) −52.0191 −2.03255
\(656\) 0 0
\(657\) 1.94679 0.0759514
\(658\) 0 0
\(659\) 27.1262 1.05669 0.528343 0.849031i \(-0.322814\pi\)
0.528343 + 0.849031i \(0.322814\pi\)
\(660\) 0 0
\(661\) 3.16622 0.123152 0.0615759 0.998102i \(-0.480387\pi\)
0.0615759 + 0.998102i \(0.480387\pi\)
\(662\) 0 0
\(663\) 6.33887 0.246181
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −35.5981 −1.37836
\(668\) 0 0
\(669\) −3.39571 −0.131286
\(670\) 0 0
\(671\) 18.9517 0.731621
\(672\) 0 0
\(673\) −9.85403 −0.379845 −0.189922 0.981799i \(-0.560824\pi\)
−0.189922 + 0.981799i \(0.560824\pi\)
\(674\) 0 0
\(675\) −6.05389 −0.233014
\(676\) 0 0
\(677\) 0.495225 0.0190331 0.00951653 0.999955i \(-0.496971\pi\)
0.00951653 + 0.999955i \(0.496971\pi\)
\(678\) 0 0
\(679\) −3.02492 −0.116086
\(680\) 0 0
\(681\) −11.7293 −0.449469
\(682\) 0 0
\(683\) 11.8365 0.452910 0.226455 0.974022i \(-0.427286\pi\)
0.226455 + 0.974022i \(0.427286\pi\)
\(684\) 0 0
\(685\) −51.4647 −1.96636
\(686\) 0 0
\(687\) −7.83401 −0.298886
\(688\) 0 0
\(689\) −18.0349 −0.687075
\(690\) 0 0
\(691\) −18.2263 −0.693361 −0.346680 0.937983i \(-0.612691\pi\)
−0.346680 + 0.937983i \(0.612691\pi\)
\(692\) 0 0
\(693\) 1.54460 0.0586743
\(694\) 0 0
\(695\) 38.3833 1.45596
\(696\) 0 0
\(697\) −17.8898 −0.677623
\(698\) 0 0
\(699\) 2.74354 0.103770
\(700\) 0 0
\(701\) 16.5291 0.624297 0.312149 0.950033i \(-0.398951\pi\)
0.312149 + 0.950033i \(0.398951\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) −18.9803 −0.714840
\(706\) 0 0
\(707\) 14.8795 0.559602
\(708\) 0 0
\(709\) −18.8344 −0.707339 −0.353670 0.935370i \(-0.615066\pi\)
−0.353670 + 0.935370i \(0.615066\pi\)
\(710\) 0 0
\(711\) −6.20504 −0.232707
\(712\) 0 0
\(713\) 62.1167 2.32629
\(714\) 0 0
\(715\) 12.3013 0.460044
\(716\) 0 0
\(717\) −17.0871 −0.638129
\(718\) 0 0
\(719\) −35.5596 −1.32615 −0.663075 0.748553i \(-0.730749\pi\)
−0.663075 + 0.748553i \(0.730749\pi\)
\(720\) 0 0
\(721\) 20.9638 0.780732
\(722\) 0 0
\(723\) −3.23596 −0.120347
\(724\) 0 0
\(725\) −27.1801 −1.00944
\(726\) 0 0
\(727\) −9.17253 −0.340190 −0.170095 0.985428i \(-0.554408\pi\)
−0.170095 + 0.985428i \(0.554408\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 3.96928 0.146809
\(732\) 0 0
\(733\) 11.5404 0.426256 0.213128 0.977024i \(-0.431635\pi\)
0.213128 + 0.977024i \(0.431635\pi\)
\(734\) 0 0
\(735\) 18.5442 0.684013
\(736\) 0 0
\(737\) 5.93875 0.218757
\(738\) 0 0
\(739\) −9.67212 −0.355795 −0.177897 0.984049i \(-0.556929\pi\)
−0.177897 + 0.984049i \(0.556929\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −23.4040 −0.858609 −0.429304 0.903160i \(-0.641241\pi\)
−0.429304 + 0.903160i \(0.641241\pi\)
\(744\) 0 0
\(745\) −77.5444 −2.84101
\(746\) 0 0
\(747\) 7.83717 0.286747
\(748\) 0 0
\(749\) −10.3968 −0.379892
\(750\) 0 0
\(751\) −2.76855 −0.101026 −0.0505129 0.998723i \(-0.516086\pi\)
−0.0505129 + 0.998723i \(0.516086\pi\)
\(752\) 0 0
\(753\) −6.61629 −0.241111
\(754\) 0 0
\(755\) −11.2965 −0.411120
\(756\) 0 0
\(757\) −22.3062 −0.810734 −0.405367 0.914154i \(-0.632856\pi\)
−0.405367 + 0.914154i \(0.632856\pi\)
\(758\) 0 0
\(759\) −10.2688 −0.372734
\(760\) 0 0
\(761\) −0.666605 −0.0241644 −0.0120822 0.999927i \(-0.503846\pi\)
−0.0120822 + 0.999927i \(0.503846\pi\)
\(762\) 0 0
\(763\) −23.2933 −0.843276
\(764\) 0 0
\(765\) −7.37709 −0.266719
\(766\) 0 0
\(767\) −22.5513 −0.814282
\(768\) 0 0
\(769\) −19.6883 −0.709979 −0.354990 0.934870i \(-0.615516\pi\)
−0.354990 + 0.934870i \(0.615516\pi\)
\(770\) 0 0
\(771\) −14.5749 −0.524903
\(772\) 0 0
\(773\) −49.3759 −1.77593 −0.887964 0.459913i \(-0.847881\pi\)
−0.887964 + 0.459913i \(0.847881\pi\)
\(774\) 0 0
\(775\) 47.4278 1.70366
\(776\) 0 0
\(777\) 9.38274 0.336604
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 5.41407 0.193731
\(782\) 0 0
\(783\) 4.48970 0.160449
\(784\) 0 0
\(785\) −75.6842 −2.70129
\(786\) 0 0
\(787\) −41.8546 −1.49196 −0.745978 0.665971i \(-0.768018\pi\)
−0.745978 + 0.665971i \(0.768018\pi\)
\(788\) 0 0
\(789\) −9.82446 −0.349760
\(790\) 0 0
\(791\) 0.710428 0.0252599
\(792\) 0 0
\(793\) 41.8043 1.48451
\(794\) 0 0
\(795\) 20.9888 0.744396
\(796\) 0 0
\(797\) 50.2358 1.77944 0.889722 0.456503i \(-0.150898\pi\)
0.889722 + 0.456503i \(0.150898\pi\)
\(798\) 0 0
\(799\) −12.6670 −0.448126
\(800\) 0 0
\(801\) −4.27972 −0.151217
\(802\) 0 0
\(803\) 2.52133 0.0889757
\(804\) 0 0
\(805\) 31.4392 1.10809
\(806\) 0 0
\(807\) −21.6388 −0.761720
\(808\) 0 0
\(809\) 9.83965 0.345944 0.172972 0.984927i \(-0.444663\pi\)
0.172972 + 0.984927i \(0.444663\pi\)
\(810\) 0 0
\(811\) −28.6378 −1.00561 −0.502804 0.864400i \(-0.667698\pi\)
−0.502804 + 0.864400i \(0.667698\pi\)
\(812\) 0 0
\(813\) 6.09081 0.213614
\(814\) 0 0
\(815\) −43.4628 −1.52243
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 3.40713 0.119055
\(820\) 0 0
\(821\) −47.4389 −1.65563 −0.827814 0.561002i \(-0.810416\pi\)
−0.827814 + 0.561002i \(0.810416\pi\)
\(822\) 0 0
\(823\) 40.5906 1.41490 0.707450 0.706764i \(-0.249846\pi\)
0.707450 + 0.706764i \(0.249846\pi\)
\(824\) 0 0
\(825\) −7.84052 −0.272972
\(826\) 0 0
\(827\) −1.85364 −0.0644572 −0.0322286 0.999481i \(-0.510260\pi\)
−0.0322286 + 0.999481i \(0.510260\pi\)
\(828\) 0 0
\(829\) −30.9535 −1.07506 −0.537529 0.843245i \(-0.680642\pi\)
−0.537529 + 0.843245i \(0.680642\pi\)
\(830\) 0 0
\(831\) −16.2276 −0.562930
\(832\) 0 0
\(833\) 12.3759 0.428801
\(834\) 0 0
\(835\) −50.4395 −1.74553
\(836\) 0 0
\(837\) −7.83427 −0.270792
\(838\) 0 0
\(839\) 31.3791 1.08333 0.541663 0.840596i \(-0.317795\pi\)
0.541663 + 0.840596i \(0.317795\pi\)
\(840\) 0 0
\(841\) −8.84263 −0.304918
\(842\) 0 0
\(843\) −4.11893 −0.141863
\(844\) 0 0
\(845\) −16.0869 −0.553405
\(846\) 0 0
\(847\) −11.1185 −0.382035
\(848\) 0 0
\(849\) −26.9812 −0.925992
\(850\) 0 0
\(851\) −62.3785 −2.13831
\(852\) 0 0
\(853\) 28.3884 0.972000 0.486000 0.873959i \(-0.338455\pi\)
0.486000 + 0.873959i \(0.338455\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −6.50306 −0.222140 −0.111070 0.993813i \(-0.535428\pi\)
−0.111070 + 0.993813i \(0.535428\pi\)
\(858\) 0 0
\(859\) −16.3745 −0.558690 −0.279345 0.960191i \(-0.590117\pi\)
−0.279345 + 0.960191i \(0.590117\pi\)
\(860\) 0 0
\(861\) −9.61571 −0.327703
\(862\) 0 0
\(863\) −49.1283 −1.67235 −0.836174 0.548465i \(-0.815212\pi\)
−0.836174 + 0.548465i \(0.815212\pi\)
\(864\) 0 0
\(865\) 55.5251 1.88791
\(866\) 0 0
\(867\) 12.0767 0.410147
\(868\) 0 0
\(869\) −8.03627 −0.272612
\(870\) 0 0
\(871\) 13.0999 0.443874
\(872\) 0 0
\(873\) −2.53635 −0.0858425
\(874\) 0 0
\(875\) 4.17886 0.141271
\(876\) 0 0
\(877\) −12.9036 −0.435725 −0.217862 0.975979i \(-0.569908\pi\)
−0.217862 + 0.975979i \(0.569908\pi\)
\(878\) 0 0
\(879\) −6.24794 −0.210738
\(880\) 0 0
\(881\) −37.2780 −1.25593 −0.627965 0.778242i \(-0.716112\pi\)
−0.627965 + 0.778242i \(0.716112\pi\)
\(882\) 0 0
\(883\) 7.76349 0.261262 0.130631 0.991431i \(-0.458300\pi\)
0.130631 + 0.991431i \(0.458300\pi\)
\(884\) 0 0
\(885\) 26.2450 0.882215
\(886\) 0 0
\(887\) −41.1272 −1.38092 −0.690459 0.723372i \(-0.742591\pi\)
−0.690459 + 0.723372i \(0.742591\pi\)
\(888\) 0 0
\(889\) 11.6654 0.391244
\(890\) 0 0
\(891\) 1.29512 0.0433882
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 45.5298 1.52189
\(896\) 0 0
\(897\) −22.6513 −0.756306
\(898\) 0 0
\(899\) −35.1735 −1.17310
\(900\) 0 0
\(901\) 14.0074 0.466654
\(902\) 0 0
\(903\) 2.13348 0.0709978
\(904\) 0 0
\(905\) 67.7207 2.25111
\(906\) 0 0
\(907\) −33.3465 −1.10725 −0.553627 0.832765i \(-0.686757\pi\)
−0.553627 + 0.832765i \(0.686757\pi\)
\(908\) 0 0
\(909\) 12.4763 0.413812
\(910\) 0 0
\(911\) 26.6721 0.883687 0.441844 0.897092i \(-0.354325\pi\)
0.441844 + 0.897092i \(0.354325\pi\)
\(912\) 0 0
\(913\) 10.1501 0.335919
\(914\) 0 0
\(915\) −48.6513 −1.60836
\(916\) 0 0
\(917\) −18.6599 −0.616205
\(918\) 0 0
\(919\) −2.99901 −0.0989283 −0.0494642 0.998776i \(-0.515751\pi\)
−0.0494642 + 0.998776i \(0.515751\pi\)
\(920\) 0 0
\(921\) 11.9806 0.394774
\(922\) 0 0
\(923\) 11.9426 0.393094
\(924\) 0 0
\(925\) −47.6277 −1.56599
\(926\) 0 0
\(927\) 17.5778 0.577331
\(928\) 0 0
\(929\) −6.72762 −0.220726 −0.110363 0.993891i \(-0.535201\pi\)
−0.110363 + 0.993891i \(0.535201\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 9.08216 0.297336
\(934\) 0 0
\(935\) −9.55422 −0.312457
\(936\) 0 0
\(937\) −15.7325 −0.513959 −0.256980 0.966417i \(-0.582727\pi\)
−0.256980 + 0.966417i \(0.582727\pi\)
\(938\) 0 0
\(939\) 16.5092 0.538757
\(940\) 0 0
\(941\) 4.78821 0.156091 0.0780456 0.996950i \(-0.475132\pi\)
0.0780456 + 0.996950i \(0.475132\pi\)
\(942\) 0 0
\(943\) 63.9274 2.08176
\(944\) 0 0
\(945\) −3.96517 −0.128987
\(946\) 0 0
\(947\) −29.8160 −0.968889 −0.484444 0.874822i \(-0.660978\pi\)
−0.484444 + 0.874822i \(0.660978\pi\)
\(948\) 0 0
\(949\) 5.56164 0.180538
\(950\) 0 0
\(951\) −19.4219 −0.629799
\(952\) 0 0
\(953\) −4.19741 −0.135968 −0.0679838 0.997686i \(-0.521657\pi\)
−0.0679838 + 0.997686i \(0.521657\pi\)
\(954\) 0 0
\(955\) 70.5060 2.28152
\(956\) 0 0
\(957\) 5.81470 0.187963
\(958\) 0 0
\(959\) −18.4610 −0.596138
\(960\) 0 0
\(961\) 30.3758 0.979865
\(962\) 0 0
\(963\) −8.71759 −0.280920
\(964\) 0 0
\(965\) 46.6089 1.50040
\(966\) 0 0
\(967\) 8.25806 0.265561 0.132781 0.991145i \(-0.457609\pi\)
0.132781 + 0.991145i \(0.457609\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 12.1186 0.388904 0.194452 0.980912i \(-0.437707\pi\)
0.194452 + 0.980912i \(0.437707\pi\)
\(972\) 0 0
\(973\) 13.7686 0.441401
\(974\) 0 0
\(975\) −17.2949 −0.553881
\(976\) 0 0
\(977\) 29.6313 0.947989 0.473994 0.880528i \(-0.342812\pi\)
0.473994 + 0.880528i \(0.342812\pi\)
\(978\) 0 0
\(979\) −5.54276 −0.177147
\(980\) 0 0
\(981\) −19.5311 −0.623581
\(982\) 0 0
\(983\) 35.8389 1.14308 0.571541 0.820574i \(-0.306346\pi\)
0.571541 + 0.820574i \(0.306346\pi\)
\(984\) 0 0
\(985\) 18.8937 0.602004
\(986\) 0 0
\(987\) −6.80848 −0.216716
\(988\) 0 0
\(989\) −14.1838 −0.451020
\(990\) 0 0
\(991\) −14.3032 −0.454355 −0.227178 0.973853i \(-0.572950\pi\)
−0.227178 + 0.973853i \(0.572950\pi\)
\(992\) 0 0
\(993\) 14.9691 0.475029
\(994\) 0 0
\(995\) 35.7148 1.13224
\(996\) 0 0
\(997\) −2.60633 −0.0825434 −0.0412717 0.999148i \(-0.513141\pi\)
−0.0412717 + 0.999148i \(0.513141\pi\)
\(998\) 0 0
\(999\) 7.86729 0.248910
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4332.2.a.t.1.5 6
19.9 even 9 228.2.q.b.157.2 yes 12
19.17 even 9 228.2.q.b.61.2 12
19.18 odd 2 4332.2.a.u.1.5 6
57.17 odd 18 684.2.bo.e.289.1 12
57.47 odd 18 684.2.bo.e.613.1 12
76.47 odd 18 912.2.bo.g.385.2 12
76.55 odd 18 912.2.bo.g.289.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
228.2.q.b.61.2 12 19.17 even 9
228.2.q.b.157.2 yes 12 19.9 even 9
684.2.bo.e.289.1 12 57.17 odd 18
684.2.bo.e.613.1 12 57.47 odd 18
912.2.bo.g.289.2 12 76.55 odd 18
912.2.bo.g.385.2 12 76.47 odd 18
4332.2.a.t.1.5 6 1.1 even 1 trivial
4332.2.a.u.1.5 6 19.18 odd 2