Defining parameters
Level: | \( N \) | \(=\) | \( 4332 = 2^{2} \cdot 3 \cdot 19^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 4332.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 21 \) | ||
Sturm bound: | \(1520\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(5\), \(7\), \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(4332))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 820 | 56 | 764 |
Cusp forms | 701 | 56 | 645 |
Eisenstein series | 119 | 0 | 119 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(19\) | Fricke | Dim. |
---|---|---|---|---|
\(-\) | \(+\) | \(+\) | \(-\) | \(13\) |
\(-\) | \(+\) | \(-\) | \(+\) | \(15\) |
\(-\) | \(-\) | \(+\) | \(+\) | \(10\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(18\) |
Plus space | \(+\) | \(25\) | ||
Minus space | \(-\) | \(31\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(4332))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(4332))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(4332)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(38))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(57))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(76))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(114))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(228))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(361))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(722))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1083))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1444))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2166))\)\(^{\oplus 2}\)