Properties

Label 684.2.bo.e.289.1
Level $684$
Weight $2$
Character 684.289
Analytic conductor $5.462$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [684,2,Mod(73,684)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(684, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("684.73"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 684 = 2^{2} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 684.bo (of order \(9\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,6,0,-9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.46176749826\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{9})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 3 x^{11} + 27 x^{10} + 309 x^{8} + 42 x^{7} + 2059 x^{6} + 1245 x^{5} + 8226 x^{4} + \cdots + 16129 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 228)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 289.1
Root \(2.42841 - 4.20614i\) of defining polynomial
Character \(\chi\) \(=\) 684.289
Dual form 684.2.bo.e.613.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.54690 + 2.13710i) q^{5} +(-0.596313 + 1.03284i) q^{7} +(0.647560 + 1.12161i) q^{11} +(0.496083 - 2.81343i) q^{13} +(-2.08503 - 0.758891i) q^{17} +(-2.84913 - 3.29886i) q^{19} +(-6.07384 - 5.09656i) q^{23} +(1.05125 - 5.96192i) q^{25} +(-4.21893 + 1.53557i) q^{29} +(-3.91714 + 6.78468i) q^{31} +(-0.688545 - 3.90493i) q^{35} -7.86729 q^{37} +(-1.40006 - 7.94015i) q^{41} +(-1.37037 + 1.14988i) q^{43} +(5.36453 - 1.95253i) q^{47} +(2.78882 + 4.83038i) q^{49} +(4.83597 + 4.05786i) q^{53} +(-4.04626 - 1.47272i) q^{55} +(-7.41778 - 2.69985i) q^{59} +(11.2096 + 9.40599i) q^{61} +(4.74910 + 8.22569i) q^{65} +(-4.30894 + 1.56833i) q^{67} +(-3.20234 + 2.68708i) q^{71} +(0.338056 + 1.91721i) q^{73} -1.54460 q^{77} +(-1.07749 - 6.11077i) q^{79} +(3.91858 - 6.78719i) q^{83} +(6.93220 - 2.52311i) q^{85} +(0.743166 - 4.21470i) q^{89} +(2.61001 + 2.19006i) q^{91} +(14.3064 + 2.31298i) q^{95} +(2.38339 + 0.867483i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 6 q^{5} - 9 q^{7} + 9 q^{11} - 3 q^{13} - 12 q^{17} + 9 q^{19} - 15 q^{23} + 12 q^{25} + 24 q^{29} - 6 q^{31} + 42 q^{35} + 12 q^{37} - 6 q^{41} - 39 q^{43} + 3 q^{47} - 21 q^{49} - 18 q^{53} + 45 q^{55}+ \cdots - 15 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/684\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(343\) \(533\)
\(\chi(n)\) \(e\left(\frac{1}{9}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −2.54690 + 2.13710i −1.13901 + 0.955741i −0.999406 0.0344670i \(-0.989027\pi\)
−0.139602 + 0.990208i \(0.544582\pi\)
\(6\) 0 0
\(7\) −0.596313 + 1.03284i −0.225385 + 0.390379i −0.956435 0.291946i \(-0.905697\pi\)
0.731050 + 0.682324i \(0.239031\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.647560 + 1.12161i 0.195247 + 0.338177i 0.946981 0.321288i \(-0.104116\pi\)
−0.751735 + 0.659466i \(0.770783\pi\)
\(12\) 0 0
\(13\) 0.496083 2.81343i 0.137589 0.780304i −0.835433 0.549592i \(-0.814783\pi\)
0.973022 0.230712i \(-0.0741056\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −2.08503 0.758891i −0.505695 0.184058i 0.0765586 0.997065i \(-0.475607\pi\)
−0.582254 + 0.813007i \(0.697829\pi\)
\(18\) 0 0
\(19\) −2.84913 3.29886i −0.653635 0.756810i
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −6.07384 5.09656i −1.26648 1.06271i −0.994960 0.100275i \(-0.968028\pi\)
−0.271524 0.962432i \(-0.587528\pi\)
\(24\) 0 0
\(25\) 1.05125 5.96192i 0.210249 1.19238i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −4.21893 + 1.53557i −0.783436 + 0.285148i −0.702605 0.711580i \(-0.747980\pi\)
−0.0808315 + 0.996728i \(0.525758\pi\)
\(30\) 0 0
\(31\) −3.91714 + 6.78468i −0.703538 + 1.21856i 0.263678 + 0.964611i \(0.415064\pi\)
−0.967216 + 0.253953i \(0.918269\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −0.688545 3.90493i −0.116385 0.660054i
\(36\) 0 0
\(37\) −7.86729 −1.29337 −0.646687 0.762755i \(-0.723846\pi\)
−0.646687 + 0.762755i \(0.723846\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −1.40006 7.94015i −0.218653 1.24004i −0.874454 0.485109i \(-0.838780\pi\)
0.655801 0.754934i \(-0.272331\pi\)
\(42\) 0 0
\(43\) −1.37037 + 1.14988i −0.208980 + 0.175355i −0.741270 0.671207i \(-0.765776\pi\)
0.532290 + 0.846562i \(0.321332\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 5.36453 1.95253i 0.782497 0.284806i 0.0802834 0.996772i \(-0.474417\pi\)
0.702213 + 0.711967i \(0.252195\pi\)
\(48\) 0 0
\(49\) 2.78882 + 4.83038i 0.398403 + 0.690054i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 4.83597 + 4.05786i 0.664272 + 0.557390i 0.911364 0.411602i \(-0.135031\pi\)
−0.247092 + 0.968992i \(0.579475\pi\)
\(54\) 0 0
\(55\) −4.04626 1.47272i −0.545598 0.198581i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −7.41778 2.69985i −0.965713 0.351491i −0.189443 0.981892i \(-0.560668\pi\)
−0.776270 + 0.630401i \(0.782891\pi\)
\(60\) 0 0
\(61\) 11.2096 + 9.40599i 1.43524 + 1.20431i 0.942529 + 0.334123i \(0.108440\pi\)
0.492715 + 0.870190i \(0.336004\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 4.74910 + 8.22569i 0.589054 + 1.02027i
\(66\) 0 0
\(67\) −4.30894 + 1.56833i −0.526421 + 0.191601i −0.591539 0.806276i \(-0.701480\pi\)
0.0651188 + 0.997878i \(0.479257\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −3.20234 + 2.68708i −0.380048 + 0.318898i −0.812721 0.582653i \(-0.802015\pi\)
0.432674 + 0.901551i \(0.357570\pi\)
\(72\) 0 0
\(73\) 0.338056 + 1.91721i 0.0395665 + 0.224393i 0.998179 0.0603212i \(-0.0192125\pi\)
−0.958613 + 0.284714i \(0.908101\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −1.54460 −0.176023
\(78\) 0 0
\(79\) −1.07749 6.11077i −0.121227 0.687515i −0.983477 0.181032i \(-0.942056\pi\)
0.862250 0.506483i \(-0.169055\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 3.91858 6.78719i 0.430120 0.744990i −0.566763 0.823881i \(-0.691804\pi\)
0.996883 + 0.0788906i \(0.0251378\pi\)
\(84\) 0 0
\(85\) 6.93220 2.52311i 0.751902 0.273670i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0.743166 4.21470i 0.0787754 0.446758i −0.919752 0.392501i \(-0.871610\pi\)
0.998527 0.0542567i \(-0.0172789\pi\)
\(90\) 0 0
\(91\) 2.61001 + 2.19006i 0.273604 + 0.229581i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 14.3064 + 2.31298i 1.46781 + 0.237307i
\(96\) 0 0
\(97\) 2.38339 + 0.867483i 0.241997 + 0.0880795i 0.460171 0.887830i \(-0.347788\pi\)
−0.218175 + 0.975910i \(0.570010\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −2.16648 + 12.2867i −0.215573 + 1.22257i 0.664337 + 0.747434i \(0.268714\pi\)
−0.879910 + 0.475141i \(0.842397\pi\)
\(102\) 0 0
\(103\) −8.78891 15.2228i −0.865997 1.49995i −0.866054 0.499951i \(-0.833351\pi\)
5.70163e−5 1.00000i \(-0.499982\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −4.35879 + 7.54965i −0.421381 + 0.729853i −0.996075 0.0885157i \(-0.971788\pi\)
0.574694 + 0.818368i \(0.305121\pi\)
\(108\) 0 0
\(109\) −14.9617 + 12.5544i −1.43307 + 1.20249i −0.489204 + 0.872170i \(0.662713\pi\)
−0.943869 + 0.330321i \(0.892843\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −0.595683 −0.0560372 −0.0280186 0.999607i \(-0.508920\pi\)
−0.0280186 + 0.999607i \(0.508920\pi\)
\(114\) 0 0
\(115\) 26.3613 2.45821
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 2.02715 1.70098i 0.185829 0.155929i
\(120\) 0 0
\(121\) 4.66133 8.07366i 0.423757 0.733969i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.75196 + 3.03448i 0.156700 + 0.271412i
\(126\) 0 0
\(127\) 1.69849 9.63264i 0.150717 0.854758i −0.811881 0.583823i \(-0.801556\pi\)
0.962598 0.270935i \(-0.0873328\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −14.7025 5.35127i −1.28456 0.467543i −0.392624 0.919699i \(-0.628433\pi\)
−0.891939 + 0.452156i \(0.850655\pi\)
\(132\) 0 0
\(133\) 5.10618 0.975555i 0.442762 0.0845913i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 11.8578 + 9.94991i 1.01308 + 0.850078i 0.988743 0.149625i \(-0.0478068\pi\)
0.0243410 + 0.999704i \(0.492251\pi\)
\(138\) 0 0
\(139\) 2.00473 11.3694i 0.170039 0.964338i −0.773677 0.633580i \(-0.781585\pi\)
0.943716 0.330758i \(-0.107304\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 3.47680 1.26545i 0.290745 0.105823i
\(144\) 0 0
\(145\) 7.46353 12.9272i 0.619813 1.07355i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 4.05008 + 22.9691i 0.331795 + 1.88170i 0.456835 + 0.889552i \(0.348983\pi\)
−0.125040 + 0.992152i \(0.539906\pi\)
\(150\) 0 0
\(151\) −3.39770 −0.276501 −0.138250 0.990397i \(-0.544148\pi\)
−0.138250 + 0.990397i \(0.544148\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −4.52300 25.6512i −0.363296 2.06035i
\(156\) 0 0
\(157\) −17.4382 + 14.6324i −1.39172 + 1.16779i −0.427083 + 0.904213i \(0.640459\pi\)
−0.964638 + 0.263580i \(0.915097\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 8.88587 3.23419i 0.700305 0.254890i
\(162\) 0 0
\(163\) 6.53627 + 11.3211i 0.511960 + 0.886741i 0.999904 + 0.0138657i \(0.00441372\pi\)
−0.487944 + 0.872875i \(0.662253\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 11.6216 + 9.75170i 0.899308 + 0.754609i 0.970055 0.242885i \(-0.0780938\pi\)
−0.0707468 + 0.997494i \(0.522538\pi\)
\(168\) 0 0
\(169\) 4.54673 + 1.65488i 0.349749 + 0.127298i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 15.6934 + 5.71194i 1.19315 + 0.434271i 0.860828 0.508896i \(-0.169946\pi\)
0.332321 + 0.943167i \(0.392168\pi\)
\(174\) 0 0
\(175\) 5.53086 + 4.64095i 0.418094 + 0.350823i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 6.84712 + 11.8596i 0.511778 + 0.886425i 0.999907 + 0.0136533i \(0.00434612\pi\)
−0.488129 + 0.872771i \(0.662321\pi\)
\(180\) 0 0
\(181\) −19.1404 + 6.96652i −1.42269 + 0.517817i −0.934827 0.355102i \(-0.884446\pi\)
−0.487864 + 0.872920i \(0.662224\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 20.0372 16.8132i 1.47316 1.23613i
\(186\) 0 0
\(187\) −0.499009 2.83002i −0.0364911 0.206951i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −21.2065 −1.53445 −0.767224 0.641380i \(-0.778362\pi\)
−0.767224 + 0.641380i \(0.778362\pi\)
\(192\) 0 0
\(193\) 2.43434 + 13.8059i 0.175228 + 0.993767i 0.937880 + 0.346958i \(0.112786\pi\)
−0.762653 + 0.646808i \(0.776103\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 2.84138 4.92142i 0.202440 0.350637i −0.746874 0.664966i \(-0.768446\pi\)
0.949314 + 0.314329i \(0.101780\pi\)
\(198\) 0 0
\(199\) −10.0943 + 3.67403i −0.715567 + 0.260445i −0.674043 0.738692i \(-0.735444\pi\)
−0.0415244 + 0.999137i \(0.513221\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0.929804 5.27318i 0.0652595 0.370105i
\(204\) 0 0
\(205\) 20.5347 + 17.2307i 1.43421 + 1.20344i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1.85504 5.33181i 0.128316 0.368809i
\(210\) 0 0
\(211\) 18.9123 + 6.88351i 1.30198 + 0.473880i 0.897640 0.440730i \(-0.145280\pi\)
0.404336 + 0.914610i \(0.367503\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 1.03279 5.85725i 0.0704357 0.399461i
\(216\) 0 0
\(217\) −4.67168 8.09159i −0.317134 0.549293i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −3.16943 + 5.48962i −0.213199 + 0.369272i
\(222\) 0 0
\(223\) 2.60127 2.18272i 0.174194 0.146166i −0.551523 0.834160i \(-0.685953\pi\)
0.725716 + 0.687994i \(0.241508\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −11.7293 −0.778503 −0.389251 0.921132i \(-0.627266\pi\)
−0.389251 + 0.921132i \(0.627266\pi\)
\(228\) 0 0
\(229\) 7.83401 0.517686 0.258843 0.965919i \(-0.416659\pi\)
0.258843 + 0.965919i \(0.416659\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 2.10168 1.76352i 0.137685 0.115532i −0.571344 0.820711i \(-0.693578\pi\)
0.709029 + 0.705179i \(0.249133\pi\)
\(234\) 0 0
\(235\) −9.49015 + 16.4374i −0.619069 + 1.07226i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 8.54354 + 14.7978i 0.552636 + 0.957193i 0.998083 + 0.0618851i \(0.0197112\pi\)
−0.445448 + 0.895308i \(0.646955\pi\)
\(240\) 0 0
\(241\) 0.561919 3.18680i 0.0361964 0.205280i −0.961346 0.275342i \(-0.911209\pi\)
0.997543 + 0.0700625i \(0.0223199\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −17.4259 6.34249i −1.11330 0.405207i
\(246\) 0 0
\(247\) −10.6945 + 6.37931i −0.680475 + 0.405906i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −5.06837 4.25287i −0.319913 0.268439i 0.468662 0.883378i \(-0.344736\pi\)
−0.788575 + 0.614939i \(0.789181\pi\)
\(252\) 0 0
\(253\) 1.78316 10.1128i 0.112106 0.635786i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 13.6959 4.98492i 0.854330 0.310951i 0.122525 0.992465i \(-0.460901\pi\)
0.731804 + 0.681515i \(0.238678\pi\)
\(258\) 0 0
\(259\) 4.69137 8.12569i 0.291507 0.504906i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −1.70600 9.67520i −0.105196 0.596598i −0.991142 0.132809i \(-0.957600\pi\)
0.885945 0.463790i \(-0.153511\pi\)
\(264\) 0 0
\(265\) −20.9888 −1.28933
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −3.75753 21.3100i −0.229101 1.29929i −0.854689 0.519141i \(-0.826252\pi\)
0.625588 0.780154i \(-0.284859\pi\)
\(270\) 0 0
\(271\) −4.66583 + 3.91509i −0.283429 + 0.237825i −0.773407 0.633910i \(-0.781449\pi\)
0.489978 + 0.871735i \(0.337005\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 7.36768 2.68162i 0.444288 0.161708i
\(276\) 0 0
\(277\) −8.11381 14.0535i −0.487512 0.844395i 0.512385 0.858756i \(-0.328762\pi\)
−0.999897 + 0.0143607i \(0.995429\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −3.15528 2.64760i −0.188228 0.157942i 0.543804 0.839212i \(-0.316984\pi\)
−0.732032 + 0.681270i \(0.761428\pi\)
\(282\) 0 0
\(283\) −25.3540 9.22811i −1.50714 0.548554i −0.549242 0.835663i \(-0.685084\pi\)
−0.957898 + 0.287109i \(0.907306\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 9.03582 + 3.28877i 0.533367 + 0.194130i
\(288\) 0 0
\(289\) −9.25130 7.76276i −0.544194 0.456633i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 3.12397 + 5.41088i 0.182504 + 0.316107i 0.942733 0.333549i \(-0.108246\pi\)
−0.760228 + 0.649656i \(0.774913\pi\)
\(294\) 0 0
\(295\) 24.6622 8.97630i 1.43589 0.522621i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −17.3519 + 14.5600i −1.00349 + 0.842026i
\(300\) 0 0
\(301\) −0.370475 2.10107i −0.0213538 0.121104i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −48.6513 −2.78577
\(306\) 0 0
\(307\) −2.08041 11.7986i −0.118735 0.673381i −0.984833 0.173506i \(-0.944490\pi\)
0.866098 0.499875i \(-0.166621\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −4.54108 + 7.86538i −0.257501 + 0.446005i −0.965572 0.260137i \(-0.916232\pi\)
0.708071 + 0.706141i \(0.249566\pi\)
\(312\) 0 0
\(313\) 15.5136 5.64648i 0.876878 0.319158i 0.135929 0.990719i \(-0.456598\pi\)
0.740949 + 0.671561i \(0.234376\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −3.37258 + 19.1269i −0.189423 + 1.07427i 0.730716 + 0.682681i \(0.239186\pi\)
−0.920139 + 0.391591i \(0.871925\pi\)
\(318\) 0 0
\(319\) −4.45432 3.73762i −0.249394 0.209266i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 3.43706 + 9.04041i 0.191243 + 0.503022i
\(324\) 0 0
\(325\) −16.2519 5.91521i −0.901494 0.328117i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −1.18228 + 6.70504i −0.0651812 + 0.369661i
\(330\) 0 0
\(331\) 7.48454 + 12.9636i 0.411387 + 0.712544i 0.995042 0.0994585i \(-0.0317110\pi\)
−0.583654 + 0.812002i \(0.698378\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 7.62276 13.2030i 0.416476 0.721357i
\(336\) 0 0
\(337\) 12.3718 10.3812i 0.673934 0.565498i −0.240293 0.970700i \(-0.577243\pi\)
0.914227 + 0.405203i \(0.132799\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −10.1463 −0.549454
\(342\) 0 0
\(343\) −15.0004 −0.809947
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −24.3637 + 20.4436i −1.30791 + 1.09747i −0.319194 + 0.947689i \(0.603412\pi\)
−0.988719 + 0.149780i \(0.952143\pi\)
\(348\) 0 0
\(349\) 1.77710 3.07803i 0.0951261 0.164763i −0.814535 0.580114i \(-0.803008\pi\)
0.909661 + 0.415351i \(0.136341\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −15.7010 27.1949i −0.835678 1.44744i −0.893477 0.449109i \(-0.851741\pi\)
0.0577986 0.998328i \(-0.481592\pi\)
\(354\) 0 0
\(355\) 2.41347 13.6874i 0.128093 0.726454i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −15.9000 5.78713i −0.839171 0.305433i −0.113554 0.993532i \(-0.536223\pi\)
−0.725617 + 0.688099i \(0.758446\pi\)
\(360\) 0 0
\(361\) −2.76493 + 18.7977i −0.145523 + 0.989355i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −4.95827 4.16048i −0.259528 0.217770i
\(366\) 0 0
\(367\) 1.65004 9.35784i 0.0861314 0.488475i −0.910975 0.412461i \(-0.864669\pi\)
0.997107 0.0760144i \(-0.0242195\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −7.07490 + 2.57505i −0.367310 + 0.133690i
\(372\) 0 0
\(373\) 11.6964 20.2588i 0.605619 1.04896i −0.386334 0.922359i \(-0.626259\pi\)
0.991953 0.126604i \(-0.0404078\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 2.22726 + 12.6314i 0.114710 + 0.650552i
\(378\) 0 0
\(379\) −22.1013 −1.13527 −0.567634 0.823281i \(-0.692141\pi\)
−0.567634 + 0.823281i \(0.692141\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −3.13998 17.8077i −0.160446 0.909932i −0.953637 0.300960i \(-0.902693\pi\)
0.793191 0.608973i \(-0.208418\pi\)
\(384\) 0 0
\(385\) 3.93393 3.30096i 0.200492 0.168232i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 31.8516 11.5930i 1.61494 0.587791i 0.632533 0.774533i \(-0.282015\pi\)
0.982409 + 0.186742i \(0.0597929\pi\)
\(390\) 0 0
\(391\) 8.79644 + 15.2359i 0.444855 + 0.770512i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 15.8036 + 13.2608i 0.795165 + 0.667223i
\(396\) 0 0
\(397\) 16.4034 + 5.97033i 0.823261 + 0.299642i 0.719090 0.694917i \(-0.244559\pi\)
0.104171 + 0.994559i \(0.466781\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −30.9170 11.2529i −1.54392 0.561941i −0.576938 0.816788i \(-0.695753\pi\)
−0.966981 + 0.254847i \(0.917975\pi\)
\(402\) 0 0
\(403\) 17.1450 + 14.3863i 0.854052 + 0.716634i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −5.09455 8.82401i −0.252527 0.437390i
\(408\) 0 0
\(409\) −7.26825 + 2.64543i −0.359392 + 0.130808i −0.515404 0.856947i \(-0.672358\pi\)
0.156013 + 0.987755i \(0.450136\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 7.21185 6.05146i 0.354872 0.297773i
\(414\) 0 0
\(415\) 4.52467 + 25.6607i 0.222107 + 1.25963i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 26.4903 1.29414 0.647068 0.762432i \(-0.275995\pi\)
0.647068 + 0.762432i \(0.275995\pi\)
\(420\) 0 0
\(421\) 1.83547 + 10.4095i 0.0894554 + 0.507327i 0.996306 + 0.0858746i \(0.0273684\pi\)
−0.906851 + 0.421452i \(0.861520\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −6.71633 + 11.6330i −0.325790 + 0.564285i
\(426\) 0 0
\(427\) −16.3994 + 5.96888i −0.793621 + 0.288855i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −2.61415 + 14.8256i −0.125919 + 0.714123i 0.854838 + 0.518894i \(0.173656\pi\)
−0.980758 + 0.195229i \(0.937455\pi\)
\(432\) 0 0
\(433\) −29.7556 24.9679i −1.42996 1.19988i −0.945735 0.324939i \(-0.894656\pi\)
−0.484228 0.874942i \(-0.660899\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0.492330 + 34.5575i 0.0235513 + 1.65311i
\(438\) 0 0
\(439\) −0.955140 0.347643i −0.0455864 0.0165921i 0.319126 0.947712i \(-0.396611\pi\)
−0.364713 + 0.931120i \(0.618833\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 2.08139 11.8042i 0.0988900 0.560833i −0.894596 0.446876i \(-0.852536\pi\)
0.993486 0.113957i \(-0.0363525\pi\)
\(444\) 0 0
\(445\) 7.11448 + 12.3226i 0.337259 + 0.584149i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 15.7291 27.2436i 0.742301 1.28570i −0.209144 0.977885i \(-0.567068\pi\)
0.951445 0.307818i \(-0.0995989\pi\)
\(450\) 0 0
\(451\) 7.99910 6.71205i 0.376663 0.316058i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −11.3278 −0.531056
\(456\) 0 0
\(457\) −5.25795 −0.245956 −0.122978 0.992409i \(-0.539245\pi\)
−0.122978 + 0.992409i \(0.539245\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −12.8528 + 10.7848i −0.598616 + 0.502299i −0.891001 0.454002i \(-0.849996\pi\)
0.292384 + 0.956301i \(0.405551\pi\)
\(462\) 0 0
\(463\) −4.73299 + 8.19777i −0.219961 + 0.380983i −0.954796 0.297263i \(-0.903926\pi\)
0.734835 + 0.678246i \(0.237260\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −9.27914 16.0719i −0.429387 0.743721i 0.567432 0.823421i \(-0.307937\pi\)
−0.996819 + 0.0796999i \(0.974604\pi\)
\(468\) 0 0
\(469\) 0.949640 5.38568i 0.0438503 0.248687i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −2.17711 0.792404i −0.100104 0.0364348i
\(474\) 0 0
\(475\) −22.6627 + 13.5184i −1.03983 + 0.620265i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 5.52763 + 4.63823i 0.252564 + 0.211926i 0.760275 0.649601i \(-0.225064\pi\)
−0.507712 + 0.861527i \(0.669508\pi\)
\(480\) 0 0
\(481\) −3.90283 + 22.1340i −0.177954 + 1.00923i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −7.92415 + 2.88415i −0.359817 + 0.130963i
\(486\) 0 0
\(487\) −2.32705 + 4.03057i −0.105449 + 0.182642i −0.913921 0.405891i \(-0.866961\pi\)
0.808473 + 0.588534i \(0.200295\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −0.690291 3.91483i −0.0311524 0.176674i 0.965262 0.261285i \(-0.0841463\pi\)
−0.996414 + 0.0846112i \(0.973035\pi\)
\(492\) 0 0
\(493\) 9.96195 0.448664
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −0.865741 4.90986i −0.0388338 0.220237i
\(498\) 0 0
\(499\) 0.215315 0.180670i 0.00963881 0.00808792i −0.637955 0.770073i \(-0.720220\pi\)
0.647594 + 0.761985i \(0.275775\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 34.6506 12.6118i 1.54499 0.562332i 0.577757 0.816208i \(-0.303928\pi\)
0.967237 + 0.253877i \(0.0817057\pi\)
\(504\) 0 0
\(505\) −20.7402 35.9230i −0.922925 1.59855i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −19.9516 16.7413i −0.884338 0.742047i 0.0827287 0.996572i \(-0.473636\pi\)
−0.967066 + 0.254525i \(0.918081\pi\)
\(510\) 0 0
\(511\) −2.18177 0.794099i −0.0965158 0.0351289i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 54.9172 + 19.9882i 2.41994 + 0.880786i
\(516\) 0 0
\(517\) 5.66383 + 4.75252i 0.249095 + 0.209015i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 4.97112 + 8.61023i 0.217789 + 0.377221i 0.954132 0.299387i \(-0.0967823\pi\)
−0.736343 + 0.676608i \(0.763449\pi\)
\(522\) 0 0
\(523\) 35.3037 12.8495i 1.54373 0.561870i 0.576790 0.816892i \(-0.304305\pi\)
0.966935 + 0.255022i \(0.0820829\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 13.3162 11.1736i 0.580062 0.486730i
\(528\) 0 0
\(529\) 6.92275 + 39.2608i 0.300989 + 1.70699i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −23.0336 −0.997695
\(534\) 0 0
\(535\) −5.03297 28.5434i −0.217594 1.23404i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −3.61186 + 6.25593i −0.155574 + 0.269462i
\(540\) 0 0
\(541\) 2.50545 0.911911i 0.107718 0.0392061i −0.287599 0.957751i \(-0.592857\pi\)
0.395317 + 0.918545i \(0.370635\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 11.2760 63.9494i 0.483011 2.73929i
\(546\) 0 0
\(547\) −17.5767 14.7486i −0.751526 0.630605i 0.184380 0.982855i \(-0.440972\pi\)
−0.935906 + 0.352250i \(0.885417\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 17.0859 + 9.54264i 0.727884 + 0.406530i
\(552\) 0 0
\(553\) 6.95400 + 2.53105i 0.295714 + 0.107631i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 1.26779 7.18999i 0.0537180 0.304650i −0.946097 0.323883i \(-0.895011\pi\)
0.999815 + 0.0192335i \(0.00612259\pi\)
\(558\) 0 0
\(559\) 2.55528 + 4.42588i 0.108077 + 0.187195i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 21.1345 36.6060i 0.890712 1.54276i 0.0516876 0.998663i \(-0.483540\pi\)
0.839024 0.544094i \(-0.183127\pi\)
\(564\) 0 0
\(565\) 1.51714 1.27304i 0.0638268 0.0535570i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −15.0782 −0.632112 −0.316056 0.948741i \(-0.602359\pi\)
−0.316056 + 0.948741i \(0.602359\pi\)
\(570\) 0 0
\(571\) −42.7731 −1.79000 −0.894998 0.446070i \(-0.852823\pi\)
−0.894998 + 0.446070i \(0.852823\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −36.7704 + 30.8540i −1.53343 + 1.28670i
\(576\) 0 0
\(577\) −11.6399 + 20.1609i −0.484576 + 0.839311i −0.999843 0.0177189i \(-0.994360\pi\)
0.515267 + 0.857030i \(0.327693\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 4.67341 + 8.09458i 0.193886 + 0.335820i
\(582\) 0 0
\(583\) −1.41974 + 8.05177i −0.0587998 + 0.333470i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 20.5574 + 7.48229i 0.848496 + 0.308827i 0.729427 0.684059i \(-0.239787\pi\)
0.119069 + 0.992886i \(0.462009\pi\)
\(588\) 0 0
\(589\) 33.5421 6.40834i 1.38208 0.264051i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 25.1385 + 21.0937i 1.03231 + 0.866213i 0.991124 0.132938i \(-0.0424411\pi\)
0.0411885 + 0.999151i \(0.486886\pi\)
\(594\) 0 0
\(595\) −1.52778 + 8.66445i −0.0626327 + 0.355208i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −6.49512 + 2.36403i −0.265384 + 0.0965917i −0.471285 0.881981i \(-0.656210\pi\)
0.205901 + 0.978573i \(0.433987\pi\)
\(600\) 0 0
\(601\) 17.0005 29.4457i 0.693465 1.20112i −0.277231 0.960803i \(-0.589417\pi\)
0.970696 0.240313i \(-0.0772500\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 5.38230 + 30.5245i 0.218822 + 1.24100i
\(606\) 0 0
\(607\) 21.1493 0.858424 0.429212 0.903204i \(-0.358791\pi\)
0.429212 + 0.903204i \(0.358791\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −2.83204 16.0613i −0.114572 0.649772i
\(612\) 0 0
\(613\) −3.92762 + 3.29566i −0.158635 + 0.133111i −0.718650 0.695372i \(-0.755240\pi\)
0.560015 + 0.828482i \(0.310795\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −25.5654 + 9.30504i −1.02922 + 0.374607i −0.800785 0.598951i \(-0.795584\pi\)
−0.228439 + 0.973558i \(0.573362\pi\)
\(618\) 0 0
\(619\) 5.74222 + 9.94582i 0.230799 + 0.399756i 0.958044 0.286623i \(-0.0925326\pi\)
−0.727244 + 0.686379i \(0.759199\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 3.90997 + 3.28086i 0.156650 + 0.131445i
\(624\) 0 0
\(625\) 17.4969 + 6.36837i 0.699878 + 0.254735i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 16.4036 + 5.97041i 0.654053 + 0.238056i
\(630\) 0 0
\(631\) 2.74578 + 2.30398i 0.109308 + 0.0917201i 0.695803 0.718232i \(-0.255048\pi\)
−0.586496 + 0.809952i \(0.699493\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 16.2600 + 28.1632i 0.645259 + 1.11762i
\(636\) 0 0
\(637\) 14.9734 5.44987i 0.593268 0.215932i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −3.30991 + 2.77734i −0.130734 + 0.109698i −0.705810 0.708401i \(-0.749417\pi\)
0.575076 + 0.818100i \(0.304972\pi\)
\(642\) 0 0
\(643\) −3.16436 17.9460i −0.124790 0.707720i −0.981432 0.191809i \(-0.938565\pi\)
0.856642 0.515911i \(-0.172547\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 26.4490 1.03982 0.519910 0.854221i \(-0.325966\pi\)
0.519910 + 0.854221i \(0.325966\pi\)
\(648\) 0 0
\(649\) −1.77529 10.0682i −0.0696862 0.395210i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −0.435379 + 0.754099i −0.0170377 + 0.0295102i −0.874419 0.485172i \(-0.838757\pi\)
0.857381 + 0.514683i \(0.172090\pi\)
\(654\) 0 0
\(655\) 48.8820 17.7916i 1.90998 0.695175i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −4.71041 + 26.7141i −0.183492 + 1.04063i 0.744387 + 0.667749i \(0.232742\pi\)
−0.927878 + 0.372884i \(0.878369\pi\)
\(660\) 0 0
\(661\) 2.42547 + 2.03521i 0.0943398 + 0.0791605i 0.688738 0.725011i \(-0.258165\pi\)
−0.594398 + 0.804171i \(0.702610\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −10.9201 + 13.3971i −0.423462 + 0.519516i
\(666\) 0 0
\(667\) 33.4513 + 12.1753i 1.29524 + 0.471428i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −3.29092 + 18.6637i −0.127045 + 0.720506i
\(672\) 0 0
\(673\) 4.92701 + 8.53384i 0.189922 + 0.328955i 0.945224 0.326422i \(-0.105843\pi\)
−0.755302 + 0.655377i \(0.772510\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 0.247613 0.428878i 0.00951653 0.0164831i −0.861228 0.508219i \(-0.830304\pi\)
0.870744 + 0.491736i \(0.163637\pi\)
\(678\) 0 0
\(679\) −2.31722 + 1.94438i −0.0889268 + 0.0746185i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −11.8365 −0.452910 −0.226455 0.974022i \(-0.572714\pi\)
−0.226455 + 0.974022i \(0.572714\pi\)
\(684\) 0 0
\(685\) −51.4647 −1.96636
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 13.8155 11.5926i 0.526330 0.441643i
\(690\) 0 0
\(691\) 9.11315 15.7844i 0.346680 0.600468i −0.638977 0.769226i \(-0.720642\pi\)
0.985658 + 0.168758i \(0.0539755\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 19.1917 + 33.2409i 0.727982 + 1.26090i
\(696\) 0 0
\(697\) −3.10652 + 17.6180i −0.117668 + 0.667328i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 15.5323 + 5.65330i 0.586648 + 0.213522i 0.618254 0.785978i \(-0.287840\pi\)
−0.0316067 + 0.999500i \(0.510062\pi\)
\(702\) 0 0
\(703\) 22.4149 + 25.9531i 0.845395 + 0.978839i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −11.3984 9.56438i −0.428680 0.359705i
\(708\) 0 0
\(709\) −3.27055 + 18.5482i −0.122828 + 0.696593i 0.859746 + 0.510722i \(0.170622\pi\)
−0.982574 + 0.185871i \(0.940489\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 58.3706 21.2452i 2.18600 0.795637i
\(714\) 0 0
\(715\) −6.15066 + 10.6533i −0.230022 + 0.398409i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 6.17486 + 35.0194i 0.230283 + 1.30600i 0.852323 + 0.523016i \(0.175193\pi\)
−0.622039 + 0.782986i \(0.713696\pi\)
\(720\) 0 0
\(721\) 20.9638 0.780732
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 4.71978 + 26.7672i 0.175288 + 0.994109i
\(726\) 0 0
\(727\) −7.02657 + 5.89599i −0.260601 + 0.218670i −0.763721 0.645546i \(-0.776630\pi\)
0.503120 + 0.864216i \(0.332185\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 3.72990 1.35757i 0.137955 0.0502117i
\(732\) 0 0
\(733\) −5.77022 9.99431i −0.213128 0.369148i 0.739564 0.673086i \(-0.235032\pi\)
−0.952692 + 0.303938i \(0.901698\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −4.54934 3.81735i −0.167577 0.140614i
\(738\) 0 0
\(739\) 9.08882 + 3.30806i 0.334338 + 0.121689i 0.503733 0.863859i \(-0.331959\pi\)
−0.169396 + 0.985548i \(0.554182\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −21.9925 8.00463i −0.806828 0.293662i −0.0945153 0.995523i \(-0.530130\pi\)
−0.712313 + 0.701862i \(0.752352\pi\)
\(744\) 0 0
\(745\) −59.4025 49.8446i −2.17634 1.82616i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −5.19841 9.00392i −0.189946 0.328996i
\(750\) 0 0
\(751\) 2.60159 0.946900i 0.0949332 0.0345529i −0.294117 0.955769i \(-0.595026\pi\)
0.389050 + 0.921217i \(0.372803\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 8.65359 7.26123i 0.314936 0.264263i
\(756\) 0 0
\(757\) −3.87344 21.9673i −0.140782 0.798417i −0.970657 0.240467i \(-0.922699\pi\)
0.829875 0.557950i \(-0.188412\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0.666605 0.0241644 0.0120822 0.999927i \(-0.496154\pi\)
0.0120822 + 0.999927i \(0.496154\pi\)
\(762\) 0 0
\(763\) −4.04485 22.9395i −0.146433 0.830464i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −11.2757 + 19.5300i −0.407141 + 0.705189i
\(768\) 0 0
\(769\) 18.5010 6.73381i 0.667162 0.242827i 0.0138367 0.999904i \(-0.495595\pi\)
0.653326 + 0.757077i \(0.273373\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 8.57404 48.6258i 0.308387 1.74895i −0.298733 0.954337i \(-0.596564\pi\)
0.607119 0.794611i \(-0.292325\pi\)
\(774\) 0 0
\(775\) 36.3318 + 30.4860i 1.30508 + 1.09509i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −22.2045 + 27.2411i −0.795558 + 0.976014i
\(780\) 0 0
\(781\) −5.08756 1.85172i −0.182047 0.0662597i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 13.1424 74.5344i 0.469073 2.66025i
\(786\) 0 0
\(787\) 20.9273 + 36.2472i 0.745978 + 1.29207i 0.949737 + 0.313050i \(0.101351\pi\)
−0.203759 + 0.979021i \(0.565316\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0.355214 0.615248i 0.0126300 0.0218757i
\(792\) 0 0
\(793\) 32.0240 26.8713i 1.13720 0.954228i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −50.2358 −1.77944 −0.889722 0.456503i \(-0.849102\pi\)
−0.889722 + 0.456503i \(0.849102\pi\)
\(798\) 0 0
\(799\) −12.6670 −0.448126
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −1.93145 + 1.62068i −0.0681593 + 0.0571925i
\(804\) 0 0
\(805\) −15.7196 + 27.2272i −0.554043 + 0.959631i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 4.91982 + 8.52138i 0.172972 + 0.299596i 0.939458 0.342665i \(-0.111330\pi\)
−0.766486 + 0.642261i \(0.777996\pi\)
\(810\) 0 0
\(811\) −4.97290 + 28.2027i −0.174622 + 0.990331i 0.763957 + 0.645267i \(0.223254\pi\)
−0.938579 + 0.345064i \(0.887857\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −40.8416 14.8651i −1.43062 0.520703i
\(816\) 0 0
\(817\) 7.69765 + 1.24451i 0.269307 + 0.0435399i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 36.3403 + 30.4931i 1.26829 + 1.06422i 0.994748 + 0.102356i \(0.0326381\pi\)
0.273537 + 0.961861i \(0.411806\pi\)
\(822\) 0 0
\(823\) 7.04848 39.9739i 0.245695 1.39340i −0.573179 0.819430i \(-0.694290\pi\)
0.818874 0.573974i \(-0.194599\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −1.74185 + 0.633981i −0.0605700 + 0.0220457i −0.372127 0.928182i \(-0.621372\pi\)
0.311557 + 0.950227i \(0.399149\pi\)
\(828\) 0 0
\(829\) 15.4767 26.8065i 0.537529 0.931028i −0.461507 0.887136i \(-0.652691\pi\)
0.999036 0.0438911i \(-0.0139755\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −2.14906 12.1879i −0.0744605 0.422286i
\(834\) 0 0
\(835\) −50.4395 −1.74553
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −5.44892 30.9024i −0.188118 1.06687i −0.921884 0.387466i \(-0.873350\pi\)
0.733766 0.679402i \(-0.237761\pi\)
\(840\) 0 0
\(841\) −6.77385 + 5.68394i −0.233581 + 0.195998i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −15.1167 + 5.50203i −0.520030 + 0.189276i
\(846\) 0 0
\(847\) 5.55923 + 9.62886i 0.191017 + 0.330852i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 47.7847 + 40.0961i 1.63804 + 1.37448i
\(852\) 0 0
\(853\) −26.6764 9.70940i −0.913381 0.332444i −0.157779 0.987474i \(-0.550433\pi\)
−0.755602 + 0.655031i \(0.772656\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −6.11088 2.22418i −0.208744 0.0759765i 0.235532 0.971867i \(-0.424317\pi\)
−0.444276 + 0.895890i \(0.646539\pi\)
\(858\) 0 0
\(859\) −12.5436 10.5253i −0.427982 0.359119i 0.403208 0.915108i \(-0.367895\pi\)
−0.831190 + 0.555989i \(0.812340\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −24.5642 42.5464i −0.836174 1.44829i −0.893071 0.449915i \(-0.851454\pi\)
0.0568979 0.998380i \(-0.481879\pi\)
\(864\) 0 0
\(865\) −52.1765 + 18.9907i −1.77406 + 0.645703i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 6.15614 5.16562i 0.208833 0.175232i
\(870\) 0 0
\(871\) 2.27478 + 12.9009i 0.0770779 + 0.437130i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −4.17886 −0.141271
\(876\) 0 0
\(877\) −2.24069 12.7076i −0.0756628 0.429105i −0.998984 0.0450756i \(-0.985647\pi\)
0.923321 0.384030i \(-0.125464\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −18.6390 + 32.2837i −0.627965 + 1.08767i 0.359995 + 0.932954i \(0.382778\pi\)
−0.987960 + 0.154712i \(0.950555\pi\)
\(882\) 0 0
\(883\) −7.29529 + 2.65527i −0.245506 + 0.0893570i −0.461842 0.886962i \(-0.652811\pi\)
0.216336 + 0.976319i \(0.430589\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 7.14167 40.5024i 0.239794 1.35994i −0.592485 0.805581i \(-0.701853\pi\)
0.832279 0.554357i \(-0.187036\pi\)
\(888\) 0 0
\(889\) 8.93618 + 7.49835i 0.299710 + 0.251487i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −21.7253 12.1338i −0.727011 0.406043i
\(894\) 0 0
\(895\) −42.7840 15.5721i −1.43011 0.520518i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 6.10781 34.6391i 0.203707 1.15528i
\(900\) 0 0
\(901\) −7.00369 12.1308i −0.233327 0.404134i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 33.8604 58.6479i 1.12556 1.94952i
\(906\) 0 0
\(907\) −25.5449 + 21.4347i −0.848206 + 0.711729i −0.959394 0.282070i \(-0.908979\pi\)
0.111188 + 0.993799i \(0.464534\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −26.6721 −0.883687 −0.441844 0.897092i \(-0.645675\pi\)
−0.441844 + 0.897092i \(0.645675\pi\)
\(912\) 0 0
\(913\) 10.1501 0.335919
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 14.2943 11.9944i 0.472040 0.396089i
\(918\) 0 0
\(919\) 1.49951 2.59722i 0.0494642 0.0856745i −0.840233 0.542225i \(-0.817582\pi\)
0.889697 + 0.456551i \(0.150915\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 5.97128 + 10.3426i 0.196547 + 0.340429i
\(924\) 0 0
\(925\) −8.27047 + 46.9041i −0.271931 + 1.54220i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −6.32189 2.30098i −0.207415 0.0754927i 0.236224 0.971699i \(-0.424090\pi\)
−0.443638 + 0.896206i \(0.646312\pi\)
\(930\) 0 0
\(931\) 7.98903 22.9623i 0.261830 0.752559i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 7.31896 + 6.14134i 0.239356 + 0.200843i
\(936\) 0 0
\(937\) −2.73192 + 15.4935i −0.0892481 + 0.506151i 0.907111 + 0.420892i \(0.138283\pi\)
−0.996359 + 0.0852590i \(0.972828\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 4.49945 1.63766i 0.146678 0.0533864i −0.267638 0.963520i \(-0.586243\pi\)
0.414316 + 0.910133i \(0.364021\pi\)
\(942\) 0 0
\(943\) −31.9637 + 55.3627i −1.04088 + 1.80286i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 5.17749 + 29.3630i 0.168246 + 0.954169i 0.945654 + 0.325173i \(0.105423\pi\)
−0.777409 + 0.628996i \(0.783466\pi\)
\(948\) 0 0
\(949\) 5.56164 0.180538
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0.728873 + 4.13365i 0.0236105 + 0.133902i 0.994335 0.106295i \(-0.0338989\pi\)
−0.970724 + 0.240197i \(0.922788\pi\)
\(954\) 0 0
\(955\) 54.0108 45.3204i 1.74775 1.46653i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −17.3477 + 6.31405i −0.560187 + 0.203891i
\(960\) 0 0
\(961\) −15.1879 26.3062i −0.489932 0.848588i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −35.7045 29.9597i −1.14937 0.964435i
\(966\) 0 0
\(967\) −7.76004 2.82442i −0.249546 0.0908274i 0.214219 0.976786i \(-0.431279\pi\)
−0.463765 + 0.885958i \(0.653502\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 11.3878 + 4.14480i 0.365450 + 0.133013i 0.518217 0.855249i \(-0.326596\pi\)
−0.152767 + 0.988262i \(0.548818\pi\)
\(972\) 0 0
\(973\) 10.5474 + 8.85028i 0.338133 + 0.283727i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 14.8156 + 25.6614i 0.473994 + 0.820982i 0.999557 0.0297727i \(-0.00947834\pi\)
−0.525562 + 0.850755i \(0.676145\pi\)
\(978\) 0 0
\(979\) 5.20849 1.89573i 0.166464 0.0605879i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −27.4542 + 23.0368i −0.875652 + 0.734759i −0.965280 0.261216i \(-0.915876\pi\)
0.0896287 + 0.995975i \(0.471432\pi\)
\(984\) 0 0
\(985\) 3.28086 + 18.6067i 0.104537 + 0.592858i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 14.1838 0.451020
\(990\) 0 0
\(991\) −2.48372 14.0859i −0.0788980 0.447453i −0.998507 0.0546185i \(-0.982606\pi\)
0.919609 0.392834i \(-0.128505\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 17.8574 30.9300i 0.566118 0.980546i
\(996\) 0 0
\(997\) 2.44915 0.891419i 0.0775654 0.0282315i −0.302946 0.953008i \(-0.597970\pi\)
0.380511 + 0.924776i \(0.375748\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 684.2.bo.e.289.1 12
3.2 odd 2 228.2.q.b.61.2 12
12.11 even 2 912.2.bo.g.289.2 12
19.5 even 9 inner 684.2.bo.e.613.1 12
57.5 odd 18 228.2.q.b.157.2 yes 12
57.29 even 18 4332.2.a.u.1.5 6
57.47 odd 18 4332.2.a.t.1.5 6
228.119 even 18 912.2.bo.g.385.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
228.2.q.b.61.2 12 3.2 odd 2
228.2.q.b.157.2 yes 12 57.5 odd 18
684.2.bo.e.289.1 12 1.1 even 1 trivial
684.2.bo.e.613.1 12 19.5 even 9 inner
912.2.bo.g.289.2 12 12.11 even 2
912.2.bo.g.385.2 12 228.119 even 18
4332.2.a.t.1.5 6 57.47 odd 18
4332.2.a.u.1.5 6 57.29 even 18