Properties

Label 432.9.q.c.305.4
Level $432$
Weight $9$
Character 432.305
Analytic conductor $175.988$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [432,9,Mod(17,432)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("432.17"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(432, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 5])) N = Newforms(chi, 9, names="a")
 
Level: \( N \) \(=\) \( 432 = 2^{4} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 432.q (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,882] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(175.987559546\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} - 150208 x^{14} - 1927740 x^{13} + 8702363206 x^{12} + 239206241152 x^{11} + \cdots + 81\!\cdots\!61 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{32}\cdot 3^{40} \)
Twist minimal: no (minimal twist has level 18)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 305.4
Root \(-2.97990 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 432.305
Dual form 432.9.q.c.17.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(69.6596 - 40.2180i) q^{5} +(-370.849 + 642.329i) q^{7} +(-19777.4 - 11418.5i) q^{11} +(-6499.12 - 11256.8i) q^{13} +105666. i q^{17} -118278. q^{19} +(-77410.8 + 44693.1i) q^{23} +(-192078. + 332688. i) q^{25} +(952037. + 549659. i) q^{29} +(-226348. - 392047. i) q^{31} +59659.1i q^{35} -2.12547e6 q^{37} +(1.45174e6 - 838161. i) q^{41} +(569118. - 985742. i) q^{43} +(-3.10681e6 - 1.79372e6i) q^{47} +(2.60734e6 + 4.51605e6i) q^{49} -1.16039e7i q^{53} -1.83692e6 q^{55} +(5.34715e6 - 3.08718e6i) q^{59} +(1.10379e7 - 1.91182e7i) q^{61} +(-905451. - 522763. i) q^{65} +(1.84669e7 + 3.19855e7i) q^{67} +1.51775e7i q^{71} -4.91641e7 q^{73} +(1.46689e7 - 8.46908e6i) q^{77} +(-3.15777e7 + 5.46942e7i) q^{79} +(4.45835e7 + 2.57403e7i) q^{83} +(4.24967e6 + 7.36064e6i) q^{85} -5.17343e7i q^{89} +9.64076e6 q^{91} +(-8.23923e6 + 4.75692e6i) q^{95} +(-4.54739e6 + 7.87630e6i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 882 q^{5} + 1846 q^{7} + 45756 q^{11} - 3370 q^{13} - 362180 q^{19} + 1311138 q^{23} + 963394 q^{25} + 2851290 q^{29} - 542438 q^{31} + 3343328 q^{37} - 9218592 q^{41} - 339512 q^{43} - 34980606 q^{47}+ \cdots - 89415484 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/432\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(325\) \(353\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 69.6596 40.2180i 0.111455 0.0643487i −0.443236 0.896405i \(-0.646170\pi\)
0.554691 + 0.832056i \(0.312836\pi\)
\(6\) 0 0
\(7\) −370.849 + 642.329i −0.154456 + 0.267526i −0.932861 0.360237i \(-0.882696\pi\)
0.778405 + 0.627763i \(0.216029\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −19777.4 11418.5i −1.35083 0.779900i −0.362461 0.931999i \(-0.618063\pi\)
−0.988365 + 0.152099i \(0.951397\pi\)
\(12\) 0 0
\(13\) −6499.12 11256.8i −0.227552 0.394132i 0.729530 0.683949i \(-0.239739\pi\)
−0.957082 + 0.289817i \(0.906406\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 105666.i 1.26514i 0.774502 + 0.632571i \(0.218000\pi\)
−0.774502 + 0.632571i \(0.782000\pi\)
\(18\) 0 0
\(19\) −118278. −0.907594 −0.453797 0.891105i \(-0.649931\pi\)
−0.453797 + 0.891105i \(0.649931\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −77410.8 + 44693.1i −0.276624 + 0.159709i −0.631894 0.775055i \(-0.717722\pi\)
0.355270 + 0.934764i \(0.384389\pi\)
\(24\) 0 0
\(25\) −192078. + 332688.i −0.491718 + 0.851681i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 952037. + 549659.i 1.34605 + 0.777143i 0.987688 0.156439i \(-0.0500014\pi\)
0.358364 + 0.933582i \(0.383335\pi\)
\(30\) 0 0
\(31\) −226348. 392047.i −0.245093 0.424513i 0.717065 0.697007i \(-0.245485\pi\)
−0.962158 + 0.272493i \(0.912152\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 59659.1i 0.0397562i
\(36\) 0 0
\(37\) −2.12547e6 −1.13409 −0.567046 0.823686i \(-0.691914\pi\)
−0.567046 + 0.823686i \(0.691914\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 1.45174e6 838161.i 0.513751 0.296614i −0.220623 0.975359i \(-0.570809\pi\)
0.734374 + 0.678745i \(0.237476\pi\)
\(42\) 0 0
\(43\) 569118. 985742.i 0.166467 0.288330i −0.770708 0.637188i \(-0.780097\pi\)
0.937175 + 0.348859i \(0.113431\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −3.10681e6 1.79372e6i −0.636683 0.367589i 0.146653 0.989188i \(-0.453150\pi\)
−0.783336 + 0.621599i \(0.786483\pi\)
\(48\) 0 0
\(49\) 2.60734e6 + 4.51605e6i 0.452287 + 0.783384i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 1.16039e7i 1.47062i −0.677730 0.735311i \(-0.737036\pi\)
0.677730 0.735311i \(-0.262964\pi\)
\(54\) 0 0
\(55\) −1.83692e6 −0.200742
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 5.34715e6 3.08718e6i 0.441280 0.254773i −0.262860 0.964834i \(-0.584666\pi\)
0.704141 + 0.710061i \(0.251332\pi\)
\(60\) 0 0
\(61\) 1.10379e7 1.91182e7i 0.797198 1.38079i −0.124237 0.992253i \(-0.539648\pi\)
0.921434 0.388534i \(-0.127018\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −905451. 522763.i −0.0507238 0.0292854i
\(66\) 0 0
\(67\) 1.84669e7 + 3.19855e7i 0.916418 + 1.58728i 0.804811 + 0.593531i \(0.202267\pi\)
0.111607 + 0.993752i \(0.464400\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 1.51775e7i 0.597267i 0.954368 + 0.298633i \(0.0965307\pi\)
−0.954368 + 0.298633i \(0.903469\pi\)
\(72\) 0 0
\(73\) −4.91641e7 −1.73124 −0.865618 0.500704i \(-0.833074\pi\)
−0.865618 + 0.500704i \(0.833074\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.46689e7 8.46908e6i 0.417286 0.240920i
\(78\) 0 0
\(79\) −3.15777e7 + 5.46942e7i −0.810722 + 1.40421i 0.101637 + 0.994822i \(0.467592\pi\)
−0.912359 + 0.409391i \(0.865741\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 4.45835e7 + 2.57403e7i 0.939425 + 0.542377i 0.889780 0.456390i \(-0.150858\pi\)
0.0496450 + 0.998767i \(0.484191\pi\)
\(84\) 0 0
\(85\) 4.24967e6 + 7.36064e6i 0.0814103 + 0.141007i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 5.17343e7i 0.824553i −0.911059 0.412277i \(-0.864734\pi\)
0.911059 0.412277i \(-0.135266\pi\)
\(90\) 0 0
\(91\) 9.64076e6 0.140587
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −8.23923e6 + 4.75692e6i −0.101156 + 0.0584025i
\(96\) 0 0
\(97\) −4.54739e6 + 7.87630e6i −0.0513659 + 0.0889684i −0.890565 0.454856i \(-0.849691\pi\)
0.839199 + 0.543824i \(0.183024\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 9.46459e7 + 5.46438e7i 0.909528 + 0.525117i 0.880279 0.474456i \(-0.157355\pi\)
0.0292491 + 0.999572i \(0.490688\pi\)
\(102\) 0 0
\(103\) −9.55744e7 1.65540e8i −0.849166 1.47080i −0.881954 0.471336i \(-0.843772\pi\)
0.0327875 0.999462i \(-0.489562\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1.73989e8i 1.32736i −0.748019 0.663678i \(-0.768995\pi\)
0.748019 0.663678i \(-0.231005\pi\)
\(108\) 0 0
\(109\) −1.00364e8 −0.711002 −0.355501 0.934676i \(-0.615690\pi\)
−0.355501 + 0.934676i \(0.615690\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1.26056e8 7.27784e7i 0.773124 0.446364i −0.0608637 0.998146i \(-0.519386\pi\)
0.833988 + 0.551783i \(0.186052\pi\)
\(114\) 0 0
\(115\) −3.59493e6 + 6.22661e6i −0.0205542 + 0.0356008i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −6.78723e7 3.91861e7i −0.338458 0.195409i
\(120\) 0 0
\(121\) 1.53585e8 + 2.66018e8i 0.716487 + 1.24099i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 6.23202e7i 0.255263i
\(126\) 0 0
\(127\) 1.57730e8 0.606315 0.303157 0.952941i \(-0.401959\pi\)
0.303157 + 0.952941i \(0.401959\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 2.71215e8 1.56586e8i 0.920934 0.531701i 0.0370008 0.999315i \(-0.488220\pi\)
0.883933 + 0.467614i \(0.154886\pi\)
\(132\) 0 0
\(133\) 4.38634e7 7.59737e7i 0.140183 0.242804i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −8.44998e7 4.87860e7i −0.239869 0.138488i 0.375248 0.926925i \(-0.377558\pi\)
−0.615116 + 0.788436i \(0.710891\pi\)
\(138\) 0 0
\(139\) −4.51078e7 7.81290e7i −0.120835 0.209292i 0.799262 0.600982i \(-0.205224\pi\)
−0.920097 + 0.391690i \(0.871890\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 2.96841e8i 0.709872i
\(144\) 0 0
\(145\) 8.84246e7 0.200033
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −5.31181e8 + 3.06678e8i −1.07770 + 0.622210i −0.930275 0.366863i \(-0.880432\pi\)
−0.147425 + 0.989073i \(0.547098\pi\)
\(150\) 0 0
\(151\) −7.34431e7 + 1.27207e8i −0.141268 + 0.244683i −0.927974 0.372644i \(-0.878451\pi\)
0.786706 + 0.617327i \(0.211785\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −3.15347e7 1.82065e7i −0.0546338 0.0315428i
\(156\) 0 0
\(157\) −2.79253e8 4.83681e8i −0.459621 0.796086i 0.539320 0.842101i \(-0.318681\pi\)
−0.998941 + 0.0460145i \(0.985348\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 6.62976e7i 0.0986720i
\(162\) 0 0
\(163\) 2.70277e6 0.00382876 0.00191438 0.999998i \(-0.499391\pi\)
0.00191438 + 0.999998i \(0.499391\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 6.54080e8 3.77633e8i 0.840940 0.485517i −0.0166436 0.999861i \(-0.505298\pi\)
0.857584 + 0.514344i \(0.171965\pi\)
\(168\) 0 0
\(169\) 3.23388e8 5.60125e8i 0.396440 0.686654i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 8.12759e8 + 4.69247e8i 0.907355 + 0.523862i 0.879579 0.475752i \(-0.157824\pi\)
0.0277761 + 0.999614i \(0.491157\pi\)
\(174\) 0 0
\(175\) −1.42463e8 2.46754e8i −0.151898 0.263095i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 9.19557e8i 0.895708i 0.894107 + 0.447854i \(0.147812\pi\)
−0.894107 + 0.447854i \(0.852188\pi\)
\(180\) 0 0
\(181\) 1.65808e9 1.54487 0.772435 0.635094i \(-0.219039\pi\)
0.772435 + 0.635094i \(0.219039\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −1.48059e8 + 8.54821e7i −0.126401 + 0.0729774i
\(186\) 0 0
\(187\) 1.20655e9 2.08980e9i 0.986684 1.70899i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 8.35643e8 + 4.82459e8i 0.627895 + 0.362516i 0.779937 0.625859i \(-0.215251\pi\)
−0.152041 + 0.988374i \(0.548585\pi\)
\(192\) 0 0
\(193\) −3.96992e8 6.87610e8i −0.286123 0.495579i 0.686758 0.726886i \(-0.259033\pi\)
−0.972881 + 0.231307i \(0.925700\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1.07092e9i 0.711038i −0.934669 0.355519i \(-0.884304\pi\)
0.934669 0.355519i \(-0.115696\pi\)
\(198\) 0 0
\(199\) 1.01385e9 0.646486 0.323243 0.946316i \(-0.395227\pi\)
0.323243 + 0.946316i \(0.395227\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −7.06123e8 + 4.07680e8i −0.415811 + 0.240069i
\(204\) 0 0
\(205\) 6.74183e7 1.16772e8i 0.0381735 0.0661185i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 2.33925e9 + 1.35056e9i 1.22600 + 0.707832i
\(210\) 0 0
\(211\) 3.50549e8 + 6.07168e8i 0.176856 + 0.306323i 0.940802 0.338957i \(-0.110074\pi\)
−0.763946 + 0.645280i \(0.776741\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 9.15551e7i 0.0428478i
\(216\) 0 0
\(217\) 3.35764e8 0.151424
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 1.18946e9 6.86736e8i 0.498633 0.287886i
\(222\) 0 0
\(223\) 1.37390e9 2.37966e9i 0.555566 0.962268i −0.442293 0.896870i \(-0.645835\pi\)
0.997859 0.0653978i \(-0.0208316\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −2.22472e9 1.28445e9i −0.837862 0.483740i 0.0186746 0.999826i \(-0.494055\pi\)
−0.856537 + 0.516085i \(0.827389\pi\)
\(228\) 0 0
\(229\) −1.26517e9 2.19134e9i −0.460053 0.796835i 0.538910 0.842363i \(-0.318836\pi\)
−0.998963 + 0.0455283i \(0.985503\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1.19788e9i 0.406434i 0.979134 + 0.203217i \(0.0651397\pi\)
−0.979134 + 0.203217i \(0.934860\pi\)
\(234\) 0 0
\(235\) −2.88559e8 −0.0946156
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 1.41385e9 8.16289e8i 0.433324 0.250180i −0.267438 0.963575i \(-0.586177\pi\)
0.700762 + 0.713395i \(0.252844\pi\)
\(240\) 0 0
\(241\) 1.78726e9 3.09563e9i 0.529810 0.917659i −0.469585 0.882887i \(-0.655596\pi\)
0.999395 0.0347712i \(-0.0110702\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 3.63253e8 + 2.09724e8i 0.100819 + 0.0582082i
\(246\) 0 0
\(247\) 7.68706e8 + 1.33144e9i 0.206525 + 0.357712i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 2.65229e9i 0.668230i 0.942532 + 0.334115i \(0.108437\pi\)
−0.942532 + 0.334115i \(0.891563\pi\)
\(252\) 0 0
\(253\) 2.04132e9 0.498228
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 2.52067e9 1.45531e9i 0.577807 0.333597i −0.182454 0.983214i \(-0.558404\pi\)
0.760261 + 0.649617i \(0.225071\pi\)
\(258\) 0 0
\(259\) 7.88228e8 1.36525e9i 0.175167 0.303399i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 7.19663e9 + 4.15498e9i 1.50420 + 0.868452i 0.999988 + 0.00487337i \(0.00155125\pi\)
0.504215 + 0.863578i \(0.331782\pi\)
\(264\) 0 0
\(265\) −4.66686e8 8.08323e8i −0.0946326 0.163909i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 3.91667e9i 0.748010i −0.927427 0.374005i \(-0.877984\pi\)
0.927427 0.374005i \(-0.122016\pi\)
\(270\) 0 0
\(271\) −4.26666e9 −0.791063 −0.395532 0.918452i \(-0.629440\pi\)
−0.395532 + 0.918452i \(0.629440\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 7.59760e9 4.38648e9i 1.32845 0.766982i
\(276\) 0 0
\(277\) 6.34405e8 1.09882e9i 0.107758 0.186642i −0.807104 0.590409i \(-0.798966\pi\)
0.914861 + 0.403768i \(0.132300\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 5.43672e8 + 3.13889e8i 0.0871990 + 0.0503444i 0.542965 0.839755i \(-0.317301\pi\)
−0.455766 + 0.890099i \(0.650635\pi\)
\(282\) 0 0
\(283\) 7.75733e8 + 1.34361e9i 0.120939 + 0.209473i 0.920138 0.391594i \(-0.128076\pi\)
−0.799199 + 0.601066i \(0.794743\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 1.24332e9i 0.183255i
\(288\) 0 0
\(289\) −4.18954e9 −0.600586
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 4.21204e9 2.43182e9i 0.571507 0.329960i −0.186244 0.982504i \(-0.559631\pi\)
0.757751 + 0.652544i \(0.226298\pi\)
\(294\) 0 0
\(295\) 2.48320e8 4.30103e8i 0.0327887 0.0567917i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 1.00620e9 + 5.80932e8i 0.125893 + 0.0726843i
\(300\) 0 0
\(301\) 4.22114e8 + 7.31122e8i 0.0514237 + 0.0890685i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 1.77568e9i 0.205195i
\(306\) 0 0
\(307\) 1.51737e10 1.70820 0.854101 0.520108i \(-0.174108\pi\)
0.854101 + 0.520108i \(0.174108\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 1.31231e10 7.57662e9i 1.40280 0.809905i 0.408118 0.912929i \(-0.366185\pi\)
0.994679 + 0.103024i \(0.0328518\pi\)
\(312\) 0 0
\(313\) 5.67865e9 9.83571e9i 0.591654 1.02477i −0.402356 0.915483i \(-0.631809\pi\)
0.994010 0.109291i \(-0.0348581\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1.44463e10 + 8.34059e9i 1.43061 + 0.825961i 0.997167 0.0752213i \(-0.0239663\pi\)
0.433440 + 0.901183i \(0.357300\pi\)
\(318\) 0 0
\(319\) −1.25526e10 2.17417e10i −1.21219 2.09957i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 1.24980e10i 1.14824i
\(324\) 0 0
\(325\) 4.99334e9 0.447566
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 2.30431e9 1.33040e9i 0.196679 0.113553i
\(330\) 0 0
\(331\) 1.60334e9 2.77707e9i 0.133571 0.231353i −0.791479 0.611196i \(-0.790689\pi\)
0.925051 + 0.379843i \(0.124022\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 2.57279e9 + 1.48540e9i 0.204279 + 0.117941i
\(336\) 0 0
\(337\) 8.82134e9 + 1.52790e10i 0.683935 + 1.18461i 0.973770 + 0.227534i \(0.0730662\pi\)
−0.289835 + 0.957077i \(0.593600\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 1.03383e10i 0.764592i
\(342\) 0 0
\(343\) −8.14346e9 −0.588345
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −7.55287e9 + 4.36065e9i −0.520948 + 0.300769i −0.737322 0.675541i \(-0.763910\pi\)
0.216375 + 0.976310i \(0.430577\pi\)
\(348\) 0 0
\(349\) −5.08867e9 + 8.81384e9i −0.343007 + 0.594105i −0.984990 0.172614i \(-0.944779\pi\)
0.641983 + 0.766719i \(0.278112\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 1.37900e10 + 7.96168e9i 0.888109 + 0.512750i 0.873324 0.487141i \(-0.161960\pi\)
0.0147858 + 0.999891i \(0.495293\pi\)
\(354\) 0 0
\(355\) 6.10410e8 + 1.05726e9i 0.0384333 + 0.0665685i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 5.57548e9i 0.335664i −0.985816 0.167832i \(-0.946323\pi\)
0.985816 0.167832i \(-0.0536766\pi\)
\(360\) 0 0
\(361\) −2.99376e9 −0.176274
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −3.42475e9 + 1.97728e9i −0.192955 + 0.111403i
\(366\) 0 0
\(367\) −2.34540e9 + 4.06235e9i −0.129286 + 0.223930i −0.923400 0.383839i \(-0.874602\pi\)
0.794114 + 0.607769i \(0.207935\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 7.45353e9 + 4.30330e9i 0.393429 + 0.227146i
\(372\) 0 0
\(373\) −9.98911e9 1.73016e10i −0.516049 0.893824i −0.999826 0.0186325i \(-0.994069\pi\)
0.483777 0.875191i \(-0.339265\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 1.42892e10i 0.707363i
\(378\) 0 0
\(379\) 3.40327e10 1.64945 0.824726 0.565532i \(-0.191329\pi\)
0.824726 + 0.565532i \(0.191329\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −1.39611e10 + 8.06046e9i −0.648822 + 0.374597i −0.788005 0.615669i \(-0.788886\pi\)
0.139183 + 0.990267i \(0.455552\pi\)
\(384\) 0 0
\(385\) 6.81218e8 1.17990e9i 0.0310058 0.0537037i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −2.29807e10 1.32679e10i −1.00361 0.579435i −0.0942959 0.995544i \(-0.530060\pi\)
−0.909315 + 0.416109i \(0.863393\pi\)
\(390\) 0 0
\(391\) −4.72254e9 8.17969e9i −0.202055 0.349969i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 5.07996e9i 0.208676i
\(396\) 0 0
\(397\) 2.50944e10 1.01022 0.505108 0.863056i \(-0.331452\pi\)
0.505108 + 0.863056i \(0.331452\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 6.71173e9 3.87502e9i 0.259572 0.149864i −0.364567 0.931177i \(-0.618783\pi\)
0.624139 + 0.781313i \(0.285450\pi\)
\(402\) 0 0
\(403\) −2.94213e9 + 5.09592e9i −0.111543 + 0.193198i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 4.20364e10 + 2.42697e10i 1.53196 + 0.884478i
\(408\) 0 0
\(409\) −1.37487e10 2.38135e10i −0.491326 0.851001i 0.508624 0.860988i \(-0.330154\pi\)
−0.999950 + 0.00998745i \(0.996821\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 4.57951e9i 0.157405i
\(414\) 0 0
\(415\) 4.14089e9 0.139605
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −3.00646e10 + 1.73578e10i −0.975439 + 0.563170i −0.900890 0.434048i \(-0.857085\pi\)
−0.0745486 + 0.997217i \(0.523752\pi\)
\(420\) 0 0
\(421\) 2.79802e10 4.84631e10i 0.890681 1.54271i 0.0516215 0.998667i \(-0.483561\pi\)
0.839060 0.544039i \(-0.183106\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −3.51538e10 2.02961e10i −1.07750 0.622094i
\(426\) 0 0
\(427\) 8.18676e9 + 1.41799e10i 0.246264 + 0.426541i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 1.05381e9i 0.0305390i −0.999883 0.0152695i \(-0.995139\pi\)
0.999883 0.0152695i \(-0.00486062\pi\)
\(432\) 0 0
\(433\) −1.08239e10 −0.307916 −0.153958 0.988077i \(-0.549202\pi\)
−0.153958 + 0.988077i \(0.549202\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 9.15603e9 5.28624e9i 0.251062 0.144951i
\(438\) 0 0
\(439\) 9.63567e9 1.66895e10i 0.259432 0.449350i −0.706658 0.707556i \(-0.749798\pi\)
0.966090 + 0.258206i \(0.0831312\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −3.47005e10 2.00344e10i −0.900993 0.520189i −0.0234707 0.999725i \(-0.507472\pi\)
−0.877522 + 0.479536i \(0.840805\pi\)
\(444\) 0 0
\(445\) −2.08065e9 3.60379e9i −0.0530590 0.0919008i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 2.89578e10i 0.712493i 0.934392 + 0.356247i \(0.115944\pi\)
−0.934392 + 0.356247i \(0.884056\pi\)
\(450\) 0 0
\(451\) −3.82822e10 −0.925318
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 6.71571e8 3.87732e8i 0.0156692 0.00904661i
\(456\) 0 0
\(457\) −2.76429e9 + 4.78789e9i −0.0633752 + 0.109769i −0.895972 0.444110i \(-0.853520\pi\)
0.832597 + 0.553879i \(0.186853\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 4.96113e10 + 2.86431e10i 1.09844 + 0.634186i 0.935811 0.352501i \(-0.114669\pi\)
0.162631 + 0.986687i \(0.448002\pi\)
\(462\) 0 0
\(463\) 4.30725e10 + 7.46037e10i 0.937294 + 1.62344i 0.770492 + 0.637450i \(0.220011\pi\)
0.166802 + 0.985990i \(0.446656\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 1.73366e10i 0.364498i −0.983252 0.182249i \(-0.941662\pi\)
0.983252 0.182249i \(-0.0583377\pi\)
\(468\) 0 0
\(469\) −2.73936e10 −0.566185
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −2.25114e10 + 1.29970e10i −0.449736 + 0.259655i
\(474\) 0 0
\(475\) 2.27186e10 3.93498e10i 0.446281 0.772981i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 1.41007e10 + 8.14105e9i 0.267855 + 0.154646i 0.627912 0.778284i \(-0.283910\pi\)
−0.360058 + 0.932930i \(0.617243\pi\)
\(480\) 0 0
\(481\) 1.38137e10 + 2.39260e10i 0.258065 + 0.446982i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 7.31547e8i 0.0132213i
\(486\) 0 0
\(487\) −8.59101e10 −1.52731 −0.763657 0.645622i \(-0.776598\pi\)
−0.763657 + 0.645622i \(0.776598\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −9.42747e10 + 5.44295e10i −1.62207 + 0.936502i −0.635704 + 0.771933i \(0.719290\pi\)
−0.986366 + 0.164569i \(0.947377\pi\)
\(492\) 0 0
\(493\) −5.80802e10 + 1.00598e11i −0.983197 + 1.70295i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −9.74898e9 5.62857e9i −0.159784 0.0922514i
\(498\) 0 0
\(499\) −1.01210e10 1.75301e10i −0.163238 0.282737i 0.772790 0.634662i \(-0.218861\pi\)
−0.936028 + 0.351925i \(0.885527\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 8.95990e9i 0.139969i 0.997548 + 0.0699844i \(0.0222949\pi\)
−0.997548 + 0.0699844i \(0.977705\pi\)
\(504\) 0 0
\(505\) 8.79066e9 0.135162
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −7.49283e10 + 4.32599e10i −1.11628 + 0.644487i −0.940450 0.339933i \(-0.889596\pi\)
−0.175835 + 0.984420i \(0.556262\pi\)
\(510\) 0 0
\(511\) 1.82324e10 3.15795e10i 0.267400 0.463150i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −1.33153e10 7.68761e9i −0.189288 0.109286i
\(516\) 0 0
\(517\) 4.09632e10 + 7.09503e10i 0.573365 + 0.993098i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 7.83590e10i 1.06350i −0.846901 0.531750i \(-0.821534\pi\)
0.846901 0.531750i \(-0.178466\pi\)
\(522\) 0 0
\(523\) 9.36222e9 0.125133 0.0625665 0.998041i \(-0.480071\pi\)
0.0625665 + 0.998041i \(0.480071\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 4.14260e10 2.39173e10i 0.537070 0.310078i
\(528\) 0 0
\(529\) −3.51605e10 + 6.08998e10i −0.448986 + 0.777667i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −1.88700e10 1.08946e10i −0.233810 0.134990i
\(534\) 0 0
\(535\) −6.99749e9 1.21200e10i −0.0854136 0.147941i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 1.19088e11i 1.41095i
\(540\) 0 0
\(541\) 2.87519e10 0.335642 0.167821 0.985817i \(-0.446327\pi\)
0.167821 + 0.985817i \(0.446327\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −6.99129e9 + 4.03642e9i −0.0792449 + 0.0457521i
\(546\) 0 0
\(547\) −7.14292e10 + 1.23719e11i −0.797860 + 1.38193i 0.123147 + 0.992388i \(0.460701\pi\)
−0.921007 + 0.389545i \(0.872632\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −1.12605e11 6.50128e10i −1.22167 0.705330i
\(552\) 0 0
\(553\) −2.34211e10 4.05665e10i −0.250442 0.433778i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 1.20526e10i 0.125216i −0.998038 0.0626080i \(-0.980058\pi\)
0.998038 0.0626080i \(-0.0199418\pi\)
\(558\) 0 0
\(559\) −1.47951e10 −0.151520
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 7.41550e10 4.28134e10i 0.738086 0.426134i −0.0832869 0.996526i \(-0.526542\pi\)
0.821373 + 0.570391i \(0.193208\pi\)
\(564\) 0 0
\(565\) 5.85400e9 1.01394e10i 0.0574459 0.0994992i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −6.77244e10 3.91007e10i −0.646095 0.373023i 0.140864 0.990029i \(-0.455012\pi\)
−0.786958 + 0.617006i \(0.788345\pi\)
\(570\) 0 0
\(571\) 1.68244e10 + 2.91408e10i 0.158269 + 0.274130i 0.934245 0.356633i \(-0.116075\pi\)
−0.775975 + 0.630763i \(0.782742\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 3.43382e10i 0.314128i
\(576\) 0 0
\(577\) −5.68149e10 −0.512577 −0.256288 0.966600i \(-0.582500\pi\)
−0.256288 + 0.966600i \(0.582500\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −3.30675e10 + 1.90915e10i −0.290200 + 0.167547i
\(582\) 0 0
\(583\) −1.32499e11 + 2.29496e11i −1.14694 + 1.98655i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 1.52093e11 + 8.78111e10i 1.28103 + 0.739600i 0.977036 0.213075i \(-0.0683478\pi\)
0.303990 + 0.952675i \(0.401681\pi\)
\(588\) 0 0
\(589\) 2.67722e10 + 4.63707e10i 0.222445 + 0.385286i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 1.42615e10i 0.115331i 0.998336 + 0.0576655i \(0.0183657\pi\)
−0.998336 + 0.0576655i \(0.981634\pi\)
\(594\) 0 0
\(595\) −6.30394e9 −0.0502972
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −1.21666e11 + 7.02441e10i −0.945068 + 0.545635i −0.891545 0.452931i \(-0.850378\pi\)
−0.0535228 + 0.998567i \(0.517045\pi\)
\(600\) 0 0
\(601\) −7.75136e10 + 1.34257e11i −0.594128 + 1.02906i 0.399542 + 0.916715i \(0.369169\pi\)
−0.993669 + 0.112344i \(0.964164\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 2.13974e10 + 1.23538e10i 0.159713 + 0.0922101i
\(606\) 0 0
\(607\) −5.96405e10 1.03300e11i −0.439325 0.760934i 0.558312 0.829631i \(-0.311449\pi\)
−0.997638 + 0.0686970i \(0.978116\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 4.66303e10i 0.334583i
\(612\) 0 0
\(613\) −1.07532e11 −0.761546 −0.380773 0.924669i \(-0.624342\pi\)
−0.380773 + 0.924669i \(0.624342\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −1.08306e11 + 6.25304e10i −0.747328 + 0.431470i −0.824728 0.565530i \(-0.808672\pi\)
0.0773997 + 0.997000i \(0.475338\pi\)
\(618\) 0 0
\(619\) −3.18581e10 + 5.51798e10i −0.216998 + 0.375852i −0.953889 0.300160i \(-0.902960\pi\)
0.736890 + 0.676012i \(0.236293\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 3.32304e10 + 1.91856e10i 0.220589 + 0.127357i
\(624\) 0 0
\(625\) −7.25239e10 1.25615e11i −0.475293 0.823231i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 2.24590e11i 1.43479i
\(630\) 0 0
\(631\) 8.53724e10 0.538518 0.269259 0.963068i \(-0.413221\pi\)
0.269259 + 0.963068i \(0.413221\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 1.09874e10 6.34356e9i 0.0675770 0.0390156i
\(636\) 0 0
\(637\) 3.38909e10 5.87007e10i 0.205838 0.356521i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 3.48018e10 + 2.00929e10i 0.206144 + 0.119017i 0.599518 0.800361i \(-0.295359\pi\)
−0.393374 + 0.919378i \(0.628692\pi\)
\(642\) 0 0
\(643\) 2.65057e10 + 4.59092e10i 0.155058 + 0.268569i 0.933080 0.359668i \(-0.117110\pi\)
−0.778022 + 0.628237i \(0.783777\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 8.40520e10i 0.479657i −0.970815 0.239829i \(-0.922909\pi\)
0.970815 0.239829i \(-0.0770912\pi\)
\(648\) 0 0
\(649\) −1.41004e11 −0.794791
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −5.79412e10 + 3.34523e10i −0.318665 + 0.183981i −0.650797 0.759251i \(-0.725565\pi\)
0.332132 + 0.943233i \(0.392232\pi\)
\(654\) 0 0
\(655\) 1.25951e10 2.18154e10i 0.0684286 0.118522i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −1.98528e11 1.14620e11i −1.05264 0.607741i −0.129251 0.991612i \(-0.541257\pi\)
−0.923387 + 0.383871i \(0.874591\pi\)
\(660\) 0 0
\(661\) 1.62836e11 + 2.82040e11i 0.852989 + 1.47742i 0.878498 + 0.477746i \(0.158546\pi\)
−0.0255089 + 0.999675i \(0.508121\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 7.05639e9i 0.0360825i
\(666\) 0 0
\(667\) −9.82639e10 −0.496467
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −4.36602e11 + 2.52072e11i −2.15375 + 1.24347i
\(672\) 0 0
\(673\) −1.20089e10 + 2.08001e10i −0.0585389 + 0.101392i −0.893810 0.448446i \(-0.851977\pi\)
0.835271 + 0.549839i \(0.185311\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 2.50617e11 + 1.44694e11i 1.19304 + 0.688804i 0.958995 0.283421i \(-0.0914695\pi\)
0.234048 + 0.972225i \(0.424803\pi\)
\(678\) 0 0
\(679\) −3.37279e9 5.84184e9i −0.0158675 0.0274834i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 1.04015e11i 0.477982i 0.971022 + 0.238991i \(0.0768166\pi\)
−0.971022 + 0.238991i \(0.923183\pi\)
\(684\) 0 0
\(685\) −7.84829e9 −0.0356462
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −1.30623e11 + 7.54152e10i −0.579619 + 0.334643i
\(690\) 0 0
\(691\) 5.51122e10 9.54571e10i 0.241733 0.418694i −0.719475 0.694518i \(-0.755618\pi\)
0.961208 + 0.275825i \(0.0889509\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −6.28438e9 3.62829e9i −0.0269354 0.0155511i
\(696\) 0 0
\(697\) 8.85651e10 + 1.53399e11i 0.375259 + 0.649968i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 7.57816e10i 0.313828i 0.987612 + 0.156914i \(0.0501546\pi\)
−0.987612 + 0.156914i \(0.949845\pi\)
\(702\) 0 0
\(703\) 2.51397e11 1.02929
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −7.01986e10 + 4.05292e10i −0.280964 + 0.162215i
\(708\) 0 0
\(709\) 1.71004e11 2.96187e11i 0.676737 1.17214i −0.299221 0.954184i \(-0.596727\pi\)
0.975958 0.217959i \(-0.0699400\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 3.50436e10 + 2.02324e10i 0.135597 + 0.0782871i
\(714\) 0 0
\(715\) 1.19383e10 + 2.06778e10i 0.0456793 + 0.0791189i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 8.86727e10i 0.331799i −0.986143 0.165899i \(-0.946947\pi\)
0.986143 0.165899i \(-0.0530527\pi\)
\(720\) 0 0
\(721\) 1.41775e11 0.524635
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −3.65730e11 + 2.11154e11i −1.32376 + 0.764271i
\(726\) 0 0
\(727\) 6.21757e10 1.07691e11i 0.222578 0.385517i −0.733012 0.680216i \(-0.761886\pi\)
0.955590 + 0.294699i \(0.0952193\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 1.04159e11 + 6.01364e10i 0.364778 + 0.210605i
\(732\) 0 0
\(733\) −1.20019e11 2.07878e11i −0.415750 0.720101i 0.579757 0.814790i \(-0.303148\pi\)
−0.995507 + 0.0946891i \(0.969814\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 8.43456e11i 2.85886i
\(738\) 0 0
\(739\) −9.80470e10 −0.328743 −0.164372 0.986398i \(-0.552560\pi\)
−0.164372 + 0.986398i \(0.552560\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 3.60334e11 2.08039e11i 1.18236 0.682636i 0.225801 0.974173i \(-0.427500\pi\)
0.956560 + 0.291537i \(0.0941666\pi\)
\(744\) 0 0
\(745\) −2.46679e10 + 4.27261e10i −0.0800769 + 0.138697i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 1.11758e11 + 6.45237e10i 0.355101 + 0.205018i
\(750\) 0 0
\(751\) 1.91821e11 + 3.32243e11i 0.603025 + 1.04447i 0.992360 + 0.123374i \(0.0393715\pi\)
−0.389335 + 0.921096i \(0.627295\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 1.18149e10i 0.0363616i
\(756\) 0 0
\(757\) 2.00507e11 0.610584 0.305292 0.952259i \(-0.401246\pi\)
0.305292 + 0.952259i \(0.401246\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1.41971e11 8.19667e10i 0.423311 0.244399i −0.273182 0.961962i \(-0.588076\pi\)
0.696493 + 0.717564i \(0.254743\pi\)
\(762\) 0 0
\(763\) 3.72198e10 6.44665e10i 0.109818 0.190211i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −6.95036e10 4.01279e10i −0.200829 0.115948i
\(768\) 0 0
\(769\) −3.02003e11 5.23085e11i −0.863588 1.49578i −0.868443 0.495789i \(-0.834879\pi\)
0.00485515 0.999988i \(-0.498455\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 5.78731e11i 1.62091i 0.585801 + 0.810455i \(0.300780\pi\)
−0.585801 + 0.810455i \(0.699220\pi\)
\(774\) 0 0
\(775\) 1.73906e11 0.482067
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −1.71709e11 + 9.91364e10i −0.466277 + 0.269205i
\(780\) 0 0
\(781\) 1.73305e11 3.00173e11i 0.465808 0.806803i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −3.89053e10 2.24620e10i −0.102454 0.0591520i
\(786\) 0 0
\(787\) −1.88724e11 3.26880e11i −0.491958 0.852096i 0.507999 0.861358i \(-0.330385\pi\)
−0.999957 + 0.00926121i \(0.997052\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 1.07959e11i 0.275774i
\(792\) 0 0
\(793\) −2.86946e11 −0.725616
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −2.07081e11 + 1.19558e11i −0.513224 + 0.296310i −0.734158 0.678979i \(-0.762423\pi\)
0.220934 + 0.975289i \(0.429090\pi\)
\(798\) 0 0
\(799\) 1.89535e11 3.28284e11i 0.465053 0.805495i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 9.72340e11 + 5.61381e11i 2.33860 + 1.35019i
\(804\) 0 0
\(805\) −2.66635e9 4.61826e9i −0.00634942 0.0109975i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 2.09694e11i 0.489544i −0.969581 0.244772i \(-0.921287\pi\)
0.969581 0.244772i \(-0.0787131\pi\)
\(810\) 0 0
\(811\) −7.14392e11 −1.65140 −0.825702 0.564107i \(-0.809221\pi\)
−0.825702 + 0.564107i \(0.809221\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 1.88273e8 1.08700e8i 0.000426735 0.000246376i
\(816\) 0 0
\(817\) −6.73144e10 + 1.16592e11i −0.151085 + 0.261686i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 5.95004e11 + 3.43526e11i 1.30963 + 0.756113i 0.982033 0.188707i \(-0.0604296\pi\)
0.327592 + 0.944819i \(0.393763\pi\)
\(822\) 0 0
\(823\) 4.54624e10 + 7.87432e10i 0.0990953 + 0.171638i 0.911310 0.411720i \(-0.135072\pi\)
−0.812215 + 0.583358i \(0.801738\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 3.03065e11i 0.647908i −0.946073 0.323954i \(-0.894988\pi\)
0.946073 0.323954i \(-0.105012\pi\)
\(828\) 0 0
\(829\) 7.06427e11 1.49572 0.747858 0.663859i \(-0.231082\pi\)
0.747858 + 0.663859i \(0.231082\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −4.77193e11 + 2.75507e11i −0.991092 + 0.572207i
\(834\) 0 0
\(835\) 3.03753e10 5.26115e10i 0.0624848 0.108227i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 7.75197e10 + 4.47560e10i 0.156446 + 0.0903241i 0.576179 0.817323i \(-0.304543\pi\)
−0.419733 + 0.907648i \(0.637876\pi\)
\(840\) 0 0
\(841\) 3.54126e11 + 6.13364e11i 0.707903 + 1.22612i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 5.20241e10i 0.102042i
\(846\) 0 0
\(847\) −2.27828e11 −0.442663
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 1.64534e11 9.49940e10i 0.313717 0.181125i
\(852\) 0 0
\(853\) −4.25979e11 + 7.37818e11i −0.804623 + 1.39365i 0.111922 + 0.993717i \(0.464299\pi\)
−0.916545 + 0.399931i \(0.869034\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 9.19638e10 + 5.30953e10i 0.170488 + 0.0984313i 0.582816 0.812604i \(-0.301951\pi\)
−0.412328 + 0.911035i \(0.635284\pi\)
\(858\) 0 0
\(859\) −1.80076e11 3.11901e11i −0.330737 0.572854i 0.651919 0.758288i \(-0.273964\pi\)
−0.982657 + 0.185435i \(0.940631\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1.03087e12i 1.85849i −0.369462 0.929246i \(-0.620458\pi\)
0.369462 0.929246i \(-0.379542\pi\)
\(864\) 0 0
\(865\) 7.54886e10 0.134839
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 1.24905e12 7.21141e11i 2.19029 1.26456i
\(870\) 0 0
\(871\) 2.40037e11 4.15756e11i 0.417066 0.722380i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −4.00300e10 2.31113e10i −0.0682895 0.0394269i
\(876\) 0 0
\(877\) −1.55982e11 2.70169e11i −0.263679 0.456706i 0.703537 0.710658i \(-0.251603\pi\)
−0.967217 + 0.253952i \(0.918269\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 7.28854e10i 0.120987i 0.998169 + 0.0604933i \(0.0192674\pi\)
−0.998169 + 0.0604933i \(0.980733\pi\)
\(882\) 0 0
\(883\) 1.07132e12 1.76228 0.881142 0.472852i \(-0.156776\pi\)
0.881142 + 0.472852i \(0.156776\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −3.56195e11 + 2.05649e11i −0.575432 + 0.332226i −0.759316 0.650722i \(-0.774466\pi\)
0.183884 + 0.982948i \(0.441133\pi\)
\(888\) 0 0
\(889\) −5.84938e10 + 1.01314e11i −0.0936489 + 0.162205i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 3.67469e11 + 2.12158e11i 0.577849 + 0.333621i
\(894\) 0 0
\(895\) 3.69827e10 + 6.40559e10i 0.0576377 + 0.0998314i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 4.97658e11i 0.761889i
\(900\) 0 0
\(901\) 1.22614e12 1.86055
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 1.15501e11 6.66847e10i 0.172184 0.0994104i
\(906\) 0 0
\(907\) 7.64334e10 1.32387e11i 0.112942 0.195621i −0.804013 0.594611i \(-0.797306\pi\)
0.916955 + 0.398991i \(0.130639\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 7.19623e11 + 4.15475e11i 1.04480 + 0.603213i 0.921188 0.389118i \(-0.127220\pi\)
0.123608 + 0.992331i \(0.460553\pi\)
\(912\) 0 0
\(913\) −5.87832e11 1.01816e12i −0.846000 1.46531i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 2.32279e11i 0.328498i
\(918\) 0 0
\(919\) 4.99778e11 0.700673 0.350336 0.936624i \(-0.386067\pi\)
0.350336 + 0.936624i \(0.386067\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 1.70851e11 9.86407e10i 0.235402 0.135909i
\(924\) 0 0
\(925\) 4.08255e11 7.07119e11i 0.557654 0.965885i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 3.65549e11 + 2.11050e11i 0.490775 + 0.283349i 0.724896 0.688858i \(-0.241888\pi\)
−0.234121 + 0.972207i \(0.575221\pi\)
\(930\) 0 0
\(931\) −3.08393e11 5.34152e11i −0.410493 0.710994i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 1.94100e11i 0.253968i
\(936\) 0 0
\(937\) −1.46649e12 −1.90248 −0.951240 0.308452i \(-0.900189\pi\)
−0.951240 + 0.308452i \(0.900189\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −1.80375e11 + 1.04140e11i −0.230048 + 0.132818i −0.610594 0.791944i \(-0.709069\pi\)
0.380546 + 0.924762i \(0.375736\pi\)
\(942\) 0 0
\(943\) −7.49201e10 + 1.29765e11i −0.0947440 + 0.164101i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 3.88417e11 + 2.24252e11i 0.482945 + 0.278828i 0.721643 0.692265i \(-0.243387\pi\)
−0.238698 + 0.971094i \(0.576721\pi\)
\(948\) 0 0
\(949\) 3.19523e11 + 5.53430e11i 0.393947 + 0.682336i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 1.57158e12i 1.90531i −0.304053 0.952655i \(-0.598340\pi\)
0.304053 0.952655i \(-0.401660\pi\)
\(954\) 0 0
\(955\) 7.76140e10 0.0933097
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 6.26733e10 3.61844e10i 0.0740982 0.0427806i
\(960\) 0 0
\(961\) 3.23978e11 5.61147e11i 0.379859 0.657935i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −5.53086e10 3.19324e10i −0.0637798 0.0368233i
\(966\) 0 0
\(967\) 4.92009e10 + 8.52185e10i 0.0562688 + 0.0974604i 0.892788 0.450478i \(-0.148746\pi\)
−0.836519 + 0.547938i \(0.815413\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 2.12176e11i 0.238682i −0.992853 0.119341i \(-0.961922\pi\)
0.992853 0.119341i \(-0.0380781\pi\)
\(972\) 0 0
\(973\) 6.69127e10 0.0746547
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 9.53074e11 5.50257e11i 1.04604 0.603931i 0.124502 0.992219i \(-0.460267\pi\)
0.921538 + 0.388288i \(0.126933\pi\)
\(978\) 0 0
\(979\) −5.90729e11 + 1.02317e12i −0.643069 + 1.11383i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 6.07234e11 + 3.50586e11i 0.650342 + 0.375475i 0.788587 0.614923i \(-0.210813\pi\)
−0.138245 + 0.990398i \(0.544146\pi\)
\(984\) 0 0
\(985\) −4.30703e10 7.45999e10i −0.0457544 0.0792489i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1.01743e11i 0.106345i
\(990\) 0 0
\(991\) −1.38686e12 −1.43793 −0.718963 0.695048i \(-0.755383\pi\)
−0.718963 + 0.695048i \(0.755383\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 7.06240e10 4.07748e10i 0.0720543 0.0416006i
\(996\) 0 0
\(997\) 3.17360e11 5.49684e11i 0.321197 0.556330i −0.659538 0.751671i \(-0.729248\pi\)
0.980735 + 0.195341i \(0.0625814\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 432.9.q.c.305.4 16
3.2 odd 2 144.9.q.b.65.6 16
4.3 odd 2 54.9.d.a.35.6 16
9.4 even 3 144.9.q.b.113.6 16
9.5 odd 6 inner 432.9.q.c.17.4 16
12.11 even 2 18.9.d.a.11.2 yes 16
36.7 odd 6 162.9.b.c.161.4 16
36.11 even 6 162.9.b.c.161.13 16
36.23 even 6 54.9.d.a.17.6 16
36.31 odd 6 18.9.d.a.5.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
18.9.d.a.5.2 16 36.31 odd 6
18.9.d.a.11.2 yes 16 12.11 even 2
54.9.d.a.17.6 16 36.23 even 6
54.9.d.a.35.6 16 4.3 odd 2
144.9.q.b.65.6 16 3.2 odd 2
144.9.q.b.113.6 16 9.4 even 3
162.9.b.c.161.4 16 36.7 odd 6
162.9.b.c.161.13 16 36.11 even 6
432.9.q.c.17.4 16 9.5 odd 6 inner
432.9.q.c.305.4 16 1.1 even 1 trivial