Properties

Label 432.9
Level 432
Weight 9
Dimension 18360
Nonzero newspaces 12
Sturm bound 93312
Trace bound 10

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 432 = 2^{4} \cdot 3^{3} \)
Weight: \( k \) = \( 9 \)
Nonzero newspaces: \( 12 \)
Sturm bound: \(93312\)
Trace bound: \(10\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{9}(\Gamma_1(432))\).

Total New Old
Modular forms 41892 18504 23388
Cusp forms 41052 18360 22692
Eisenstein series 840 144 696

Trace form

\( 18360 q - 16 q^{2} - 18 q^{3} - 28 q^{4} - 19 q^{5} - 24 q^{6} - 1525 q^{7} - 16 q^{8} - 6 q^{9} - 28 q^{10} - 13 q^{11} - 24 q^{12} + 25661 q^{13} - 1040 q^{14} - 18 q^{15} + 212268 q^{16} + 82615 q^{17}+ \cdots + 190567278 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{9}^{\mathrm{new}}(\Gamma_1(432))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
432.9.b \(\chi_{432}(55, \cdot)\) None 0 1
432.9.e \(\chi_{432}(161, \cdot)\) 432.9.e.a 1 1
432.9.e.b 1
432.9.e.c 2
432.9.e.d 2
432.9.e.e 2
432.9.e.f 2
432.9.e.g 2
432.9.e.h 4
432.9.e.i 4
432.9.e.j 6
432.9.e.k 6
432.9.e.l 8
432.9.e.m 8
432.9.e.n 16
432.9.g \(\chi_{432}(271, \cdot)\) 432.9.g.a 2 1
432.9.g.b 2
432.9.g.c 8
432.9.g.d 8
432.9.g.e 10
432.9.g.f 10
432.9.g.g 12
432.9.g.h 12
432.9.h \(\chi_{432}(377, \cdot)\) None 0 1
432.9.j \(\chi_{432}(53, \cdot)\) n/a 512 2
432.9.m \(\chi_{432}(163, \cdot)\) n/a 512 2
432.9.n \(\chi_{432}(89, \cdot)\) None 0 2
432.9.o \(\chi_{432}(127, \cdot)\) 432.9.o.a 32 2
432.9.o.b 32
432.9.o.c 32
432.9.q \(\chi_{432}(17, \cdot)\) 432.9.q.a 14 2
432.9.q.b 16
432.9.q.c 16
432.9.q.d 48
432.9.t \(\chi_{432}(199, \cdot)\) None 0 2
432.9.w \(\chi_{432}(19, \cdot)\) n/a 760 4
432.9.x \(\chi_{432}(125, \cdot)\) n/a 760 4
432.9.z \(\chi_{432}(7, \cdot)\) None 0 6
432.9.ba \(\chi_{432}(31, \cdot)\) n/a 864 6
432.9.bc \(\chi_{432}(65, \cdot)\) n/a 858 6
432.9.bf \(\chi_{432}(41, \cdot)\) None 0 6
432.9.bh \(\chi_{432}(43, \cdot)\) n/a 6888 12
432.9.bi \(\chi_{432}(5, \cdot)\) n/a 6888 12

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{9}^{\mathrm{old}}(\Gamma_1(432))\) into lower level spaces

\( S_{9}^{\mathrm{old}}(\Gamma_1(432)) \cong \) \(S_{9}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 20}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 16}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 15}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 12}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 12}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 8}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 10}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 9}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 4}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 8}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 6}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(27))\)\(^{\oplus 5}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(36))\)\(^{\oplus 6}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(48))\)\(^{\oplus 3}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(54))\)\(^{\oplus 4}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(72))\)\(^{\oplus 4}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(108))\)\(^{\oplus 3}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(144))\)\(^{\oplus 2}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(216))\)\(^{\oplus 2}\)