Properties

Label 432.9.o.b.415.16
Level $432$
Weight $9$
Character 432.415
Analytic conductor $175.988$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [432,9,Mod(127,432)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("432.127"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(432, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 4])) N = Newforms(chi, 9, names="a")
 
Level: \( N \) \(=\) \( 432 = 2^{4} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 432.o (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,0,-147,0,2769] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(175.987559546\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 144)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 415.16
Character \(\chi\) \(=\) 432.415
Dual form 432.9.o.b.127.16

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(607.471 - 1052.17i) q^{5} +(4030.55 - 2327.04i) q^{7} +(3674.67 - 2121.57i) q^{11} +(-13902.8 + 24080.3i) q^{13} +1913.35 q^{17} -96672.2i q^{19} +(283599. + 163736. i) q^{23} +(-542730. - 940036. i) q^{25} +(399355. + 691703. i) q^{29} +(561470. + 324165. i) q^{31} -5.65444e6i q^{35} +2.23855e6 q^{37} +(491649. - 851562. i) q^{41} +(3.68522e6 - 2.12767e6i) q^{43} +(2.98466e6 - 1.72320e6i) q^{47} +(7.94784e6 - 1.37661e7i) q^{49} +5.99110e6 q^{53} -5.15517e6i q^{55} +(-1.21091e7 - 6.99118e6i) q^{59} +(-650503. - 1.12670e6i) q^{61} +(1.68911e7 + 2.92562e7i) q^{65} +(-9.82409e6 - 5.67194e6i) q^{67} +6.82352e6i q^{71} +3.84732e7 q^{73} +(9.87397e6 - 1.71022e7i) q^{77} +(1.73833e6 - 1.00363e6i) q^{79} +(-3.73630e7 + 2.15715e7i) q^{83} +(1.16230e6 - 2.01317e6i) q^{85} -7.34418e7 q^{89} +1.29409e8i q^{91} +(-1.01716e8 - 5.87255e7i) q^{95} +(-1.67437e7 - 2.90010e7i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 147 q^{5} + 2769 q^{7} + 17082 q^{11} + 1685 q^{13} + 6402 q^{17} - 4941 q^{23} - 1080803 q^{25} + 639219 q^{29} - 920745 q^{31} - 2765636 q^{37} + 2229390 q^{41} - 1788381 q^{47} + 13397285 q^{49}+ \cdots + 74963282 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/432\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(325\) \(353\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 607.471 1052.17i 0.971954 1.68347i 0.282312 0.959323i \(-0.408899\pi\)
0.689642 0.724151i \(-0.257768\pi\)
\(6\) 0 0
\(7\) 4030.55 2327.04i 1.67870 0.969197i 0.716205 0.697890i \(-0.245877\pi\)
0.962493 0.271307i \(-0.0874558\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 3674.67 2121.57i 0.250985 0.144906i −0.369230 0.929338i \(-0.620379\pi\)
0.620215 + 0.784432i \(0.287045\pi\)
\(12\) 0 0
\(13\) −13902.8 + 24080.3i −0.486775 + 0.843119i −0.999884 0.0152040i \(-0.995160\pi\)
0.513109 + 0.858323i \(0.328494\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1913.35 0.0229086 0.0114543 0.999934i \(-0.496354\pi\)
0.0114543 + 0.999934i \(0.496354\pi\)
\(18\) 0 0
\(19\) 96672.2i 0.741800i −0.928673 0.370900i \(-0.879049\pi\)
0.928673 0.370900i \(-0.120951\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 283599. + 163736.i 1.01343 + 0.585104i 0.912194 0.409759i \(-0.134387\pi\)
0.101235 + 0.994862i \(0.467720\pi\)
\(24\) 0 0
\(25\) −542730. 940036.i −1.38939 2.40649i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 399355. + 691703.i 0.564634 + 0.977974i 0.997084 + 0.0763163i \(0.0243159\pi\)
−0.432450 + 0.901658i \(0.642351\pi\)
\(30\) 0 0
\(31\) 561470. + 324165.i 0.607966 + 0.351010i 0.772169 0.635417i \(-0.219172\pi\)
−0.164203 + 0.986427i \(0.552505\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 5.65444e6i 3.76806i
\(36\) 0 0
\(37\) 2.23855e6 1.19443 0.597214 0.802082i \(-0.296274\pi\)
0.597214 + 0.802082i \(0.296274\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 491649. 851562.i 0.173988 0.301357i −0.765822 0.643052i \(-0.777668\pi\)
0.939811 + 0.341696i \(0.111001\pi\)
\(42\) 0 0
\(43\) 3.68522e6 2.12767e6i 1.07793 0.622343i 0.147592 0.989048i \(-0.452848\pi\)
0.930337 + 0.366706i \(0.119514\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2.98466e6 1.72320e6i 0.611651 0.353137i −0.161960 0.986797i \(-0.551782\pi\)
0.773611 + 0.633660i \(0.218448\pi\)
\(48\) 0 0
\(49\) 7.94784e6 1.37661e7i 1.37868 2.38795i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 5.99110e6 0.759282 0.379641 0.925134i \(-0.376048\pi\)
0.379641 + 0.925134i \(0.376048\pi\)
\(54\) 0 0
\(55\) 5.15517e6i 0.563368i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −1.21091e7 6.99118e6i −0.999317 0.576956i −0.0912709 0.995826i \(-0.529093\pi\)
−0.908046 + 0.418870i \(0.862426\pi\)
\(60\) 0 0
\(61\) −650503. 1.12670e6i −0.0469819 0.0813750i 0.841578 0.540135i \(-0.181627\pi\)
−0.888560 + 0.458760i \(0.848294\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.68911e7 + 2.92562e7i 0.946246 + 1.63895i
\(66\) 0 0
\(67\) −9.82409e6 5.67194e6i −0.487521 0.281470i 0.236025 0.971747i \(-0.424155\pi\)
−0.723545 + 0.690277i \(0.757489\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 6.82352e6i 0.268519i 0.990946 + 0.134260i \(0.0428656\pi\)
−0.990946 + 0.134260i \(0.957134\pi\)
\(72\) 0 0
\(73\) 3.84732e7 1.35477 0.677387 0.735627i \(-0.263112\pi\)
0.677387 + 0.735627i \(0.263112\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 9.87397e6 1.71022e7i 0.280885 0.486507i
\(78\) 0 0
\(79\) 1.73833e6 1.00363e6i 0.0446297 0.0257670i −0.477519 0.878621i \(-0.658464\pi\)
0.522149 + 0.852854i \(0.325131\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −3.73630e7 + 2.15715e7i −0.787280 + 0.454536i −0.839004 0.544125i \(-0.816862\pi\)
0.0517243 + 0.998661i \(0.483528\pi\)
\(84\) 0 0
\(85\) 1.16230e6 2.01317e6i 0.0222661 0.0385660i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −7.34418e7 −1.17053 −0.585266 0.810841i \(-0.699010\pi\)
−0.585266 + 0.810841i \(0.699010\pi\)
\(90\) 0 0
\(91\) 1.29409e8i 1.88712i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −1.01716e8 5.87255e7i −1.24880 0.720996i
\(96\) 0 0
\(97\) −1.67437e7 2.90010e7i −0.189132 0.327586i 0.755829 0.654769i \(-0.227234\pi\)
−0.944961 + 0.327183i \(0.893901\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 5.73164e7 + 9.92750e7i 0.550800 + 0.954013i 0.998217 + 0.0596877i \(0.0190105\pi\)
−0.447417 + 0.894325i \(0.647656\pi\)
\(102\) 0 0
\(103\) 4.02438e7 + 2.32347e7i 0.357561 + 0.206438i 0.668010 0.744152i \(-0.267146\pi\)
−0.310450 + 0.950590i \(0.600480\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 9.06367e7i 0.691463i 0.938333 + 0.345732i \(0.112369\pi\)
−0.938333 + 0.345732i \(0.887631\pi\)
\(108\) 0 0
\(109\) −1.17994e8 −0.835899 −0.417949 0.908470i \(-0.637251\pi\)
−0.417949 + 0.908470i \(0.637251\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 7.04763e7 1.22069e8i 0.432244 0.748669i −0.564822 0.825213i \(-0.691055\pi\)
0.997066 + 0.0765437i \(0.0243885\pi\)
\(114\) 0 0
\(115\) 3.44556e8 1.98930e8i 1.97001 1.13739i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 7.71186e6 4.45244e6i 0.0384566 0.0222029i
\(120\) 0 0
\(121\) −9.81773e7 + 1.70048e8i −0.458004 + 0.793287i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −8.44184e8 −3.45778
\(126\) 0 0
\(127\) 2.31625e8i 0.890372i 0.895438 + 0.445186i \(0.146862\pi\)
−0.895438 + 0.445186i \(0.853138\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −3.06791e8 1.77126e8i −1.04173 0.601445i −0.121410 0.992602i \(-0.538742\pi\)
−0.920324 + 0.391157i \(0.872075\pi\)
\(132\) 0 0
\(133\) −2.24960e8 3.89642e8i −0.718950 1.24526i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −2.33444e8 4.04337e8i −0.662675 1.14779i −0.979910 0.199440i \(-0.936088\pi\)
0.317235 0.948347i \(-0.397246\pi\)
\(138\) 0 0
\(139\) 1.04248e8 + 6.01878e7i 0.279261 + 0.161231i 0.633089 0.774079i \(-0.281787\pi\)
−0.353828 + 0.935311i \(0.615120\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 1.17983e8i 0.282147i
\(144\) 0 0
\(145\) 9.70386e8 2.19519
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 8.44973e7 1.46354e8i 0.171434 0.296933i −0.767487 0.641064i \(-0.778493\pi\)
0.938922 + 0.344131i \(0.111827\pi\)
\(150\) 0 0
\(151\) 2.16515e8 1.25005e8i 0.416467 0.240447i −0.277098 0.960842i \(-0.589373\pi\)
0.693565 + 0.720394i \(0.256039\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 6.82153e8 3.93841e8i 1.18183 0.682330i
\(156\) 0 0
\(157\) 8.04433e7 1.39332e8i 0.132401 0.229325i −0.792201 0.610261i \(-0.791065\pi\)
0.924602 + 0.380935i \(0.124398\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 1.52408e9 2.26832
\(162\) 0 0
\(163\) 3.45045e7i 0.0488793i −0.999701 0.0244397i \(-0.992220\pi\)
0.999701 0.0244397i \(-0.00778016\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −2.60697e8 1.50513e8i −0.335173 0.193512i 0.322962 0.946412i \(-0.395321\pi\)
−0.658136 + 0.752899i \(0.728655\pi\)
\(168\) 0 0
\(169\) 2.12905e7 + 3.68762e7i 0.0260999 + 0.0452064i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 3.12232e8 + 5.40802e8i 0.348573 + 0.603746i 0.985996 0.166768i \(-0.0533331\pi\)
−0.637423 + 0.770514i \(0.720000\pi\)
\(174\) 0 0
\(175\) −4.37500e9 2.52591e9i −4.66473 2.69318i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 1.31519e9i 1.28108i 0.767924 + 0.640541i \(0.221290\pi\)
−0.767924 + 0.640541i \(0.778710\pi\)
\(180\) 0 0
\(181\) 9.93254e8 0.925435 0.462718 0.886506i \(-0.346874\pi\)
0.462718 + 0.886506i \(0.346874\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 1.35986e9 2.35534e9i 1.16093 2.01079i
\(186\) 0 0
\(187\) 7.03093e6 4.05931e6i 0.00574971 0.00331960i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −1.79972e9 + 1.03907e9i −1.35229 + 0.780747i −0.988570 0.150760i \(-0.951828\pi\)
−0.363723 + 0.931507i \(0.618495\pi\)
\(192\) 0 0
\(193\) 6.87423e8 1.19065e9i 0.495444 0.858135i −0.504542 0.863387i \(-0.668339\pi\)
0.999986 + 0.00525240i \(0.00167190\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 5.37288e8 0.356732 0.178366 0.983964i \(-0.442919\pi\)
0.178366 + 0.983964i \(0.442919\pi\)
\(198\) 0 0
\(199\) 1.21091e9i 0.772148i 0.922468 + 0.386074i \(0.126169\pi\)
−0.922468 + 0.386074i \(0.873831\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 3.21924e9 + 1.85863e9i 1.89570 + 1.09448i
\(204\) 0 0
\(205\) −5.97326e8 1.03460e9i −0.338217 0.585809i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −2.05097e8 3.55238e8i −0.107491 0.186181i
\(210\) 0 0
\(211\) −3.88737e8 2.24437e8i −0.196122 0.113231i 0.398723 0.917071i \(-0.369453\pi\)
−0.594845 + 0.803840i \(0.702787\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 5.16998e9i 2.41955i
\(216\) 0 0
\(217\) 3.01738e9 1.36079
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −2.66009e7 + 4.60741e7i −0.0111513 + 0.0193147i
\(222\) 0 0
\(223\) −9.29382e8 + 5.36579e8i −0.375816 + 0.216977i −0.675996 0.736905i \(-0.736286\pi\)
0.300181 + 0.953882i \(0.402953\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −1.45562e9 + 8.40401e8i −0.548206 + 0.316507i −0.748398 0.663250i \(-0.769177\pi\)
0.200192 + 0.979757i \(0.435843\pi\)
\(228\) 0 0
\(229\) −6.58317e8 + 1.14024e9i −0.239383 + 0.414624i −0.960537 0.278151i \(-0.910279\pi\)
0.721154 + 0.692774i \(0.243612\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −4.04257e9 −1.37162 −0.685811 0.727780i \(-0.740552\pi\)
−0.685811 + 0.727780i \(0.740552\pi\)
\(234\) 0 0
\(235\) 4.18717e9i 1.37293i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −3.29471e9 1.90220e9i −1.00978 0.582995i −0.0986502 0.995122i \(-0.531453\pi\)
−0.911126 + 0.412127i \(0.864786\pi\)
\(240\) 0 0
\(241\) −1.63069e9 2.82444e9i −0.483396 0.837267i 0.516422 0.856334i \(-0.327264\pi\)
−0.999818 + 0.0190675i \(0.993930\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −9.65617e9 1.67250e10i −2.68004 4.64196i
\(246\) 0 0
\(247\) 2.32790e9 + 1.34401e9i 0.625426 + 0.361090i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 6.31615e9i 1.59132i 0.605744 + 0.795660i \(0.292876\pi\)
−0.605744 + 0.795660i \(0.707124\pi\)
\(252\) 0 0
\(253\) 1.38951e9 0.339141
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −1.47301e9 + 2.55133e9i −0.337655 + 0.584836i −0.983991 0.178217i \(-0.942967\pi\)
0.646336 + 0.763053i \(0.276300\pi\)
\(258\) 0 0
\(259\) 9.02261e9 5.20920e9i 2.00509 1.15764i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −4.93310e9 + 2.84813e9i −1.03109 + 0.595300i −0.917297 0.398204i \(-0.869634\pi\)
−0.113794 + 0.993504i \(0.536300\pi\)
\(264\) 0 0
\(265\) 3.63942e9 6.30366e9i 0.737987 1.27823i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 3.91442e9 0.747582 0.373791 0.927513i \(-0.378058\pi\)
0.373791 + 0.927513i \(0.378058\pi\)
\(270\) 0 0
\(271\) 2.30909e9i 0.428119i 0.976821 + 0.214060i \(0.0686686\pi\)
−0.976821 + 0.214060i \(0.931331\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −3.98871e9 2.30288e9i −0.697431 0.402662i
\(276\) 0 0
\(277\) 4.47038e9 + 7.74293e9i 0.759321 + 1.31518i 0.943197 + 0.332233i \(0.107802\pi\)
−0.183876 + 0.982949i \(0.558865\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −2.02784e8 3.51232e8i −0.0325243 0.0563338i 0.849305 0.527902i \(-0.177021\pi\)
−0.881829 + 0.471569i \(0.843688\pi\)
\(282\) 0 0
\(283\) −2.00591e9 1.15811e9i −0.312727 0.180553i 0.335419 0.942069i \(-0.391122\pi\)
−0.648146 + 0.761516i \(0.724455\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 4.57635e9i 0.674516i
\(288\) 0 0
\(289\) −6.97210e9 −0.999475
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 4.52957e8 7.84544e8i 0.0614591 0.106450i −0.833659 0.552280i \(-0.813758\pi\)
0.895118 + 0.445830i \(0.147091\pi\)
\(294\) 0 0
\(295\) −1.47118e10 + 8.49388e9i −1.94258 + 1.12155i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −7.88563e9 + 4.55277e9i −0.986624 + 0.569628i
\(300\) 0 0
\(301\) 9.90233e9 1.71513e10i 1.20634 2.08945i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −1.58065e9 −0.182657
\(306\) 0 0
\(307\) 2.08049e8i 0.0234214i −0.999931 0.0117107i \(-0.996272\pi\)
0.999931 0.0117107i \(-0.00372771\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −5.31637e9 3.06941e9i −0.568295 0.328105i 0.188173 0.982136i \(-0.439743\pi\)
−0.756468 + 0.654030i \(0.773077\pi\)
\(312\) 0 0
\(313\) −6.79299e9 1.17658e10i −0.707756 1.22587i −0.965687 0.259707i \(-0.916374\pi\)
0.257931 0.966163i \(-0.416959\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 2.40217e9 + 4.16068e9i 0.237885 + 0.412029i 0.960107 0.279632i \(-0.0902125\pi\)
−0.722222 + 0.691661i \(0.756879\pi\)
\(318\) 0 0
\(319\) 2.93499e9 + 1.69452e9i 0.283429 + 0.163638i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 1.84968e8i 0.0169936i
\(324\) 0 0
\(325\) 3.01818e10 2.70528
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 8.01990e9 1.38909e10i 0.684519 1.18562i
\(330\) 0 0
\(331\) −1.86683e10 + 1.07782e10i −1.55522 + 0.897909i −0.557521 + 0.830163i \(0.688247\pi\)
−0.997703 + 0.0677462i \(0.978419\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −1.19357e10 + 6.89108e9i −0.947695 + 0.547152i
\(336\) 0 0
\(337\) 5.99212e9 1.03787e10i 0.464580 0.804677i −0.534602 0.845104i \(-0.679538\pi\)
0.999182 + 0.0404270i \(0.0128718\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 2.75095e9 0.203454
\(342\) 0 0
\(343\) 4.71500e10i 3.40647i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −1.07137e10 6.18557e9i −0.738963 0.426640i 0.0827294 0.996572i \(-0.473636\pi\)
−0.821692 + 0.569932i \(0.806970\pi\)
\(348\) 0 0
\(349\) 8.76411e9 + 1.51799e10i 0.590753 + 1.02321i 0.994131 + 0.108181i \(0.0345025\pi\)
−0.403378 + 0.915033i \(0.632164\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 9.08654e9 + 1.57383e10i 0.585194 + 1.01359i 0.994851 + 0.101346i \(0.0323149\pi\)
−0.409657 + 0.912239i \(0.634352\pi\)
\(354\) 0 0
\(355\) 7.17951e9 + 4.14509e9i 0.452045 + 0.260988i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 4.59629e9i 0.276713i −0.990382 0.138357i \(-0.955818\pi\)
0.990382 0.138357i \(-0.0441820\pi\)
\(360\) 0 0
\(361\) 7.63806e9 0.449732
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 2.33714e10 4.04804e10i 1.31678 2.28073i
\(366\) 0 0
\(367\) 1.33414e10 7.70264e9i 0.735421 0.424596i −0.0849810 0.996383i \(-0.527083\pi\)
0.820402 + 0.571787i \(0.193750\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 2.41475e10 1.39415e10i 1.27461 0.735894i
\(372\) 0 0
\(373\) 1.58316e10 2.74212e10i 0.817881 1.41661i −0.0893601 0.995999i \(-0.528482\pi\)
0.907241 0.420612i \(-0.138184\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −2.22086e10 −1.09940
\(378\) 0 0
\(379\) 1.69138e10i 0.819758i −0.912140 0.409879i \(-0.865571\pi\)
0.912140 0.409879i \(-0.134429\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 1.60642e10 + 9.27469e9i 0.746560 + 0.431027i 0.824450 0.565935i \(-0.191485\pi\)
−0.0778896 + 0.996962i \(0.524818\pi\)
\(384\) 0 0
\(385\) −1.19963e10 2.07782e10i −0.546015 0.945725i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −1.41141e10 2.44463e10i −0.616387 1.06761i −0.990140 0.140085i \(-0.955262\pi\)
0.373753 0.927528i \(-0.378071\pi\)
\(390\) 0 0
\(391\) 5.42624e8 + 3.13284e8i 0.0232162 + 0.0134039i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 2.43870e9i 0.100177i
\(396\) 0 0
\(397\) −3.74343e10 −1.50698 −0.753491 0.657458i \(-0.771632\pi\)
−0.753491 + 0.657458i \(0.771632\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −1.27517e10 + 2.20866e10i −0.493164 + 0.854185i −0.999969 0.00787548i \(-0.997493\pi\)
0.506805 + 0.862061i \(0.330826\pi\)
\(402\) 0 0
\(403\) −1.56120e10 + 9.01358e9i −0.591886 + 0.341725i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 8.22594e9 4.74925e9i 0.299784 0.173080i
\(408\) 0 0
\(409\) −7.90200e9 + 1.36867e10i −0.282386 + 0.489107i −0.971972 0.235097i \(-0.924459\pi\)
0.689586 + 0.724204i \(0.257793\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −6.50751e10 −2.23674
\(414\) 0 0
\(415\) 5.24163e10i 1.76715i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −2.71376e10 1.56679e10i −0.880473 0.508341i −0.00965836 0.999953i \(-0.503074\pi\)
−0.870814 + 0.491612i \(0.836408\pi\)
\(420\) 0 0
\(421\) 2.89117e10 + 5.00765e10i 0.920334 + 1.59406i 0.798899 + 0.601466i \(0.205416\pi\)
0.121435 + 0.992599i \(0.461250\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −1.03843e9 1.79862e9i −0.0318289 0.0551293i
\(426\) 0 0
\(427\) −5.24378e9 3.02750e9i −0.157737 0.0910693i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 2.33112e10i 0.675547i 0.941227 + 0.337774i \(0.109674\pi\)
−0.941227 + 0.337774i \(0.890326\pi\)
\(432\) 0 0
\(433\) −2.72421e10 −0.774978 −0.387489 0.921874i \(-0.626658\pi\)
−0.387489 + 0.921874i \(0.626658\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 1.58287e10 2.74161e10i 0.434030 0.751762i
\(438\) 0 0
\(439\) 2.05703e10 1.18763e10i 0.553838 0.319758i −0.196831 0.980437i \(-0.563065\pi\)
0.750668 + 0.660679i \(0.229732\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −2.45520e10 + 1.41751e10i −0.637489 + 0.368054i −0.783647 0.621207i \(-0.786643\pi\)
0.146158 + 0.989261i \(0.453309\pi\)
\(444\) 0 0
\(445\) −4.46138e10 + 7.72733e10i −1.13770 + 1.97056i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 5.71106e10 1.40518 0.702589 0.711596i \(-0.252027\pi\)
0.702589 + 0.711596i \(0.252027\pi\)
\(450\) 0 0
\(451\) 4.17228e9i 0.100848i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 1.36161e11 + 7.86125e10i 3.17692 + 1.83420i
\(456\) 0 0
\(457\) −1.51344e10 2.62136e10i −0.346977 0.600981i 0.638734 0.769428i \(-0.279458\pi\)
−0.985711 + 0.168446i \(0.946125\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 2.81118e10 + 4.86911e10i 0.622422 + 1.07807i 0.989033 + 0.147693i \(0.0471847\pi\)
−0.366611 + 0.930374i \(0.619482\pi\)
\(462\) 0 0
\(463\) −1.51399e10 8.74103e9i −0.329457 0.190212i 0.326143 0.945321i \(-0.394251\pi\)
−0.655600 + 0.755108i \(0.727584\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 2.50581e10i 0.526842i 0.964681 + 0.263421i \(0.0848509\pi\)
−0.964681 + 0.263421i \(0.915149\pi\)
\(468\) 0 0
\(469\) −5.27953e10 −1.09120
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 9.02799e9 1.56369e10i 0.180363 0.312397i
\(474\) 0 0
\(475\) −9.08753e10 + 5.24669e10i −1.78514 + 1.03065i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −6.59329e10 + 3.80664e10i −1.25245 + 0.723101i −0.971595 0.236649i \(-0.923951\pi\)
−0.280853 + 0.959751i \(0.590617\pi\)
\(480\) 0 0
\(481\) −3.11221e10 + 5.39051e10i −0.581418 + 1.00705i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −4.06853e10 −0.735311
\(486\) 0 0
\(487\) 7.10799e9i 0.126366i −0.998002 0.0631831i \(-0.979875\pi\)
0.998002 0.0631831i \(-0.0201252\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −2.34310e10 1.35279e10i −0.403148 0.232758i 0.284693 0.958619i \(-0.408108\pi\)
−0.687841 + 0.725861i \(0.741442\pi\)
\(492\) 0 0
\(493\) 7.64105e8 + 1.32347e9i 0.0129350 + 0.0224040i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1.58786e10 + 2.75026e10i 0.260248 + 0.450763i
\(498\) 0 0
\(499\) −6.06207e10 3.49994e10i −0.977730 0.564493i −0.0761458 0.997097i \(-0.524261\pi\)
−0.901584 + 0.432604i \(0.857595\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 8.22545e10i 1.28496i −0.766304 0.642478i \(-0.777907\pi\)
0.766304 0.642478i \(-0.222093\pi\)
\(504\) 0 0
\(505\) 1.39272e11 2.14141
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −4.93217e10 + 8.54277e10i −0.734797 + 1.27271i 0.220016 + 0.975496i \(0.429389\pi\)
−0.954813 + 0.297209i \(0.903944\pi\)
\(510\) 0 0
\(511\) 1.55068e11 8.95288e10i 2.27426 1.31304i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 4.88938e10 2.82289e10i 0.695065 0.401296i
\(516\) 0 0
\(517\) 7.31177e9 1.26644e10i 0.102343 0.177264i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 1.19634e11 1.62370 0.811849 0.583867i \(-0.198461\pi\)
0.811849 + 0.583867i \(0.198461\pi\)
\(522\) 0 0
\(523\) 1.42288e11i 1.90179i 0.309511 + 0.950896i \(0.399835\pi\)
−0.309511 + 0.950896i \(0.600165\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.07429e9 + 6.20240e8i 0.0139277 + 0.00804114i
\(528\) 0 0
\(529\) 1.44635e10 + 2.50515e10i 0.184693 + 0.319897i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 1.36706e10 + 2.36782e10i 0.169386 + 0.293386i
\(534\) 0 0
\(535\) 9.53653e10 + 5.50592e10i 1.16406 + 0.672070i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 6.74477e10i 0.799120i
\(540\) 0 0
\(541\) −5.29348e10 −0.617949 −0.308974 0.951070i \(-0.599986\pi\)
−0.308974 + 0.951070i \(0.599986\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −7.16779e10 + 1.24150e11i −0.812455 + 1.40721i
\(546\) 0 0
\(547\) 1.24424e11 7.18359e10i 1.38980 0.802403i 0.396510 0.918030i \(-0.370221\pi\)
0.993293 + 0.115627i \(0.0368879\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 6.68684e10 3.86065e10i 0.725461 0.418845i
\(552\) 0 0
\(553\) 4.67096e9 8.09034e9i 0.0499466 0.0865100i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 8.08728e10 0.840198 0.420099 0.907478i \(-0.361995\pi\)
0.420099 + 0.907478i \(0.361995\pi\)
\(558\) 0 0
\(559\) 1.18322e11i 1.21176i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −2.74793e10 1.58652e10i −0.273510 0.157911i 0.356972 0.934115i \(-0.383809\pi\)
−0.630482 + 0.776204i \(0.717143\pi\)
\(564\) 0 0
\(565\) −8.56246e10 1.48306e11i −0.840243 1.45534i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 4.43237e10 + 7.67708e10i 0.422850 + 0.732398i 0.996217 0.0869008i \(-0.0276963\pi\)
−0.573367 + 0.819299i \(0.694363\pi\)
\(570\) 0 0
\(571\) −6.40257e10 3.69653e10i −0.602296 0.347736i 0.167648 0.985847i \(-0.446383\pi\)
−0.769944 + 0.638111i \(0.779716\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 3.55458e11i 3.25175i
\(576\) 0 0
\(577\) 6.29684e9 0.0568093 0.0284046 0.999597i \(-0.490957\pi\)
0.0284046 + 0.999597i \(0.490957\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −1.00396e11 + 1.73890e11i −0.881070 + 1.52606i
\(582\) 0 0
\(583\) 2.20153e10 1.27105e10i 0.190568 0.110025i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −1.39287e9 + 8.04174e8i −0.0117316 + 0.00677326i −0.505854 0.862619i \(-0.668823\pi\)
0.494123 + 0.869392i \(0.335489\pi\)
\(588\) 0 0
\(589\) 3.13377e10 5.42785e10i 0.260379 0.450990i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −4.51442e10 −0.365076 −0.182538 0.983199i \(-0.558431\pi\)
−0.182538 + 0.983199i \(0.558431\pi\)
\(594\) 0 0
\(595\) 1.08189e10i 0.0863209i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 1.81446e11 + 1.04758e11i 1.40942 + 0.813727i 0.995332 0.0965118i \(-0.0307685\pi\)
0.414084 + 0.910239i \(0.364102\pi\)
\(600\) 0 0
\(601\) −1.05737e11 1.83142e11i −0.810456 1.40375i −0.912545 0.408976i \(-0.865886\pi\)
0.102089 0.994775i \(-0.467447\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 1.19280e11 + 2.06599e11i 0.890318 + 1.54208i
\(606\) 0 0
\(607\) 1.86455e11 + 1.07650e11i 1.37347 + 0.792972i 0.991363 0.131146i \(-0.0418657\pi\)
0.382106 + 0.924119i \(0.375199\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 9.58289e10i 0.687593i
\(612\) 0 0
\(613\) −8.72845e10 −0.618152 −0.309076 0.951037i \(-0.600020\pi\)
−0.309076 + 0.951037i \(0.600020\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1.30451e11 2.25948e11i 0.900136 1.55908i 0.0728191 0.997345i \(-0.476800\pi\)
0.827317 0.561736i \(-0.189866\pi\)
\(618\) 0 0
\(619\) 1.47623e11 8.52304e10i 1.00552 0.580540i 0.0956464 0.995415i \(-0.469508\pi\)
0.909878 + 0.414875i \(0.136175\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −2.96011e11 + 1.70902e11i −1.96497 + 1.13448i
\(624\) 0 0
\(625\) −3.00814e11 + 5.21024e11i −1.97141 + 3.41459i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 4.28313e9 0.0273627
\(630\) 0 0
\(631\) 2.63602e10i 0.166277i 0.996538 + 0.0831384i \(0.0264944\pi\)
−0.996538 + 0.0831384i \(0.973506\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 2.43709e11 + 1.40706e11i 1.49892 + 0.865400i
\(636\) 0 0
\(637\) 2.20994e11 + 3.82773e11i 1.34222 + 2.32479i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 4.35455e10 + 7.54231e10i 0.257936 + 0.446758i 0.965689 0.259702i \(-0.0836244\pi\)
−0.707753 + 0.706460i \(0.750291\pi\)
\(642\) 0 0
\(643\) 6.39709e10 + 3.69336e10i 0.374230 + 0.216062i 0.675305 0.737539i \(-0.264012\pi\)
−0.301075 + 0.953601i \(0.597345\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 1.94284e11i 1.10871i −0.832279 0.554357i \(-0.812964\pi\)
0.832279 0.554357i \(-0.187036\pi\)
\(648\) 0 0
\(649\) −5.93292e10 −0.334418
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −9.18524e9 + 1.59093e10i −0.0505170 + 0.0874980i −0.890178 0.455613i \(-0.849420\pi\)
0.839661 + 0.543111i \(0.182754\pi\)
\(654\) 0 0
\(655\) −3.72733e11 + 2.15197e11i −2.02503 + 1.16915i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −1.85945e11 + 1.07355e11i −0.985922 + 0.569222i −0.904053 0.427421i \(-0.859422\pi\)
−0.0818689 + 0.996643i \(0.526089\pi\)
\(660\) 0 0
\(661\) 5.00632e10 8.67120e10i 0.262248 0.454228i −0.704591 0.709614i \(-0.748869\pi\)
0.966839 + 0.255386i \(0.0822027\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −5.46627e11 −2.79515
\(666\) 0 0
\(667\) 2.61555e11i 1.32148i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −4.78077e9 2.76018e9i −0.0235835 0.0136159i
\(672\) 0 0
\(673\) 6.67551e10 + 1.15623e11i 0.325405 + 0.563618i 0.981594 0.190978i \(-0.0611660\pi\)
−0.656189 + 0.754596i \(0.727833\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −4.25836e10 7.37569e10i −0.202716 0.351114i 0.746687 0.665176i \(-0.231643\pi\)
−0.949403 + 0.314062i \(0.898310\pi\)
\(678\) 0 0
\(679\) −1.34973e11 7.79267e10i −0.634992 0.366613i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 3.43809e11i 1.57992i 0.613161 + 0.789958i \(0.289898\pi\)
−0.613161 + 0.789958i \(0.710102\pi\)
\(684\) 0 0
\(685\) −5.67242e11 −2.57636
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −8.32930e10 + 1.44268e11i −0.369600 + 0.640165i
\(690\) 0 0
\(691\) −1.21006e11 + 6.98626e10i −0.530754 + 0.306431i −0.741323 0.671148i \(-0.765802\pi\)
0.210570 + 0.977579i \(0.432468\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 1.26656e11 7.31248e10i 0.542857 0.313419i
\(696\) 0 0
\(697\) 9.40697e8 1.62933e9i 0.00398583 0.00690366i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −6.67800e10 −0.276550 −0.138275 0.990394i \(-0.544156\pi\)
−0.138275 + 0.990394i \(0.544156\pi\)
\(702\) 0 0
\(703\) 2.16406e11i 0.886028i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 4.62034e11 + 2.66755e11i 1.84925 + 1.06767i
\(708\) 0 0
\(709\) 6.21617e10 + 1.07667e11i 0.246002 + 0.426087i 0.962413 0.271591i \(-0.0875498\pi\)
−0.716411 + 0.697678i \(0.754216\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 1.06155e11 + 1.83866e11i 0.410754 + 0.711447i
\(714\) 0 0
\(715\) 1.24138e11 + 7.16713e10i 0.474987 + 0.274234i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 1.22418e11i 0.458068i 0.973418 + 0.229034i \(0.0735567\pi\)
−0.973418 + 0.229034i \(0.926443\pi\)
\(720\) 0 0
\(721\) 2.16273e11 0.800315
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 4.33483e11 7.50815e11i 1.56899 2.71757i
\(726\) 0 0
\(727\) 1.80496e11 1.04209e11i 0.646144 0.373051i −0.140834 0.990033i \(-0.544978\pi\)
0.786977 + 0.616982i \(0.211645\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 7.05112e9 4.07097e9i 0.0246938 0.0142570i
\(732\) 0 0
\(733\) −7.40916e10 + 1.28330e11i −0.256657 + 0.444543i −0.965344 0.260980i \(-0.915954\pi\)
0.708687 + 0.705523i \(0.249288\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −4.81337e10 −0.163147
\(738\) 0 0
\(739\) 5.18644e11i 1.73897i −0.493962 0.869484i \(-0.664452\pi\)
0.493962 0.869484i \(-0.335548\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −3.12933e11 1.80672e11i −1.02682 0.592837i −0.110751 0.993848i \(-0.535326\pi\)
−0.916073 + 0.401011i \(0.868659\pi\)
\(744\) 0 0
\(745\) −1.02659e11 1.77811e11i −0.333253 0.577211i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 2.10915e11 + 3.65316e11i 0.670164 + 1.16076i
\(750\) 0 0
\(751\) −1.61051e11 9.29826e10i −0.506294 0.292309i 0.225015 0.974355i \(-0.427757\pi\)
−0.731309 + 0.682046i \(0.761090\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 3.03748e11i 0.934815i
\(756\) 0 0
\(757\) 3.70073e11 1.12695 0.563475 0.826133i \(-0.309464\pi\)
0.563475 + 0.826133i \(0.309464\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1.57796e11 2.73311e11i 0.470497 0.814926i −0.528933 0.848663i \(-0.677408\pi\)
0.999431 + 0.0337379i \(0.0107411\pi\)
\(762\) 0 0
\(763\) −4.75581e11 + 2.74577e11i −1.40322 + 0.810151i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 3.36700e11 1.94394e11i 0.972885 0.561696i
\(768\) 0 0
\(769\) 1.67469e11 2.90065e11i 0.478883 0.829450i −0.520823 0.853664i \(-0.674375\pi\)
0.999707 + 0.0242141i \(0.00770832\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 7.84555e10 0.219738 0.109869 0.993946i \(-0.464957\pi\)
0.109869 + 0.993946i \(0.464957\pi\)
\(774\) 0 0
\(775\) 7.03735e11i 1.95075i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −8.23223e10 4.75288e10i −0.223546 0.129065i
\(780\) 0 0
\(781\) 1.44766e10 + 2.50742e10i 0.0389101 + 0.0673943i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −9.77340e10 1.69280e11i −0.257375 0.445787i
\(786\) 0 0
\(787\) 4.65348e11 + 2.68669e11i 1.21305 + 0.700354i 0.963422 0.267988i \(-0.0863586\pi\)
0.249627 + 0.968342i \(0.419692\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 6.56005e11i 1.67572i
\(792\) 0 0
\(793\) 3.61752e10 0.0914784
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 1.41509e11 2.45100e11i 0.350711 0.607449i −0.635663 0.771967i \(-0.719273\pi\)
0.986374 + 0.164517i \(0.0526066\pi\)
\(798\) 0 0
\(799\) 5.71070e9 3.29708e9i 0.0140121 0.00808988i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 1.41376e11 8.16237e10i 0.340028 0.196315i
\(804\) 0 0
\(805\) 9.25836e11 1.60359e12i 2.20470 3.81866i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −2.37475e11 −0.554401 −0.277200 0.960812i \(-0.589407\pi\)
−0.277200 + 0.960812i \(0.589407\pi\)
\(810\) 0 0
\(811\) 1.65197e11i 0.381874i −0.981602 0.190937i \(-0.938847\pi\)
0.981602 0.190937i \(-0.0611526\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −3.63046e10 2.09605e10i −0.0822871 0.0475085i
\(816\) 0 0
\(817\) −2.05686e11 3.56259e11i −0.461654 0.799608i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 2.24341e11 + 3.88571e11i 0.493784 + 0.855258i 0.999974 0.00716314i \(-0.00228012\pi\)
−0.506191 + 0.862422i \(0.668947\pi\)
\(822\) 0 0
\(823\) −2.61680e11 1.51081e11i −0.570389 0.329315i 0.186915 0.982376i \(-0.440151\pi\)
−0.757305 + 0.653062i \(0.773484\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 3.50332e11i 0.748959i −0.927235 0.374479i \(-0.877821\pi\)
0.927235 0.374479i \(-0.122179\pi\)
\(828\) 0 0
\(829\) −3.42927e11 −0.726078 −0.363039 0.931774i \(-0.618261\pi\)
−0.363039 + 0.931774i \(0.618261\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 1.52070e10 2.63393e10i 0.0315837 0.0547046i
\(834\) 0 0
\(835\) −3.16731e11 + 1.82865e11i −0.651546 + 0.376170i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −2.97330e11 + 1.71664e11i −0.600055 + 0.346442i −0.769063 0.639173i \(-0.779277\pi\)
0.169008 + 0.985615i \(0.445943\pi\)
\(840\) 0 0
\(841\) −6.88451e10 + 1.19243e11i −0.137622 + 0.238369i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 5.17335e10 0.101472
\(846\) 0 0
\(847\) 9.13851e11i 1.77559i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 6.34851e11 + 3.66532e11i 1.21047 + 0.698865i
\(852\) 0 0
\(853\) 3.38710e11 + 5.86662e11i 0.639781 + 1.10813i 0.985481 + 0.169788i \(0.0543084\pi\)
−0.345699 + 0.938345i \(0.612358\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −4.20591e11 7.28485e11i −0.779717 1.35051i −0.932105 0.362188i \(-0.882030\pi\)
0.152388 0.988321i \(-0.451304\pi\)
\(858\) 0 0
\(859\) −8.51944e11 4.91870e11i −1.56473 0.903396i −0.996768 0.0803391i \(-0.974400\pi\)
−0.567960 0.823056i \(-0.692267\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 6.71168e11i 1.21001i −0.796223 0.605004i \(-0.793172\pi\)
0.796223 0.605004i \(-0.206828\pi\)
\(864\) 0 0
\(865\) 7.58688e11 1.35519
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 4.25853e9 7.37599e9i 0.00746759 0.0129342i
\(870\) 0 0
\(871\) 2.73164e11 1.57711e11i 0.474626 0.274025i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −3.40253e12 + 1.96445e12i −5.80456 + 3.35127i
\(876\) 0 0
\(877\) −5.17243e10 + 8.95892e10i −0.0874372 + 0.151446i −0.906427 0.422362i \(-0.861201\pi\)
0.818990 + 0.573808i \(0.194534\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 1.24789e11 0.207144 0.103572 0.994622i \(-0.466973\pi\)
0.103572 + 0.994622i \(0.466973\pi\)
\(882\) 0 0
\(883\) 9.40863e11i 1.54769i −0.633376 0.773844i \(-0.718331\pi\)
0.633376 0.773844i \(-0.281669\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 8.79707e11 + 5.07899e11i 1.42116 + 0.820508i 0.996398 0.0847958i \(-0.0270238\pi\)
0.424764 + 0.905304i \(0.360357\pi\)
\(888\) 0 0
\(889\) 5.39002e11 + 9.33579e11i 0.862945 + 1.49466i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −1.66585e11 2.88534e11i −0.261957 0.453723i
\(894\) 0 0
\(895\) 1.38381e12 + 7.98941e11i 2.15667 + 1.24515i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 5.17827e11i 0.792767i
\(900\) 0 0
\(901\) 1.14631e10 0.0173941
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 6.03373e11 1.04507e12i 0.899480 1.55795i
\(906\) 0 0
\(907\) −7.32476e10 + 4.22895e10i −0.108234 + 0.0624890i −0.553140 0.833088i \(-0.686570\pi\)
0.444906 + 0.895577i \(0.353237\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −7.32487e11 + 4.22902e11i −1.06347 + 0.613997i −0.926391 0.376563i \(-0.877106\pi\)
−0.137082 + 0.990560i \(0.543772\pi\)
\(912\) 0 0
\(913\) −9.15310e10 + 1.58536e11i −0.131730 + 0.228163i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −1.64871e12 −2.33168
\(918\) 0 0
\(919\) 4.67279e11i 0.655110i −0.944832 0.327555i \(-0.893775\pi\)
0.944832 0.327555i \(-0.106225\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −1.64313e11 9.48660e10i −0.226394 0.130708i
\(924\) 0 0
\(925\) −1.21493e12 2.10432e12i −1.65953 2.87438i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −2.74314e11 4.75127e11i −0.368287 0.637891i 0.621011 0.783802i \(-0.286722\pi\)
−0.989298 + 0.145911i \(0.953389\pi\)
\(930\) 0 0
\(931\) −1.33080e12 7.68335e11i −1.77138 1.02271i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 9.86365e9i 0.0129060i
\(936\) 0 0
\(937\) 1.40712e12 1.82546 0.912729 0.408565i \(-0.133971\pi\)
0.912729 + 0.408565i \(0.133971\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −7.57797e11 + 1.31254e12i −0.966483 + 1.67400i −0.260906 + 0.965364i \(0.584021\pi\)
−0.705577 + 0.708633i \(0.749312\pi\)
\(942\) 0 0
\(943\) 2.78863e11 1.61001e11i 0.352650 0.203602i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 2.84092e11 1.64021e11i 0.353231 0.203938i −0.312876 0.949794i \(-0.601292\pi\)
0.666108 + 0.745856i \(0.267959\pi\)
\(948\) 0 0
\(949\) −5.34885e11 + 9.26448e11i −0.659471 + 1.14224i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −2.41370e11 −0.292625 −0.146312 0.989238i \(-0.546741\pi\)
−0.146312 + 0.989238i \(0.546741\pi\)
\(954\) 0 0
\(955\) 2.52481e12i 3.03540i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −1.88182e12 1.08647e12i −2.22486 1.28452i
\(960\) 0 0
\(961\) −2.16280e11 3.74608e11i −0.253585 0.439221i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −8.35179e11 1.44657e12i −0.963098 1.66813i
\(966\) 0 0
\(967\) 7.52074e11 + 4.34210e11i 0.860111 + 0.496585i 0.864049 0.503407i \(-0.167920\pi\)
−0.00393849 + 0.999992i \(0.501254\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 1.50474e12i 1.69272i −0.532611 0.846360i \(-0.678789\pi\)
0.532611 0.846360i \(-0.321211\pi\)
\(972\) 0 0
\(973\) 5.60238e11 0.625060
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 4.72174e11 8.17830e11i 0.518232 0.897603i −0.481544 0.876422i \(-0.659924\pi\)
0.999776 0.0211816i \(-0.00674281\pi\)
\(978\) 0 0
\(979\) −2.69874e11 + 1.55812e11i −0.293786 + 0.169617i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 1.01487e12 5.85933e11i 1.08691 0.627529i 0.154159 0.988046i \(-0.450733\pi\)
0.932753 + 0.360517i \(0.117400\pi\)
\(984\) 0 0
\(985\) 3.26387e11 5.65319e11i 0.346727 0.600549i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1.39350e12 1.45654
\(990\) 0 0
\(991\) 3.52592e11i 0.365576i −0.983152 0.182788i \(-0.941488\pi\)
0.983152 0.182788i \(-0.0585122\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 1.27409e12 + 7.35595e11i 1.29989 + 0.750493i
\(996\) 0 0
\(997\) 1.11469e11 + 1.93071e11i 0.112817 + 0.195405i 0.916905 0.399105i \(-0.130679\pi\)
−0.804088 + 0.594510i \(0.797346\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 432.9.o.b.415.16 32
3.2 odd 2 144.9.o.a.31.1 32
4.3 odd 2 432.9.o.a.415.16 32
9.2 odd 6 144.9.o.c.79.16 yes 32
9.7 even 3 432.9.o.a.127.16 32
12.11 even 2 144.9.o.c.31.16 yes 32
36.7 odd 6 inner 432.9.o.b.127.16 32
36.11 even 6 144.9.o.a.79.1 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
144.9.o.a.31.1 32 3.2 odd 2
144.9.o.a.79.1 yes 32 36.11 even 6
144.9.o.c.31.16 yes 32 12.11 even 2
144.9.o.c.79.16 yes 32 9.2 odd 6
432.9.o.a.127.16 32 9.7 even 3
432.9.o.a.415.16 32 4.3 odd 2
432.9.o.b.127.16 32 36.7 odd 6 inner
432.9.o.b.415.16 32 1.1 even 1 trivial