Properties

Label 432.9.o.b
Level $432$
Weight $9$
Character orbit 432.o
Analytic conductor $175.988$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [432,9,Mod(127,432)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("432.127"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(432, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 4])) N = Newforms(chi, 9, names="a")
 
Level: \( N \) \(=\) \( 432 = 2^{4} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 432.o (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,0,-147,0,2769] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(175.987559546\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 144)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 32 q - 147 q^{5} + 2769 q^{7} + 17082 q^{11} + 1685 q^{13} + 6402 q^{17} - 4941 q^{23} - 1080803 q^{25} + 639219 q^{29} - 920745 q^{31} - 2765636 q^{37} + 2229390 q^{41} - 1788381 q^{47} + 13397285 q^{49}+ \cdots + 74963282 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
127.1 0 0 0 −498.228 862.955i 0 −2852.71 1647.01i 0 0 0
127.2 0 0 0 −496.920 860.691i 0 −302.260 174.510i 0 0 0
127.3 0 0 0 −424.979 736.085i 0 −392.812 226.790i 0 0 0
127.4 0 0 0 −341.539 591.564i 0 2776.29 + 1602.89i 0 0 0
127.5 0 0 0 −231.039 400.171i 0 1072.97 + 619.477i 0 0 0
127.6 0 0 0 −204.161 353.617i 0 −3493.95 2017.23i 0 0 0
127.7 0 0 0 −116.277 201.398i 0 2549.44 + 1471.92i 0 0 0
127.8 0 0 0 −59.6077 103.244i 0 2053.57 + 1185.63i 0 0 0
127.9 0 0 0 33.9007 + 58.7177i 0 2633.24 + 1520.30i 0 0 0
127.10 0 0 0 152.622 + 264.349i 0 −517.677 298.881i 0 0 0
127.11 0 0 0 192.240 + 332.970i 0 −2901.79 1675.35i 0 0 0
127.12 0 0 0 195.960 + 339.413i 0 −2555.55 1475.45i 0 0 0
127.13 0 0 0 234.980 + 406.997i 0 260.631 + 150.475i 0 0 0
127.14 0 0 0 354.193 + 613.480i 0 −728.814 420.781i 0 0 0
127.15 0 0 0 527.884 + 914.322i 0 −246.626 142.389i 0 0 0
127.16 0 0 0 607.471 + 1052.17i 0 4030.55 + 2327.04i 0 0 0
415.1 0 0 0 −498.228 + 862.955i 0 −2852.71 + 1647.01i 0 0 0
415.2 0 0 0 −496.920 + 860.691i 0 −302.260 + 174.510i 0 0 0
415.3 0 0 0 −424.979 + 736.085i 0 −392.812 + 226.790i 0 0 0
415.4 0 0 0 −341.539 + 591.564i 0 2776.29 1602.89i 0 0 0
See all 32 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 127.16
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
36.f odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 432.9.o.b 32
3.b odd 2 1 144.9.o.a 32
4.b odd 2 1 432.9.o.a 32
9.c even 3 1 432.9.o.a 32
9.d odd 6 1 144.9.o.c yes 32
12.b even 2 1 144.9.o.c yes 32
36.f odd 6 1 inner 432.9.o.b 32
36.h even 6 1 144.9.o.a 32
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
144.9.o.a 32 3.b odd 2 1
144.9.o.a 32 36.h even 6 1
144.9.o.c yes 32 9.d odd 6 1
144.9.o.c yes 32 12.b even 2 1
432.9.o.a 32 4.b odd 2 1
432.9.o.a 32 9.c even 3 1
432.9.o.b 32 1.a even 1 1 trivial
432.9.o.b 32 36.f odd 6 1 inner