Properties

Label 2-432-36.31-c8-0-16
Degree $2$
Conductor $432$
Sign $0.982 - 0.187i$
Analytic cond. $175.987$
Root an. cond. $13.2660$
Motivic weight $8$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−498. + 862. i)5-s + (−2.85e3 + 1.64e3i)7-s + (−1.11e4 + 6.43e3i)11-s + (−1.02e4 + 1.77e4i)13-s + 6.41e4·17-s − 1.76e5i·19-s + (−2.29e5 − 1.32e5i)23-s + (−3.01e5 − 5.21e5i)25-s + (9.65e3 + 1.67e4i)29-s + (−5.68e5 − 3.28e5i)31-s − 3.28e6i·35-s − 3.47e6·37-s + (9.83e5 − 1.70e6i)41-s + (−1.64e6 + 9.46e5i)43-s + (−6.98e6 + 4.03e6i)47-s + ⋯
L(s)  = 1  + (−0.797 + 1.38i)5-s + (−1.18 + 0.685i)7-s + (−0.761 + 0.439i)11-s + (−0.359 + 0.622i)13-s + 0.768·17-s − 1.35i·19-s + (−0.819 − 0.473i)23-s + (−0.770 − 1.33i)25-s + (0.0136 + 0.0236i)29-s + (−0.615 − 0.355i)31-s − 2.18i·35-s − 1.85·37-s + (0.347 − 0.602i)41-s + (−0.479 + 0.276i)43-s + (−1.43 + 0.827i)47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 432 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.982 - 0.187i)\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 432 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & (0.982 - 0.187i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(432\)    =    \(2^{4} \cdot 3^{3}\)
Sign: $0.982 - 0.187i$
Analytic conductor: \(175.987\)
Root analytic conductor: \(13.2660\)
Motivic weight: \(8\)
Rational: no
Arithmetic: yes
Character: $\chi_{432} (415, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 432,\ (\ :4),\ 0.982 - 0.187i)\)

Particular Values

\(L(\frac{9}{2})\) \(\approx\) \(0.2990234928\)
\(L(\frac12)\) \(\approx\) \(0.2990234928\)
\(L(5)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 + (498. - 862. i)T + (-1.95e5 - 3.38e5i)T^{2} \)
7 \( 1 + (2.85e3 - 1.64e3i)T + (2.88e6 - 4.99e6i)T^{2} \)
11 \( 1 + (1.11e4 - 6.43e3i)T + (1.07e8 - 1.85e8i)T^{2} \)
13 \( 1 + (1.02e4 - 1.77e4i)T + (-4.07e8 - 7.06e8i)T^{2} \)
17 \( 1 - 6.41e4T + 6.97e9T^{2} \)
19 \( 1 + 1.76e5iT - 1.69e10T^{2} \)
23 \( 1 + (2.29e5 + 1.32e5i)T + (3.91e10 + 6.78e10i)T^{2} \)
29 \( 1 + (-9.65e3 - 1.67e4i)T + (-2.50e11 + 4.33e11i)T^{2} \)
31 \( 1 + (5.68e5 + 3.28e5i)T + (4.26e11 + 7.38e11i)T^{2} \)
37 \( 1 + 3.47e6T + 3.51e12T^{2} \)
41 \( 1 + (-9.83e5 + 1.70e6i)T + (-3.99e12 - 6.91e12i)T^{2} \)
43 \( 1 + (1.64e6 - 9.46e5i)T + (5.84e12 - 1.01e13i)T^{2} \)
47 \( 1 + (6.98e6 - 4.03e6i)T + (1.19e13 - 2.06e13i)T^{2} \)
53 \( 1 - 1.33e7T + 6.22e13T^{2} \)
59 \( 1 + (-2.37e6 - 1.37e6i)T + (7.34e13 + 1.27e14i)T^{2} \)
61 \( 1 + (1.12e7 + 1.94e7i)T + (-9.58e13 + 1.66e14i)T^{2} \)
67 \( 1 + (6.00e6 + 3.46e6i)T + (2.03e14 + 3.51e14i)T^{2} \)
71 \( 1 - 2.25e7iT - 6.45e14T^{2} \)
73 \( 1 - 1.35e7T + 8.06e14T^{2} \)
79 \( 1 + (4.63e7 - 2.67e7i)T + (7.58e14 - 1.31e15i)T^{2} \)
83 \( 1 + (-8.20e6 + 4.73e6i)T + (1.12e15 - 1.95e15i)T^{2} \)
89 \( 1 - 6.23e7T + 3.93e15T^{2} \)
97 \( 1 + (-3.88e7 - 6.73e7i)T + (-3.91e15 + 6.78e15i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.957512727720142774687164179692, −9.045324184205474608206854388589, −7.82018825433116018162146632533, −7.00118057873768690605731247211, −6.39897432274957091633924275308, −5.16014112719784789469147334218, −3.80487615638563122431257001982, −2.95508888897649789360348026329, −2.24144376353635422039987036213, −0.13808270696038522114779375588, 0.37808653981541287011510573084, 1.49920882717696948039467637903, 3.27711330806268240241277723409, 3.84996355705094813803047257052, 5.10843417791472947806540865567, 5.85876057144737240930828017269, 7.26948094505582159892573292173, 7.998730737291242103199995087006, 8.749194094315499125274315942718, 9.953544745851088226383904690137

Graph of the $Z$-function along the critical line